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ABSTRACT

In this paper, we examine the relative forecast accuracy of
information markets versus expert aggregation. We lever-
age a unique data source of almost 2000 people’s subjective
probability judgments on 2003 US National Football League
games and compare with the “market probabilities” given
by two different information markets on exactly the same
events. We combine assessments of multiple experts via lin-
ear and logarithmic aggregation functions to form pooled
predictions. Prices in information markets are used to de-
rive market predictions. Our results show that, at the same
time point ahead of the game, information markets provide
as accurate predictions as pooled expert assessments. In
screening pooled expert predictions, we find that arithmetic
average is a robust and efficient pooling function; weight-
ing expert assessments according to their past performance
does not improve accuracy of pooled predictions; and loga-
rithmic aggregation functions offer bolder predictions than
linear aggregation functions. The results provide insights
into the predictive performance of information markets, and
the relative merits of selecting among various opinion pool-
ing methods.
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1. INTRODUCTION

Forecasting is a ubiquitous endeavor in human societies.
For decades, scientists have been developing and exploring
various forecasting methods, which can be roughly divided
into statistical and non-statistical approaches. Statistical
approaches require not only the existence of enough histor-
ical data but also that past data contains valuable infor-
mation about the future event. When these conditions can
not be met, non-statistical approaches that rely on judg-
mental information about the future event could be better
choices. One widely used non-statistical method is to elicit
opinions from experts. Since experts are not generally in
agreement, many belief aggregation methods have been pro-
posed to combine expert opinions together and form a sin-
gle prediction. These belief aggregation methods are called
opinion pools, which have been extensively studied in statis-
tics [18, 22, 36], and management sciences [8, 9, 28, 29], and
applied in many domains such as group decision making [27]
and risk analysis [11].

With the fast growth of the Internet, information markets
have recently emerged as a promising non-statistical fore-
casting tool. Information markets (sometimes called pre-
diction markets, idea markets, or event markets) are mar-
kets designed for aggregating information and making pre-
dictions about future events. To form the predictions, in-
formation markets tie payoffs of securities to outcomes of
events. For example, in an information market to predict
the result of a US professional National Football League
(NFL) game, say New England vs Carolina, the security
pays a certain amount of money per share to its holders if
and only if New England wins the game. Otherwise, it pays
off nothing. The security price before the game reflects the
consensus expectation of market traders about the proba-
bility of New England winning the game. Such markets
are becoming very popular. The Iowa Electronic Markets
(IEM) [2] are real-money futures markets to predict eco-
nomic and political events such as elections. The Holly-
wood Stock Exchange (HSX) [3] is a virtual (play-money)
exchange for trading securities to forecast future box of-
fice proceeds of new movies, the outcomes of entertainment
awards, etc. TradeSports.com [7], a real-money betting ex-
change registered in Ireland, hosts markets for sports, po-
litical, entertainment, and financial events. The Foresight
Exchange (FX) [4] allows traders to wager play money on
unresolved scientific questions or other claims of public in-
terest, and NewsFutures.com’s World News Exchange [1] has



popular sports and financial betting markets, also grounded
in a play-money currency.

Despite the popularity of information markets, one of the
most important questions to ask is: how accurately can in-
formation markets predict? Previous research in general
shows that information markets are remarkably accurate.
The political election markets at IEM predict the election
outcomes better than polls [14, 15, 16, 17]. Prices in HSX
and FX have been found to give as accurate or more ac-
curate predictions than judgment of individual experts [31,
32, 35]. However, information markets have not been cal-
ibrated against opinion pools, except for Servan-Schreiber
et. al [34], in which the authors compare two information
markets against arithmetic average of expert opinions. Since
information markets, in nature, offer an adaptive and self-
organized mechanism to aggregate opinions of market par-
ticipants, it is interesting to compare them with existing
opinion pooling methods, to evaluate the performance of
information markets from another perspective. The com-
parison will provide beneficial guidance for practitioners to
choose the most appropriate method for their needs.

This paper contributes to the literature in two ways: (1)
As an initial attempt to compare information markets with
opinion pools of multiple experts, it leads to a better un-
derstanding of information markets and their promise as an
alternative institution for obtaining accurate forecasts (2)
In screening opinion pools to be used in the comparison, we
cast insights into relative performances of different opinion
pools. In terms of prediction accuracy, we compare two in-
formation markets with several linear and logarithmic opin-
ion pools (LinOP and LogOP) at predicting the results of
NFL games. Our results show that at the same time point
ahead of the game, information markets provide as accurate
predictions as our carefully selected opinion pools. In se-
lecting the opinion pools to be used in our comparison, we
find that arithmetic average is a robust and efficient pooling
function; weighting expert assessments according to their
past performances does not improve the prediction accuracy
of opinion pools; and LogOP offers bolder predictions than
LinOP. The remainder of the paper is organized as follows.
Section 2 reviews popular opinion pooling methods. Sec-
tion 3 introduces the basics of information markets. Data
sets and our analysis methods are described in Section 4.
We present results and analysis in Section 5, followed by
conclusions in Section 6.

2. REVIEW OF OPINION POOLS

Clemen and Winkler [11] classify opinion pooling meth-
ods into two broad categories: mathematical approaches
and behavioral approaches. In mathematical approaches,
the opinions of individual experts are expressed as subjec-
tive probability distributions over outcomes of an uncer-
tain event. They are combined through various mathemat-
ical methods to form an aggregated probability distribu-
tion. Genest and Zidek [22] and French [18] provide compre-
hensive reviews of mathematical approaches. Mathematical
approaches can be further distinguished into axiomatic ap-
proaches and Bayesian approaches. Axiomatic approaches
apply prespecified functions that map expert opinions, ex-
pressed as a set of individual probability distributions, to
a single aggregated probability distribution. These pool-
ing functions are justified using axioms or certain desirable
properties. Two of the most common pooling functions are

the linear opinion pool (LinOP) and the logarithmic opinion
pool (LogOP). Using LinOP, the aggregate probability dis-
tribution is a weighted arithmetic mean of individual prob-
ability distributions:

P(O) = > wpi(6). 1)

where p;(0) is expert i’s probability distribution of uncertain
event 0, p(0) represents the aggregate probability distribu-
tion, w;’s are weights for experts, which are usually non-
negative and sum to 1, and n is the number of experts. Using
LogOP, the aggregate probability distribution is a weighted
geometric mean of individual probability distributions:

p(0) = k[ pi(0)", @

where k is a normalization constant to ensure that the pooled
opinion is a probability distribution. Other axiomatic pool-
ing methods often are extensions of LinOP [20], LogOP [21],
or both [12]. Winkler [37] and Morris [27, 28] establish the
early framework of Bayesian aggregation methods. Bayesian
approaches assume as if there is a decision maker who has a
prior probability distribution over event 6 and a likelihood
function over expert opinions given the event. This decision
maker takes expert opinions as evidence and updates its pri-
ors over the event and opinions according to Bayes rule. The
resulted posterior probability distribution of 0 is the pooled
opinion.

Behavioral approaches have been widely studied in the
field of group decision making and organizational behav-
ior. The important assumption of behavioral approaches is
that, through exchanging opinions or information, experts
can eventually reach an equilibrium where further interac-
tion won’t change their opinions. One of the best known
behavioral approaches is the Delphi technique [26].

Each approach has its pros and cons. Axiomatic ap-
proaches are easy to use. But they don’t have a normative
basis to choose weights. In addition, several impossibility
results (e.g., Genest [19]) show that no aggregation func-
tion can satisfy all desired properties of an opinion pool,
unless the pooled opinion degenerates to a single individual
opinion, which effectively implies a dictator. Bayesian ap-
proaches are nicely based on the normative Bayesian frame-
work. However, it is sometimes frustratingly difficult to ap-
ply because it requires either (1) constructing an obscenely
complex joint prior over the event and opinions (often im-
practical even in terms of storage / space complexity, not
to mention from an elicitation standpoint) or (2) making
strong assumptions about the prior, like conditional inde-
pendence of experts. Behavior approaches allow experts to
dynamically improve their information and revise their opin-
ions during interactions, but many of them are not fixed or
completely specified, and can’t guarantee convergence or re-
peatability.

3. HOWINFORMATION MARKETSWORK

Much of the enthusiasm for information markets stems
from Hayek hypothesis [24] and efficient market hypothe-
sis [13]. Hayek, in his classic critique of central planning in
1940’s, claims that the price system in a competitive market
is a very efficient mechanism to aggregate dispersed infor-
mation among market participants. The efficient market



hypothesis further states that, in an efficient market, the
price of a security almost instantly incorporates all avail-
able information. The market price summarizes all relevant
information across traders, hence is the market participants’
consensus expectation about the future value of the security.
Empirical evidence supports both hypotheses to a large ex-
tent [23, 25, 33]. Thus, when associating the value of a secu-
rity with the outcome of an uncertain future event, market
price, by revealing the consensus expectation of the security
value, can indirectly predict the outcome of the event. This
idea gives rise to information markets.

For example, if we want to predict which team will win
the NFL game between New England and Carolina, an in-
formation market can trade a security “$100 if New England
defeats Carolina”, whose payoff per share at the end of the
game is specified as follow:

$100 if New England wins the game;
$0 otherwise.

The security price should roughly equal the expected payoff
of the security in an efficient market. The time value of
money usually can be ignored because the duration of most
information markets is short. Assuming exposure to risk is
roughly equal for both outcomes, or that there are sufficient
effectively risk-neutral speculators in the market, the price
should not be biased by the risk attitudes of various players
in the market. Thus,

p = Pr(Patriots win) x 100 + [1 — Pr(Patriots win)] x 0,

where p is the price of the security “$100 if New England
defeats Carolina” and Pr(Patriots win) is the probability
that New England will win the game. Observing the security
price p before the game, we can derive Pr(Patriots win),
which is the market participants’ collective prediction about
how likely it is that New England will win the game.

The above security is a winner-takes-all contract. It is
used when the event to be predicted is a discrete random
variable with disjoint outcomes (in this case binary). Its
price predicts the probability that a specific outcome will be
realized. When the outcome of a prediction problem can be
any value in a continuous interval, we can design a security
that pays its holder proportional to the realized value. This
kind of security is what Wolfers and Zitzewitz [38] called
an inder contract. It predicts the expected value of a fu-
ture outcome. Many other aspects of a future event such as
median value of outcome can also be predicted in informa-
tion markets by designing and trading different securities.
Wolfers and Zitzewitz [38] provide a summary of the main
types of securities traded in information markets and what
statistical properties they can predict. In practice, conceiv-
ing a security for a prediction problem is only one of the
many decisions in designing an effective information mar-
ket. Spann and Skiera [35] propose an initial framework for
designing information markets.

4. DESIGN OF ANALYSIS

4.1 Data Sets

Our data sets cover 210 NFL games held between Septem-
ber 28th, 2003 and December 28th, 2003. NFL games are
very suitable for our purposes because: (1) two online ex-
changes and one online prediction contest already exist that

provide data on both information markets and the opin-
ions of self-identified experts for the same set of games; (2)
the popularity of NFL games in the United States provides
natural incentives for people to participate in information
markets and/or the contest, which increases liquidity of in-
formation markets and improves the quality and number
of opinions in the contest; (3) intense media coverage and
analysis of the profiles and strengths of teams and individ-
ual players provide the public with much information so that
participants of information markets and the contest can be
viewed as knowledgeable regarding to the forecasting goal.

Information market data was acquired, by using a spe-
cially designed crawler program, from TradeSports.com’s
Football-NFL markets [7] and NewsFutures.com’s Sports
Exchange [1]. For each NFL game, both TradeSports and
NewsFutures have a winner-takes-all information market to
predict the game outcome. We introduce the design of the
two markets according to Spann and Skiera’s three steps for
designing an information market [35] as below.

e Choice of forecasting goal: Markets at both Trade-
Sports and NewsFutures aim at predicting which one
of the two teams will win a NFL football game. They
trade similar winner-takes-all securities that pay off
100 if a team wins the game and 0 if it loses the game.
Small differences exist in how they deal with ties. In
the case of a tie, TradeSports will unwind all trades
that occurred and refund all exchange fees, but the
security is worth 50 in NewsFutures. Since the proba-
bility of a tie is usually very low (much less the 1%),
prices at both markets effectively represent the market
participants’ consensus assessment of the probability
that the team will win.

e Incentive for participation and information rev-
elation: TradeSports and NewsFutures use different
incentives for participation and information revelation.
TradeSports is a real-money exchange. A trader needs
to open and fund an account with a minimum of $100
to participate in the market. Both profits and losses
can occur as a result of trading activity. On the con-
trary, a trader can register at NewsFutures for free and
get 2000 units of Sport Exchange virtual money at the
time of registration. Traders at NewsFutures will not
incur any real financial loss. They can accumulate vir-
tual money by trading securities. The virtual money
can then be used to bid for a few real prizes at News-
Futures’ online shop.

¢ Financial market design: Both markets at Trade-
Sports and NewsFutures use the continuous double
auction as their trading mechanism. TradeSports charges
a small fee on each security transaction and expiry,
while NewsFutures does not.

We can see that the main difference between two information
markets is real money vs. virtual money. Servan-Schreiber
et. al [34] have compared the effect of money on the perfor-
mance of the two information markets and concluded that
the prediction accuracy of the two markets are at about the
same level. Not intending to compare these two markets,
we still use both markets in our analysis to ensure that our
findings are not accidental.

We obtain the opinions of 1966 self-identified experts for
NFL games from the ProbabilityFootball online contest [5],



one of several ProbabilitySports contests [6]. The contest is
free to enter. Participants of the contest are asked to enter
their subjective probability that a team will win a game
by noon on the day of the game. Importantly, the contest
evaluates the participants’ performance via the quadratic
scoring rule:

s =100 — 400 x Prob_Lose?, (3)

where s represents the score that a participant earns for the
game, and Prob_Lose is the probability that the participant
assigns to the actual losing team. The quadratic score is
one of a family of so-called proper scoring rules that have
the property that an expert’s expected score is maximized
when the expert reports probabilities truthfully. For exam-
ple, for a game team A vs team B, if a player assigns 0.5 to
both team A and B, his/her score for the game is 0 no matter
which team wins. If he/she assigns 0.8 to team A and 0.2 to
team B, showing that he is confident in team A’s winning,
he/she will score 84 points for the game if team A wins, and
lose 156 points if team B wins. This quadratic scoring rule
rewards bold predictions that are right, but penalizes bold
predictions that turn out to be wrong. The top players, mea-
sured by accumulated scores over all games, win the prizes
of the contest. The suggested strategy at the contest web-
site is “to make picks for each game that match, as closely
as possible, the probabilities that each team will win”. This
strategy is correct if the participant seeks to maximize ex-
pected score. However, as prizes are awarded only to the top
few winners, participants goals are to maximize the proba-
bility of winning, not maximize expected score, resulting in a
slightly different and more risk-seeking optimization.' Still,
as far as we are aware, this data offers the closest thing avail-
able to true subjective probability judgments from so many
people over so many public events that have corresponding
information markets.

4.2 Methodsof Analysis

In order to compare the prediction accuracy of informa-
tion markets and that of opinion pools, we proceed to derive
predictions from market data of TradeSports and NewsFu-
tures, form pooled opinions using expert data from Probabil-
ityFootball contest, and specify the performance measures
to be used.

4.2.1 Deriving Predictions

For information markets, deriving predictions is straight-
forward. We can take the security price and divide it by
100 to get the market’s prediction of the probability that
a team will win. To match the time when participants at
the ProbabilityFootball contest are required to report their
probability assessments, we derive predictions using the last
trade price before noon on the day of the game. For more
than half of the games, this time is only about an hour ear-
lier than the game starting time, while it is several hours
earlier for other games. Two sets of market predictions are
derived:

e NF: Prediction equals NewsFutures’ last trade price
before noon of the game day divided by 100.

e TS: Prediction equals TradeSports’ last trade price be-
fore noon of the game day divided by 100.

Ideally, prizes would be awarded by lottery in proportion
to accumulated score.

We apply LinOP and LogOP to ProbabilityFootball data
to obtain aggregate expert predictions. The reason that we
do not consider other aggregation methods include: (1) data
from ProbabilityFootball is only suitable for mathematical
pooling methods—we can rule out behavioral approaches,
(2) Bayesian aggregation requires us to make assumptions
about the prior probability distribution of game outcomes
and the likelihood function of expert opinions: given the
large number of games and participants, making reasonable
assumptions is difficult, and (3) for axiomatic approaches,
previous research has shown that simpler aggregation meth-
ods often perform better than more complex methods [11].
Because the output of LogOP is indeterminate if there are
probability assessments of both 0 and 1 (and because as-
sessments of 0 and 1 are dictatorial using LogOP), we add
a small number 0.01 to an expert opinion if it is 0, and
subtract 0.01 from it if it is 1.

In pooling opinions, we consider two influencing factors:
weights of experts and number of expert opinions to be
pooled. For weights of experts, we experiment with equal
weights and performance-based weights. The performance-
based weights are determined according to previous accu-
mulated score in the contest. The score for each game is
calculated according to equation 3, the scoring rule used in
the ProbabilityFootball contest. For the first week, since no
previous scores are available, we choose equal weights. For
later weeks, we calculate accumulated past scores for each
player. Because the cumulative scores can be negative, we
shift everyone’s score if needed to ensure the weights are
non-negative. Thus,

cumulative_score; + shift
Y= (cumulative_score; + shift) '

(4)

Wi =

where shift equals 0 if the smallest cumulative_score; is
non-negative, and equals the absolute value of the small-
est cumulative_score; otherwise. For simplicity, we call
performance-weighted opinion pool as weighted, and equally
weighted opinion pool as unweighted. We will use them in-
terchangeably in the remaining of the paper.

Table 1: Pooled Expert Predictions

# Symbol Description

1 Lin-Alllu  Unweighted (equally weighted) LinOP
of all experts.

2 Lin-Alllw  Weighted (performance-weighted)

LinOP of all experts.
Unweighted (equally weighted) LinOP
with n experts.

Weighted (performance-weighted)
LinOP with n experts.

3 Lin-n-u

4  Lin-n-w

5 Log-All-u  Unweighted (equally weighted) LogOP
of all experts.

6 Log-Alllw  Weighted (performance-weighted) Lo-
gOP of all experts.

7 Log-n-u Unweighted (equally weighted) LogOP
with n experts.

8 Log-n-w Weighted (performance-weighted) Lo-

gOP with n experts.




As for the number of opinions used in an opinion pool,
we form different opinion pools with different number of ex-
perts. Only the best performing experts are selected. For
example, to form an opinion pool with 20 expert opinions,
we choose the top 20 participants. Since there is no perfor-
mance record for the first week, we use opinions of all par-
ticipants in the first week. For week 2, we select opinions of
20 individuals whose scores in the first week are among the
top 20. For week 3, 20 individuals whose cumulative scores
of week 1 and 2 are among the top 20s are selected. Experts
are chosen in a similar way for later weeks. Thus, the top
20 participants can change from week to week.

The possible opinion pools, varied in pooling functions,
weighting methods, and number of expert opinions, are shown
in Table 1. “Lin” represents linear, and “Log” represents
Logarithmic. “n” is the number of expert opinions that are
pooled, and “All” indicates that all opinions are combined.
We use “u” to symbolize unweighted (equally weighted) opin-
ion pools. “w” is used for weighted (performance-weighted)
opinion pools. Lin-All-u, the equally weighted LinOP with
all participants, is basically the arithmetic mean of all par-
ticipants’ opinions. Log-All-u is simply the geometric mean
of all opinions.

When a participant did not enter a prediction for a partic-
ular game, that participant was removed from the opinion
pool for that game. This contrasts with the “Probability-
Football average” reported on the contest website and used
by Servan-Schreiber et. al [34], where unreported predic-
tions were converted to 0.5 probability predictions.

4.2.2 Performance Measures

We use four common metrics to assess prediction accuracy
of information markets and opinion pools. These measures
have been used by Servan-Schreiber et. al [34] in evaluating
the prediction accuracy of information markets.

1. Absolute_Error = Prob_Lose,

where Prob_Lose is the probability assigned to the
eventual losing team. Absolute error simply measures
the difference between a perfect prediction (1 for win-
ning team) and the actual prediction. A prediction
with lower absolute error is more accurate.

2. Squared_Error = Prob_Lose>.

Squared error is one of the mostly used metrics in eval-
uating forecasting accuracy. A prediction with lower
squared error is more accurate.

3. Quadratic_Score = 100 — 400 x (Prob_Lose?).

Quadratic score is a linear transformation of squared
error. We include it in our analysis because it is the
scoring function that is used in the ProbabilityFootball
contest. Quadratic score can be negative. A prediction
with higher quadratic score is more accurate.

4. Logarithmic_Score = log(Prob-Win),

where Prob_-Win is the probability assigned to the
eventual winning team. The logarithmic score, like
the quadratic score, is a proper scoring rule. A pre-
diction with higher (less negative) logarithmic score is
more accurate.

5. EMPIRICAL RESULTS

5.1 Performance of Opinion Pools

Depending on how many opinions are used, there can be
numerous different opinion pools. We first examine the ef-
fect of number of opinions on prediction accuracy by forming
opinion pools with the number of expert opinions varying
from 1 to 960. In the ProbabilityFootball Competition, not
all 1966 registered participants provide their probability as-
sessments for every game. 960 is the smallest number of
participants for all games. For each game, we sort experts
according to their accumulated quadratic score in previous
weeks. Predictions of the best performing n participants are
picked to form an opinion pool with n experts.

Figure 1 shows the prediction accuracy of LinOP and Lo-
gOP in terms of mean values of four performance measures
across all 210 games. We can see the following trends in the
figure.

1. Unweighted opinion pools and performance-weighted
opinion pools have similar levels of prediction accu-
racy, especially for LinOP.

2. For LinOP, increasing the number of experts in gen-
eral increases or keeps the same the level of prediction
accuracy. When there are more than 200 experts, the
prediction accuracy of LinOP is stable regarding the
number of experts.

3. LogOP seems more accurate than LinOP in terms of
mean absolute error. But, using all other performance
measures, LinOP outperforms LogOP.

4. For LogOP, increasing the number of experts increases
the prediction accuracy at the beginning. But the
curves (including the points with all experts) for mean
squared error, mean quadratic score, and mean loga-
rithmic score have slight bell shapes, which represent
a decrease in prediction accuracy when the number of
experts is too large. The curves for mean absolute er-
ror, on the other hand, show a consistent increase of
accuracy.

The first and second trend above imply that when using
LinOP, the simplest way, which has good prediction accu-
racy, is to average the opinions of every expert. Weighting
does not seem to improve performance. Selecting experts
according to past performance also does not help. It is a
very interesting observation that even if many participants
of the ProbabilityFootball contest do not provide accurate
individual predictions (they have negative quadratic scores
in the contest), including their opinions into the opinion pool
still increases the prediction accuracy. One explanation of
this phenomena could be that biases of individual judgment
can offset with each other when opinions are diverse, which
makes the pooled prediction more accurate.

The third trend presents a controversy. The relative pre-
diction accuracy of LogOP and LinOP flips when using dif-
ferent accuracy measures. To investigate this disagreement,
we plot the absolute error of Log-All-u and Lin-All-u for each
game in Figure 2. When the absolute error of an opinion
pool for a game is less than 0.5, it means that the team fa-
vored by the opinion pool wins the game. If it is greater than
0.5, the underdog wins. Compared with Lin-All-u, Log-All-u
has lower absolute error when it is less than 0.5, and greater
absoluter error when it is greater than 0.5, which indicates
that predictions of Log-All-u are bolder, more close to 0 or



0.45

0.4451 4

044} g

0.435

0.43

[ N e et e ST TR 7

Mean Absolute Error

— Unweighted Linear RS
++ Weighted Linear

= Unweighted Logarithmic

+ Weighted Logarithmic

X Lin-All-u
+ Lin-All-w o
O Log-All-u
O Log-All-w (0}
| | | | | |
100 200 300 400 500 600 700 800 900 All

Number of Expert Opinions
(a) Mean Absolute Error

-
N

.
@

N
N

-
=

N
o

o
O

Mean Quadratic Score
©

71 —— Unweighted Linear

' Weighted Linear
Unweighted Logarithmic

+ Weighted Logarithmic
Lin-All-u
Lin-All-w
Log-All-u
Log-All-w
T T

OO+x !

. . . . . .
0 100 200 300 400 500 600 700 800 900 Al
Number of Expert Opinions

(c) Mean Quadratic Score

T T T

—— Unweighted Linear
-+ Weighted Linear
Unweighted Logarithmic

+ Weighted Logarithmic
Lin-All-u H
Lin-All-w
Log-All-u
Log-All-w

0.235

OO+x !

0.23 4

0.225

Mean Square Error

=Wy
80

-

gt tresn
ot Sl IT AN el

l'!]f'v‘.‘l\

‘,‘q'«:&. YRR

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900 All
Number of Expert Opinions

(b) Mean Squared Error

-0.62

-0.63 | Lo Ao P,
o - —— S

P - "

-0.64

1)
-0.65 ; 1]

|
=4
@
>

I
=4
=
2
I

-0.68 — Unweighted Linear

-+ Weighted Linear
-0.69 = Unweighted Logarithmic ||
'+ Weighted Logarithmic

Mean Logarithmic Score

X Lin-All-u

+ Lin-All-w H

O Log-All-u

O Log-All-w
T T

-0.71

. . . . . .
0 100 200 300 400 500 600 700 800 900 Al
Number of Expert Opinions

(d) Mean Logarithmic Score

Figure 1: Prediction Accuracy of Opinion Pools

1, than those of Lin-All-u. This is due to the nature of linear
and logarithmic aggregating functions. Because squared er-
ror, quadratic score, and logarithmic score all penalize bold
predictions that are wrong, LogOP is less accurate when
measured in these terms.

Similar reasoning accounts for the fourth trend. When
there are more than 500 experts, increasing number of ex-
perts used in LogOP improves the prediction accuracy mea-
sured by absolute error, but worsens the accuracy measured
by the other three metrics. Examining expert opinions, we
find that participants who rank lower are more frequent in
offering extreme probability assessments (0 or 1) than those
ranking high in the list. When we increase the number of
experts in an opinion pool, we are incorporating more ex-
treme predictions into it. The resulting LogOP is bolder,
and hence has higher mean squared error and lower mean
quadratic score and mean logarithmic score.

5.2 Comparison of Information Markets and
Opinion Pools

Through the first screening of various opinion pools, we se-
lect Lin-All-u, Log-All-u, Log-All-w, and Log-200-u to com-

pare with predictions from information markets. Lin-All-u
as shown in Figure 1 can represent what LinOP can achieve.
However, the performance of LogOP is not consistent when
evaluated using different metrics. Log-All-u and Log-All-w
offer either the best or the worst predictions. Log-200-u, the
LogOP with the 200 top performing experts, provides more
stable predictions. We use all of the three to stand for the
performance of LogOP in our later comparison.

If a prediction of the probability that a team will win a
game, either from an opinion pool or an information mar-
ket, is higher than 0.5, we say that the team is the predicted
favorite for the game. Table 2 presents the number and per-
centage of games that predicted favorites actually win, out
of a total of 210 games. All four opinion pools correctly pre-
dict a similar number and percentage of games as NF and
TS. Since NF, TS, and the four opinion pools form their
predictions using information available at noon of the game
day, information markets and opinion pools have compara-
ble potential at the same time point.

We then take a closer look at prediction accuracy of in-
formation markets and opinion pools using the four per-
formance measures. Table 3 displays mean values of these



Table 2: Number and Percentage of Games that Predicted Favorites Win

NF TS Lin-All-u Log-All-u  Log-All-w  Log-200-u
Number 142 137 144 144 143 141
Percentage 67.62% 65.24%  68.57% 68.57% 68.10% 67.14%

Table 3: Mean of Prediction Accuracy Measures

Absolute Error Squared Error Quadratic Score Logarithmic Score

NE 0.4253 0.2114 15.4352 -0.6136
(0.0121) (0.0115) (4.6072) (0.0258)

TS 0.4275 0.2118 15.2739 -0.6121
(0.0118) (0.0110) (4.3982) (0.0241)

LinAllu 0.4292 0.2174 13.0525 -0.6260
(0.0126) (0.0120) (4.8088) (0.0268)

Loe Al 0.4024 0.2250 10.0099 -0.6546
8 (0.0173) (0.0166) (6.6594) (0.0418)
Loe Allw 0.4059 0.2239 10.4491 -0.6497
& (0.0168) (0.0161) (6.4440) (0.0398)
o200 0.4266 0.2190 12.3868 -0.6319
8 (0.0133) (0.0127) (5.0764) (0.0295)

*Numbers in parentheses are standard errors.
*Best value for each metric is shown in bold.
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Figure 2: Absolute Error: Lin-All-u vs. Log-All-u

measures over 210 games. Numbers in parentheses are stan-
dard errors, which estimate the standard deviation of the
mean. To take into consideration of skewness of distribu-
tions, we also report median values of accuracy measures in
Table 4. Judged by the mean values of accuracy measures in
Table 3, all methods have similar accuracy levels, with NF
and TS slightly better than the opinion pools. However, the
median values of accuracy measures indicate that Log-All-u
and Log-All-w are more accurate than all other predictions.

We employ the randomization test [30] to study whether
the differences in prediction accuracy presented in Table 3
and Table 4 are statistically significant. The basic idea of
randomization test is that, by randomly swapping predic-

tions of two methods numerous times, an empirical distrib-
ution for the difference of prediction accuracy can be con-
structed. Using this empirical distribution, we are then able
to evaluate at what confidence level the observed difference
reflects a real difference. For example, the mean absolute
error of NF is higher than that of Log-All-u by 0.0229, as
shown in Table 3. To test whether this difference is statis-
tically significant, we shuffle predictions from two methods,
randomly label half of predictions as NF and the other half
as Log-All-u, and compute the difference of mean absolute
error of the newly formed NF and Log-All-u data. The above
procedure is repeated 10,000 times. The 10,000 differences
of mean absolute error results in an empirical distribution of
the difference. Comparing our observed difference, 0.0229,
with this distribution, we find that the observed difference is
greater than 75.37% of the empirical differences. This leads
us to conclude that the difference of mean absolute error
between NF and Log-All-u is not statistically significant, if
we choose the level of significance to be 0.05.

Table 5 and Table 6 are results of randomization test for
mean and median differences respectively. Each cell of the
table is for two different prediction methods, represented by
name of the row and name of the column. The first lines of
table cells are results for absolute error. The second, third,
and forth lines are dedicated to squared error, quadratic
score, and logarithmic score respectively. We can see that,
in terms of mean values of accuracy measures, the differ-
ences of all methods are not statistically significant to any
reasonable degree. When it comes to median values of pre-
diction accuracy, Log-All-u outperforms Lin-All-u at a high
confidence level.

These results indicate that differences in prediction accu-
racy between information markets and opinion pools are not
statistically significant. This may seem to contradict the re-
sult of Servan-Schreiber et. al [34], in which NewsFutures’s



Table 4: Median of Prediction Accuracy Measures

Absolute Error

Squared Error

Quadratic Score Logarithmic Score

NF 0.3800 0.1444 42.2400 -0.4780
TS 0.4000 0.1600 36.0000 -0.5108
Lin-All-u 0.3639 0.1576 36.9755 -0.5057
Log-All-u 0.3417 0.1168 53.2894 -0.4181
Log-All-w 0.3498 0.1224 51.0486 -0.4305
Log-200-u 0.3996 0.1597 36.1300 -0.5101

*Best value for each metric is shown in bold.

Table 5: Statistical Confidence of Mean Differences in Prediction Accuracy

TS  Lin-Allu Log-Allu Log-All-w Log-200-u

8.92%  22.01%  75.37% 66.47% 7.76%

NF 2.7%  17.90%  46.23% 42.33% 29.80%
2.38%  26.60%  50.74% 44.26% 32.24%

2.99%  22.81%  59.35% 56.21% 33.26%

10.13%  77.79% 68.15% 4.35%

TS 21.21%  53.13% 48.54% 34.92%
27.25%  53.65% 44.90% 28.30%

32.35%  57.89% 60.69% 38.84%

82.19% 68.86% 9.75%

LinAlla 32.65% 20.19% 8.67%
28.91% 23.92% 6.81%

44.17% 43.01% 17.36%

11.14% 72.49%

4.67% 23.21%

Log-All-u 3.32% 18.89%
5.25% 39.06%

69.89%

15.18%

Log-All-w 18.30%
30.23%

*In each table cell, row 1 accounts for absolute error, row 2 for squared error,
row 3 for quadratic score, and row 4 for logarithmic score.

information markets have been shown to provide statisti-
cally significantly more accurate predictions than the (un-
weighted) average of all ProbabilityFootball opinions. The
discrepancy emerges in dealing with missing data. Not all
1966 registered ProbabilityFootball participants offer prob-
ability assessments for each game. When a participant does
not provide a probability assessment for a game, the con-
test considers their prediction as 0.5.. This makes sense in
the context of the contest, since 0.5 always yields 0 quadratic
score. The ProbabilityFootball average reported on the con-
test website and used by Servan-Schreiber et. al includes
these 0.5 estimates. Instead, we remove participants from
games that they do not provide assessments, pooling only
the available opinions together. Our treatment increases the
prediction accuracy of Lin-All-u significantly.

6. CONCLUSIONS

With the fast growth of the Internet, information markets
have recently emerged as an alternative tool for predicting
future events. Previous research has shown that information

markets give as accurate or more accurate predictions than
individual experts and polls. However, information mar-
kets, as an adaptive mechanism to aggregate different opin-
ions of market participants, have not been calibrated against
many belief aggregation methods. In this paper, we compare
prediction accuracy of information markets with linear and
logarithmic opinion pools (LinOP and LogOP) using predic-
tions from two markets and 1966 individuals regarding the
outcomes of 210 American football games during the 2003
NFL season. In screening for representative opinion pools to
compare with information markets, we investigate the effect
of weights and number of experts on prediction accuracy.
Our results on both the comparison of information markets
and opinion pools and the relative performance of different
opinion pools are summarized as below.

1. At the same time point ahead of the events, infor-
mation markets offer as accurate predictions as our
selected opinion pools.

We have selected four opinion pools that can represent
the prediction accuracy level that LinOP and LogOP



Table 6: Statistical Confidence of Median Differences in Prediction Accuracy

TS Lin-All-u  Log-Alllu  Log-All-w Log-200-u
48.85% 47.3% 84.8% 77.9% 65.36%
NF 42.711% 47.8% 85.78% 76.32% 67.57%
45.26%  44.55% 85.27% 75.65% 66.75%
44.89%  46.04% 84.43% 77.16% 64.78%
5.18% 94.83% 94.31% 0%
TS 5.05% 93.20% 90.95% 0%
5.37% 92.08% 92.53% 0%
7.41% 95.62% 91.09% 0%
95.11% 91.37% 7.31%
Lin-All-u 94.47% 89.56% 8.29%
96.10% 92.69% 9.84%
95.45% 95.12% 7.79%
23.47% 95.89%
23.68% 92.68%
Log-All-u 26.68% 93.85%
22.47% 96.42%
91.3%
90.13%
Log-All-w 91.4%
90.37%

*In each table cell, row 1 accounts for absolute error, row 2 for squared error,
row 3 for quadratic score, and row 4 for logarithmic score.
*Confidence above 95% is shown in bold.

can achieve. With all four performance metrics, our
two information markets obtain similar prediction ac-
curacy as the four opinion pools. This is different from
the result of Servan-Schreiber et al. [34] due to differ-
ences in dealing with missing expert opinion data.

. The arithmetic average of all opinions (Lin-All-u) is a
simple, robust, and efficient opinion pool.

Simply averaging across all experts seems resulting in
better predictions than individual opinions and opin-
ion pools with a few experts. It is quite robust in the
sense that even if the included individual predictions
are less accurate, averaging over all opinions still gives
better (or equally good) predictions.

. Weighting expert opinions according to past perfor-
mance does not seem to significantly improve predic-
tion accuracy of either LinOP or LogOP.

Comparing performance-weighted opinion pools with
equally weighted opinion pools, we do not observe much
difference in terms of prediction accuracy. Since we
only use one performance-weighting method, calculat-
ing the weights according to past accumulated quadratic
score that participants earned, this might due to the
weighting method we chose.

. LogOP yields bolder predictions than LinOP.

LogOP yields predictions that are closer to the ex-
tremes, 0 or 1.

and decide belief aggregation methods. But the advantages
do not compromise their prediction accuracy to any extent.
On the contrary, information markets can provide real-time
predictions, which are hardly achievable through resorting
to experts. In the future, we are interested in further ex-
ploring:

Performance comparison of information markets with
other opinion pools and mathematical aggregation pro-
cedures.

In this paper, we only compare information markets
with two simple opinion pools, linear and logarithmic.
It will be meaningful to investigate their relative pre-
diction accuracy with other belief aggregation methods
such as Bayesian approaches. There are also a number
of theoretical expert algorithms with proven worst-case
performance bounds [10] whose average-case or prac-
tical performance would be instructive to investigate.

Whether defining expertise more narrowly can improve
predictions of opinion pools.

In our analysis, we broadly treat participants of the
ProbabilityFootball contest as experts in all games. If
we define expertise more narrowly, selecting experts
in certain football teams to predict games involving
these teams, will the predictions of opinion pools be
more accurate?

The possibility of combining information markets with
other forecasting methods to achieve better prediction

An information markets is a self-organizing mechanism
for aggregating information and making predictions. Com-
pared with opinion pools, it is less constrained by space
and time, and can eliminate the efforts to identify experts

accuracy.

It is worthy of more attention whether information
markets, as an alternative forecasting method, can be



used together with other methods to improve our pre-
dictions.
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