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A typical supply chain comprises various 
entities, such as suppliers, manufacturers, dis-
tributors, and customers, and its functional-
ity is characterized by an ensemble of parallel 
and continuous operations at various levels 
(strategic, tactical, and operational). Supply-
chain entities strive to optimally manage the 
flow of goods (downstream) from raw mate-
rials to end products, in accordance with the 
information flow (upstream) from demand to 
supply, with the overall goal to reduce costs, 
increase profits, and maximize service levels 
and customer satisfaction.1

Supply-chain management (SCM) is a chal-
lenging task because the environment is mul-
tiagent (cooperative and competitive), par-
tially observable, dynamic, stochastic, and 
extremely complex. Changes in one link 
can cause ripple effects throughout the net-
work. One such phenomenon is the well-
known bullwhip effect, in which variation 

in demand increases up the chain, resulting 
in larger safety stocks and thus greater stor-
age and product costs, with the list of causes 
and effects going on and on. This applies not 
only to the interorganizational domain but 
also to the intraorganizational range of op-
erations; pricing and marketing mechanisms 
could also interfere with inventory manage-
ment and procurement contracts.

In addition, efficient SCM implies suc-
cessful handling of globalization, facilita-
tion of mediation through the Internet, and 
shifts in production from technology and 
product-driven business processes to market 
and customer-driven manufacturing. Static 
and long-term relationships between part-
ners have evolved to more dynamic trading 
schemes, in which interested parties auction 
goods and services among themselves. The 
more frequent the transactions, the more 
costly a policy (re)design. Thus, a policy that 
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can semiautomatically adapt and respond to current mar-
ket conditions is extremely appealing.2

Data mining (DM) offers an adaptation methodol-
ogy3 that can provide a predictive edge over competitors. 
Through DM, we can extract correctly evaluated models 
along various links in the supply chain, enabling us to gen-
eralize, detect abnormalities, and identify potential market 
opportunities. Coupled with agent technology (AT), which 
can provide real-time input and assessment of the DM-ex-
tracted models, decisions on the current state of the envi-
ronment can be made in an automated manner. Specifi cally, 
in a supply-chain organization, experts can apply DM to 
various facets such as pricing, forecasting, and customer 
and supplier relationship management, 
always keeping in mind that these solu-
tions should satisfy all security, safety, 
and soundness issues that might arise 
in such versatile environments.4

Trading Agent Competition
To investigate this AT–DM symbio-
sis in SCM environments, we used 
a generic testbed that simulates a 
supply-chain network in which we 
could apply and evaluate various meth-
odologies. The Trading Agent Compe-
tition Supply Chain Management (TAC 
SCM) game allows for a huge strategy 
space, including time limitations and 
frequent transactions along with a com-
petitive, dynamic, and stochastic environment that inhibits 
long-term policies, analytical studies, and the application of 
mathematical optimization techniques. In particular, we fo-
cused on auctioning, which, in general, defi nes pricing in B2B 
marketplaces.2 We can easily extend our methodology to real-
world SCM environments, given suffi cient data are available.

Within the TAC SCM game,5 agents act as personal com-
puter (PC) manufacturers, competing with each other for 
supplier and customer contracts. A maximum number of 
six agents can connect to the TAC SCM game server, which 
simulates the suppliers and customers and provides bank-
ing, production, and warehousing services. Game length is 
220 days, with each day lasting 15 seconds. Throughout 
the game, each agent must

negotiate supply contracts, •	
bid for customer orders, •	
manage daily assembly activities, and•	
ship completed orders to customers. •	

Agents run their own PC assembling unit, which has lim-
ited production capacity (2,000 factory cycles per day). 

They can assemble 16 predefi ned types of PCs, each one 
requiring a different component compilation, and pro-
cure the 10 different available components (CPUs, mother-
boards, memory, and hard disk drives) by sending requests 
for quotes (RFQs) and issuing orders to suppliers. The sup-
pliers also have limited capacity, and because they simulate 
revenue-maximizing entities, component availability 
shouldn’t be taken for granted. Each day, customers send 
RFQs, and agents bid on them, depending on their ability 
to satisfy delivery dates and prices. The bid price shouldn’t 
exceed the reserve price the customer requires, which is be-
tween 75 and 125 percent of the PC components’ nominal 
price. The next day, if an agent’s quote is a winning offer 

(the lowest bid), the customer sends 
its order to the agent. To get paid, the 
agent must either assemble the ordered 
PCs on time or supply the customer 
with PCs already stocked in inventory. 
If an agent fails to deliver customers’ 
orders, it’s charged with a penalty. The 
agent with the greatest bank balance 
at the game’s end wins. Figure 1 pro-
vides a schematic representation of the 
game,6 while the game specifi cations 
offer a more detailed description.7

Data-Mining-Enabled
SCM Agent Design
To accomplish its goal of maximiz-
ing profi t, a generic SCM entity must 

tackle three major tasks, each closely related to the others: 
manage procurement, manage factory scheduling (for ex-
ample, production and delivery scheduling), and manage 
sales by responding to customer RFQs. 

In general, different approaches can lead to different ar-
chitectures that take specifi c requirements into account 
and counterbalance task performance. Nevertheless, the 
cornerstone of an SCM agent’s architecture is the design 
choice for the order fulfi llment process. These are the most 
prominent:

Make-to-stock (MTS)•	 , in which agents build and stock 
products based on forecasts of customer demand. This 
practice is common in the retail industry.
Assemble-to-order (ATO)•	 , in which agents build the fi -
nal product from a stock of components, but only after a 
customer has given the product confi guration. This pro-
cess assumes modular products, such as in the PC indus-
try, where a customer might select the components online 
and then post the order.
Build-to-order (BTO)•	 , in which agents build each prod-
uct only after a customer has placed a fi nal order.
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Engineer-to-order (ETO)•	 , in which agents design and 
build a product according to customer requirements and 
specifications. Such an order fulfillment process is gen-
erally employed in large custom software and civil engi-
neering projects.

Based on the requirements of the TAC SCM scenario and 
the current real-world practices of PC manufacturers,1,8 
ATO seems like the best choice for this industry. A major 
advantage of this order fulfillment design choice is the abil-

ity to utilize risk-pooling to reduce variation in demand 
and aggregate it over ranges of products instead of individ-
ual products. A range of products is a set that utilizes a 
common group of components. Thus, if an agent observes 
a large increase in the demand for a certain product, the 
agent factory could use components from the common pool 
because of the decreased demand for another product in the 
same range. On the other hand, an MTS strategy with ac-
curate forecasts could also prove viable in such SCM en-
vironments. Even better, a hybrid strategy with ATO and 
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Figure 1. An overview of the Trading Agent Competition Supply Chain Management (TAC SCM) game. (a) A graphic summarizing 
the TAC SCM game, which involves agents acting as PC manufacturers. (b) Negotiations, assets, and messages exchanged daily 
during the competition.
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MTS, if properly configured and evaluated, could boost the 
SCM agent’s performance: the agent could work in a short-
term ATO mode, and if it detects an increase in future mar-
ket prices, employ an MTS strategy in parallel to produce 
additional stock for predicted highly profitable long-term 
orders.

Having selected an order fulfillment process, an agent 
should then reduce costs (component purchase and storage 
costs), increase profit margins from sales (sell as many prod-
ucts as possible at the highest possible prices), and maintain 
high customer service levels (minimize penalties and avoid 
missed revenue from canceled orders). For all these goals, 
DM techniques can provide an efficient paradigm for mod-
eling the agent’s decision mechanism. The agent designer 
might apply DM in these specific fields:

Predicting future demand.•	  Accurate predictions can in-
dicate how many components to procure, when to expect 
prices to rise or fall, whether to save resources (compo-
nents, products, and factory cycles) for future use, and 
so on. Because most operations have lead times in the 
supply chain, an agent must take action now in order to 
deal with events later. Thus, positioning the agent’s deci-
sions on the future-demand curve is vital for the agent’s 
performance. Moreover, when deciding on the RFQs to 
bid on, the agent can simulate future auctions to choose 
whether to employ an eager (spare all resources on the 
current day’s RFQs) or conservative (hold resources for 
forthcoming RFQs) bidding strategy.
Bidding.•	  The agent can use historical data (available in 
TAC SCM game logs after each game) to extract mod-
els for predicting an auction’s closing price or calculat-
ing probability distribution functions of bid acceptance, 
given a requested price.2

Extracting useful patterns.•	  These patterns could com-
prise either economic regimes,9 such as oversupply or 
scarcity of resources, or decision trees predicting unfruit-
ful auctions. In the latter case, the agent could make bids 
equal to the reserve price and gain more profit, whereas 
in the former case, it could adapt its strategy according to 
market conditions.
Predicting game/environment state.•	  Based on the pre-
dicted demand curve, the agent can identify the values 
of certain important game variables such as demand for 
specific products or product ranges and daily minimum 
and maximum prices for each product. These variables 
are strongly correlated with customer demand and are 
used as predictor variables for other DM models.
Modeling suppliers.•	  Agents can also model suppliers 
through DM to predict procurement offer prices based 
on volume, due date, and reserve prices. These models 
can assist in identifying the optimal set of RFQs to send 

suppliers each day to get cheaper prices, while maintain-
ing the appropriate inventory position (IP) equal to the 
safety stock (SS) levels. 

On this last point, for each day x into the future, IP should 
equal SS to have the prespecified delivery performance,
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where the IP for day d + x into the future is equal to the on-
hand inventory (OHI, components the agent currently has 
in stock), plus the components on order (OO, components 
ordered and that will be delivered from suppliers at day i) 
up to day d + x, minus back orders (BO, orders the agent 
has to deliver to customers at day i) up to day d + x. This 
is the standard equation for calculating the inventory posi-
tion on any given day into the future. Based on the price-
predicting models and Equation 1, we can optimize what 
orders we should place (volume and due date) to satisfy SS 
levels and minimize costs. 

If we make these design choices, the agent’s blueprint 
would look like the one in Figure 2.

Sales Modeling
Our analysis has focused on the most challenging aspect 
of SCM, the agent’s bidding mechanism. It interacts with 
other entities (competitors and customers) and thus re-
quires precise modeling of market conditions. Our main re-
search goal was to identify the specifications for an efficient 
mechanism for handling the RFQs produced by custom-
ers each day, striving simultaneously for high service levels 
and high profitability, while always accounting for resource 
constraints.

In the TAC SCM auction environment, as well as in real-
life situations,2,10 it’s common for the agent to employ a 
probability distribution function that predicts the probabil-
ity of an offer becoming an order, given the bidding price. 
After maximizing the expected utility (expected profit, in 
our case), the agent can then calculate the optimal price:

ExpectedProfit P Win Price Price Cost= ( ) −( )⋅ .� (2)

If an agent bids on a single auction or takes part in all 
auctions, the challenge is to identify the price that maxi-
mizes expected profit. TAC SCM is even more challeng-
ing because agents must decide on a subset of daily RFQs 
to bid on. Bidding the price that maximizes the expected 
profit for all daily RFQs for a consecutive number of days, 
although a legitimate strategy, will almost certainly lead to 
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large penalties, missed deliveries, and low revenue. Based 
on this hypothesis, the agent faces the problem of finding 
the optimal set of bids each day, and although it can ap-
ply mathematical optimization and local search algorithms, 
time limitations prohibit their use, so the agent must imple-
ment heuristic and greedy algorithms.10

We can quickly derive the probability distribution func-
tion by calculating the probabilities of acceptance at certain 
prices and then linearly interpolating between these specific 
points. More points, of course, mean higher accuracy. Pre-
liminary statistical analysis indicates that bidding at the 
daily minimum price of a product observed the previous 
day results in winning 75 percent of the orders; this drops 
to 25 percent when bidding at the maximum price observed 
the previous day. A price of zero offers a percentage of 100 
percent, bidding at the reserve price results in a low 2.5 
percent, and bidding at any price x above the reserve price, 
according to the game specifications, has a 0 percent prob-
ability of acceptance. Figure 3 displays these percentages.

At this point, DM helps construct the distribution func-
tion. DM procedures generate the DM model based on his-
torical transactions so it can predict the closing price for 
each auction by using order characteristics (reserve price, 
quantity, due date, and so on) and variables describing the 
state of the environment as predictors. Bidding at the pre-
dicted price results in a 50 percent chance of winning the 
order, because, intuitively, the error in the prediction will 
be a little higher or lower than the actual closing price. This 

also holds true experimentally. If we enforce a monotonic-
ity constraint so that the inequalities between prices are P0 
− price < Pmin − price < Pmodel − prediction < Pmax − price < 
Preserve <Px>reserve all the time, we derive a probability dis-
tribution like the one in Figure 4. The probability distribu-
tion curve resembles a sigmoid function 

1 1+





+ ⋅( )e
a b z ; � (3)

optimization software could fit it using iterative gradient 
methods. Adding one more point to the search of the prob-
ability distribution, especially in the linear part of the sig-
moid function, results in a better modeling of that distribu-
tion. Additionally, having taken into account the 50 percent 
of order-winning probability when bidding at the price pre-
dicted by the model, an agent can skip calculating the prob-
ability distribution function and can bid up to two times its 
own resources. This approach isn’t optimal, but it’s much 
simpler and more time efficient.

Another DM model that could increase the agent’s profit 
is to identify rules that encapsulate particular market states. 
Such states include

the •	 start game period, in which all agents try to build 
stock, thus buying components at higher prices;
the •	 end game period, in which all agents try to diminish 
their repositories, thus selling all of their stocked goods 
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Figure 2. Agent blueprint. The basic architecture of a supply-chain-management agent uses data mining primitives (demand 
forecasting, economic patterns, customer, and supplier modeling).
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at lower prices;
points in time •	 when certain compo-
nents are depleted and there’s a low 
supply of certain products, thus af-
fecting their price; and
points in time •	 when there is an over-
demand by customers and certain 
RFQs don’t receive any offers, lead-
ing to unfruitful auctions.

Algorithm 1 takes these seasonal phe-
nomena into account, identifies mar-
ket opportunities, and handles them 
accordingly.

Each day, the agent receives RFQs 
from customers and evaluates them 
with respect to the current game state. 
In addition, it makes a prediction of 
the RFQ price ranges for a time win-
dow of d days ahead. If it expects 
forthcoming RFQs to be more profit-
able, the agent doesn’t use all its fac-
tory cycles on the current day’s RFQs. 
After calculating its free capacity with 
respect to pending and future orders, 
the agent attempts to predict whether 
the current day’s auctions will be 
fruitful. If not (because there will be 
no competition), the agent places a bid 
equal to the reserve (maximum) price. 
If the auction seems fruitful, the agent 
feeds the RFQ details and the current 
game state into a DM model responsi-
ble for predicting an auction’s closing 
price. The agent sets the probability 
to 0.5 based on the already-performed 
statistical analysis of the model’s be-
havior. It then calculates the expected 
profit for all offers and sorts them in 
descending utility order. For each of-
fer, if resources are adequate, the agent 
makes a bid and discounts resources 
(factory cycles and components) on 
the probability of acceptance of any 
given offer.

Deriving DM Models
SCM environments often provide a 
deluge of data from different sources, 
aimed at serving different stakehold-
ers. To turn this data into exploitable 
information, an agent must carefully 
collect and preprocess them. The qual-
ity and quantity of the data set is of 

vital importance because it practically 
determines the final algorithm perfor-
mance (as DM experts say, “Garbage 
in, garbage out”). SCM environments 
such as TAC are much more complex 
because the market’s dynamics and 
the interdependencies among all en
tities’ performances dictate thorough 
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analysis. For example, deviation in RFQ prices could imply 
a market opportunity (that is, profit) or market manipula-
tion (that is, major loss).

The process we propose for building efficient models con-
sists of the following facets:

Data aggregation and filtering•	 . Our first concern was 
to construct the optimal set of predictor variables. We 
filtered game instances to remove transient phenomena 
caused by start and end game effects, which produced 
data sets containing instances from day 50 to day 200. 
Additionally, we removed winning bids below 50 percent 
of the product base price as outliers (no profit is possible 
from bidding below such a price, according to the game 
specifications for supplier pricing).
Attribute selection•	 . We decided on a subset of attri-
butes that best describes the inquired model, delivers 
the best generalization performance, and reduces data 
dimensionality.
Model development•	 . Finally, we extracted and evaluated 
different models using regression algorithms.

We performed our analysis on game logs from four consec-
utive tournaments that occurred from 2005 to 2008. We 
didn’t consider logs from previous years (2003 and 2004) 
because a major change in game rules occurred in 2005. 

We chose the initial set of attributes based on their observ-
ability during the course of the game, allowing the agent to 
make online predictions. We derived one model for each of 
the 16 products; the initial set contained 38 attributes that 
attempt to predict the RFQ’s winning price (see Table 1).

Because there was too much available data, we reduced 
the training data set to be time and memory efficient, with-
out lowering the models’ quality. For each year of competi-
tion, we created two data sets: one with the auctions on the 
product with the lowest base price, such as product ID 1, 
and one with the auctions on the product with the highest 
base price, such as product ID 8. Thus, we generated eight 
data sets. We performed random sampling to construct the 
final data sets and chose a 5 percent portion of the initial 
data, having observed that we could reach concrete con-
clusions by using learning curves. The final data sets con-
tained 60,000 to 70,000 instances.

Our ultimate goal was to discover the subset of attributes 
that best describes an auction’s closing price and has high 
predictive power despite the tournament, game, round, or 
year. This would make the agent more robust for different 
game states. We applied the correlation feature selection 
(CFS) algorithm with different search procedures such as 
best first forward selection, greedy forward selection, and 
genetic search. We kept all attributes that the feature se-
lection algorithm picked more than 80 percent of the time 

RFQs ← current day RFQs
current ← current game state
for i = 1 to i = d do
   demand predict demand in RFQs for day i
   RFQs.add(generateRFQs(demand))
   RFQs.creationDate ← i
end for
for all RFQs do
   state ← dm.predictState(current,rfq.creationDate)
   if dm.isUnfruitful(rfq,state) then
      rfq.bidPrice = rfq.reservePrice
   else
      rfq.bidPrice = dm.predictPrice(rfq,state)
   end if
   rfq.prob = 0.5
   rfq.profit = rfq.prob x rfq.bidPrice
end for
sort in descending expected profit order
while resources > 0 do
   agent.makeOffer(rfq)
   resources -= rfq.prob x rfq.resources
end while

Algorithm 1. The data-mining-enabled bidding algorithm. An agent decides on the proposed bidding price for each 
request for quote (RFQ), with the help of the data mining models and then submits its offers based on profitability and 
factory resources available.
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during attribute selection (tenfold cross-validation experi-
ments); in all, we kept eight data sets. Consequently, to de-
cide on the most useful attributes, we created a subset that 
contains all attributes represented in at least 75 percent 
of the cases in which the signs of the coefficients didn’t 
change from year to year. After performing this procedure, 
all data sets contained the following attributes: 

reserve price of the RFQ under investigation, •	
current total demand, •	
current product demand, •	
minimum and maximum prices the previous day, •	
total and product demand the previous day, •	
maximum price two days before, •	
average minimum price over the last five days, and•	
average maximum price over the last five days. •	

All of these attributes’ coefficients stayed positive during 
regression testing, implying that the higher the predictors’ 
values, the higher the winning price of the auction. Table 2 
summarizes the results of our approach for different years, 
algorithms, and attribute sets.

We can easily identify that the final subset of attributes 
(26 percent of the original data set’s variables) performs 
very well compared to the original. And although different 
agents with different strategies participate in the game over 
the years, the attributes we selected are capable of captur-
ing the market. From the major regression algorithms we 
applied, M5 outperformed the rest of the data sets, prob-
ably because splitting the space with a decision tree and 
consequently employing different linear models allows M5 
to identify different market states.11

For example, given the same game state, the target out-

put (predicted price) can vary when three agents partici-
pate in an auction instead of the usual six. Although we 
didn’t consider start and end game effects, the models gen-
eralized quite well and predicted the closing prices of such 
periods with great accuracy. The same holds true when we 
used data from different years to train and test the mod-
els (see Table 3). Last but not least, the errors in probabil-
ity estimation for various probabilities (0.7, 0.6, 0.5, 0.4) 
were very small, ranging from 0.001 to 0.05 (we used the 
WEKA data analysis software for performing DM11).

We also used DM to predict whether an auction would 
prove unfruitful. We used the same initial set of attributes 
as in the previous section and performed classification to 
identify whether an auction will be met (classified as 1) or 
not (classified as 0). Again, we employed attribute selection 
methodologies to find the most prominent attributes. We 
performed experiments using the data sets from the 2005 fi-
nals (more competitive) and second finals (less competitive) 
and generated six data sets: two tiny (6,245 and 5,806 in-
stances), two medium (124,223 and 118,831 instances), and 
two huge (621,577 and 592,084 instances, respectively). 

We applied the CFS algorithm (as in the previous set of 
experiments) as well as ReliefF to rank the tiny data sets 
and obtained 14 potential candidate subsets of attributes. 
We applied several algorithms to measure accuracy (C4.5, 
REPtrees, DecTables, NaiveBayes, RBFNets, IBk, JRip, 
BayesNet, and PART) and chose the most accurate for a 
tenfold cross-validation evaluation: 

current simulation date, •	
reserve price, •	
minimum and maximum price of product the previous •	
day, 

Table 1. The initial set of 38 predictor variables. Percentages refer to the product’s base price.

Predictor variables

1. Request for quote (RFQ) reserve price (75% to 120%) 35. Average of the maximum prices of the product for the previous 5 days

2. RFQ due date (3 to 12 days ahead) 36. Average of the total demand for the previous 5 days

3. RFQ penalty (5% to 15%) 37. Average of the range demand for the previous 5 days

4. RFQ quantity (1 to 20 PCs) 38. Average of the product demand for the previous 5 days

5. Current date

6. Current total demand

7. Current range demand in RFQs

8. Current product demand in RFQs

9–14. Minimum price of the product for the previous 5 days

15–19. Maximum price of the product for the previous 5 days

20–23. Total demand for the previous 5 days

24–27. Range demand for the previous 5 days

28–33. Product demand for the previous 5 days

34. Average of the minimum prices of the product for the previous 5 days
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current demand, and •	
previous day demand. •	

Although accuracy might not be the 
best evaluation measure, it provides 
a qualitative overview of the problem 
at hand. We performed more elabo-
rate testing using the selected attri-
butes to evaluate whether they’re re-
lated to start and end effects (current 
date), demand (customer demand the 
last two days), and strong competition 
between agents (minimum and maxi-
mum prices’ distance from the reserve 
price). We selected C4.5 as the best 
performing algorithm and then exper-
imented on the optimal configuration, 
to improve recall and precision.

In almost all games, the compet-
ing agents met most of the auctions 

Table 2. Predicting an auction’s closing price.*

2005 2006 2007 2008

Product 1 Product 8 Product 1 Product 8 Product 1 Product 8 Product 1 Product 8

Full
set 
(FS)

LR CC 0.866 0.859 0.92 0.916 0.904 0.897 0.827 0.827

MAE 74 118 62.5 96 66 104 98 141

RMSE 113 176 97 148 93 146 141 200

M5´ CC 0.886 0.883 0.934 0.931 0.924 0.915 0.865 0.877

MAE 65 101 55 83.5 57 91 83 114

RMSE 105 161 88 135 83 133 126 173

Yearly 
FS

LR CC 0.865 0.857 0.932 0.915 0.902 0.896 0.826 0.832

MAE 74 119 63 97 67 104 98.5 141.5

RMSE 114 177 98 149 94 147 142 200.5

M5´ CC 0.887 0.881 0.933 0.929 0.922 0.915 0.865 0.877

MAE 64 101.5 55 84 58 92 82.5 114

RMSE 104.5 163 89 137 84 134 126 174

Final 
FS

LR CC 0.865 0.858 0.918 0.915 0.901 0.895 0.824 0.832

MAE 74 119 63 97 67 105 99 142

RMSE 114 177 98 149 95 148 142 201

M5´ CC 0.889 0.882 0.933 0.93 0.922 0.913 0.865 0.876

MAE 64 101 55 84 58 92 83 114

RMSE 104 162 89 136 84 135 126 174

NN CC 0.886 0.881 0.932 0.928 0.919 0.913 0.864 0.875

MAE 66 104 56 86 60 94 84 117

RMSE 105 162 90 137.5 86 136 126 175

* Correlation coefficient (CC), mean absolute error (MAE), and root mean squared error (RMSE) are provided for linear regression (LR), trees (M5´), and neural networks (NN) modeling using tenfold 
cross-validation. The range of the target attribute is [825, 2062.5] for product 1 and [1175, 2937.5] for product 8.

Table 3. Establishing the validity and robustness of the models  
by training and testing using different years.* 

Train:2005 Test:2006

CC MAE RMSE

Product 1 0.927 58.15 92.07

Product 8 0.924 88.23 141.46

Train:2006 Test:2007

CC MAE RMSE

Product 1 0.916 59.02 87.10

Product 8 0.909 94.09 138.35

Train:2007 Test:2008

CC MAE RMSE

Product 1 0.853 83.80 130.80

Product 8 0.869 116.81 178.69

* The errors are in the same range when using tenfold cross-validation with only one year as input using correlation coefficient 
(CC), mean absolute error (MAE), and root mean squared error (RMSE).
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(more than 80 percent), thus the model 
we extracted would be biased toward 
predicting fruitful auctions. We re-
adjusted the cost matrix for the tiny 
data set and tested it on the medium 
and huge data sets. We pruned the fi-
nal C4.5 model, with a confidence 
of 0.0005 and a cost matrix of (0.2, 
3.0) for true negative (TN), false posi-
tive (FP), false negative (FN), and true 
positive (TP). We assigned higher cost 
to FNs because, by predicting an auc-
tion as unfruitful and setting the of-
fer price as the reserve price, it’s very 
likely that the offer won’t be accepted 
due to competition. On the other hand, 
predicting that the manufacturers will 
meet an auction when in fact the auc-
tion isn’t met will make the agent lose 
profit but not the entire order. Table 
4 summarizes the results for the two 
data sets.

By using DM primitives, our goal 
was twofold: understand SCM 

market behavior and identify potential, and produce robust 
models induced from facts (data logs) that are viable and 
economically efficient in various market states. To validate 
our theoretical analysis, we built Mertacor, an agent that we 
benchmarked in the TAC SCM competition from 2005 on. 
Elaborate experimentation in the sales facet has induced DM 
models that exhibit stable behavior in a variety of situations 
and are able to adapt without remodeling. Once the domain 
expert prepares the training sets and decides on the optimal 
model, agent performance proves efficient and requires only 
fine-tuning. At least, that’s what our Mertacor placements in 
the TAC SCM competition indicate (for more information, 
visit the official Web site at www.sics.se/tac/page.php?id=13). 
We, thus, strongly argue in favor of the utilization of DM 
techniques in SCM environments, especially in pricing de-
cisions. DM is a strong candidate for enhancing the intelli-
gence of autonomous agents in multivariable domains and 
should be considered as such.

References
	 1.	D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi, Designing 

and Managing the Supply Chain, McGraw-Hill, 2003.
	 2.	W. Elmaghraby, “Auctions and Pricing in E-Marketplaces,” 

Handbook of Quantitative Supply Chain Analysis: Modeling 
in the E-Business Era, D. Simchi-Levi, S.D. Wu, and Z.J. Shen, 
eds., Kluwer, 2004, pp. 213–246.

	 3.	C. Zhang et al., “Agents and Data Mining: Mutual Enhance-
ment by Integration,” Proc. Int’l Workshop Autonomous Intel-
ligent Systems: Agents and Data Mining (AIS-ADM 05), LNCS 
3505, Springer, 2005, pp. 50–61.

	 4.	A.L. Symeonidis et al., “Data Mining for Agent Reasoning: A 
Synergy for Training Intelligent Agents,” Engineering Ap-
plications of Artificial Intelligence, vol. 20, no. 8, 2007, pp. 
1097–1111.

	 5.	R. Arunachalam and N. Sadeh, “The Supply Chain Trading 
Agent Competition,” Electronic Commerce Research and Ap-
plications, vol. 4, no. 1, 2005, pp. 63–81.

	 6.	Swedish Inst. Computer Science, “Trading Agent Competition,” 
Sept. 2008; www.sics.se/tac.

	 7.	J. Collins et al., The Supply Chain Management Game for 
the 2005 Trading Agent Competition, tech. report CMU-
ISRI-07-100, Carnegie Mellon Univ., 2006.

	 8.	F. Cheng, M. Ettl, and G. Lin, Inventory-Service Optimization 
in Configure-to-Order Systems, tech. report, RC 21781, IBM, 
2001.

	 9.	W. Ketter et al., “Identifying and Forecasting Economic 
Regimes in TAC SCM,” Proc. Int’l Joint Conf. Artifical Intel-
ligence (IJCAI 05) Workshop on Trading Agent Design and 
Analysis (TADA 05), LNCS 3937, Springer, 2005, pp. 113–125.

	10.	D. Pardoe and P. Stone, “Bidding for Customer Orders for TAC 
SCM,” Proc. 2nd Int’l Joint Conf. Autonomous Agents and 
Multi-Agent Systems (AAMAS 04) Workshop on Agent-Me-
diated Electronic Commerce (AMEC 04), Springer, 2005, pp. 
143–157.

	11.	I.H. Witten and E. Frank, Data Mining: Practical Machine 
Learning Tools with Java Implementations, Morgan Kauf-
mann, 2000.

Table 4. Predicting unfruitful auctions in the finals of TAC SCM 2005.

Medium Huge

Measure Finals 2nd finals Finals 2nd finals

Accuracy 97.2 88.1 96.9 89.5

Precision 0.89 0.78 0.93 0.83

Recall 0.26 0.48 0.59 0.53

F-measure 0.40 0.59 0.72 0.65

Mean absolute error 0.04 0.16 0.02 0.15

ROC* 0.89 0.86 0.94 0.88

* Receiver operating characteristic
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