
Resource-Aware Exploration of the
Emergent Dynamics of Simulated Systems
Sven A. Brueckner

Altarum
3520 Green Court

Ann Arbor, MI 48105-1570, USA
+1 (734) 302 4683

sven.brueckner@altarum.org

H. Van Dyke Parunak
Altarum

3520 Green Court
Ann Arbor, MI 48105-1570, USA

+1 (734) 302 4684
van.parunak@altarum.org

ABSTRACT
The emerging science of simulation enables us to explore the
dynamics of large and complex systems even if a formal
representation and analysis of the system is intractable and a
construction of a real-world instantiation for the purpose of
experimentation is too expensive. A computer simulation model
can be run for many more configurations and the accumulated
observations deepen our understanding of the system’s operation,
but it is very important that we have tools that help us manage the
huge numbers of experiments that need to be run and the massive
data sets that are collected. Furthermore, as we explore vast
parameter spaces of simulation model, we need guidance in
finding regions of interest in a resource efficient way.

In this paper we use a model of agent-based graph coloring to
introduce a software infrastructure for the systematic execution of
experiments across large regions of parameter space (parameter
sweep). Furthermore, we present a multi-agent system that
searches large parameter spaces automatically for regions of
interest specified by a fitness function. The fitness function
captures the researcher’s interest in certain system dynamics. We
specify a function that searches for overlap regions that
accompany phase changes in the simulation model. The agents
search the parameter space by executing simulation experiments
in regions of high fitness. As a consequence, the use of
computational resources is minimized.

Categories & Subject Descriptors: I.2.11 Multiagent Systems
General Terms: Algorithms, Performance, Experimentation
Keywords: Search, Phase Change, Simulation, Graph Coloring

Keywords
Multi-Agent Coordination, Simulation, System Dynamics, Tools
and Methods

1. INTRODUCTION
Large multi-agent systems may express very complex dynamics
even if the individual agents and their interactions are simple and

easy to represent and analyze. This emergent complexity may be
even higher if the agents are embedded in a real-world
environment that introduces additional constraints and dynamics.

Consider for example an agent that controls a small segment
of a material handling system. The segment has a number of entry
and exit points and the agent’s only task is to transfer incoming
material to one of the exits sequentially. The agent’s decision
process is extremely simple. It cyclically decides whether to move
the next item from an entry to an exit and if it does, it prefers to
move items of the same type to the same exit as it did in the past.
This very simple agent behavior leads to the emergence of very
robust and flexible material sorting dynamics if multiple segments
(and their agents) are joined into a larger system [3, 4]. While an
implementation of the agent system is very simple and straight-
forward, a formal analysis of the emerging dynamics and
expected sorting performance is far from trivial.

In the case of the emergent material sorting as well as for
many other agent systems it is possible to construct a sometimes
abstract simulation of the agent and environmental dynamics even
if a formal model of this system is not attainable. This simulation
approach is the middle ground between the two traditionally
chosen approaches in science – formal analysis and
experimentation with real systems. These traditional approaches
are no longer feasible for the type of systems we are confronted
with. The emergent dynamics of large multi-agent systems
quickly become intractable to any non-trivial formal
representation and analysis and their sheer scale results in
prohibitive costs for a real-world implementation for experimental
purposes. Thus we see an emergence of a science of simulation
[9] to which this paper hopes to contribute.

In experiments with a software simulation we can observe
the dynamics of a system in many more scenarios than in
experiments with a real system. Therefore we can collect much
more data and gain a deeper understanding of the operation of the
system. Of course, as it is also the case with real-world
experiments, two important issues have to be addressed in the
simulation approach: bookkeeping and experimental design.

Bookkeeping addresses the management of the collected
data, which includes the tracking of the executed experiments
w.r.t. the used parameter configuration, software version, applied
metrics, the observed data, and the analyses that had been
performed on this data.

Experimental design is concerned with the higher-level
question of which regions of the vast parameter space need to be
explored next to confirm or disprove current hypotheses that we
may have constructed to explain the previously observed data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007…$5.00.

781

These hypotheses often describe specific structures in the system
dynamics across regions of the parameter space (e.g. phase
changes), and we perform experiments to refine our description of
these structures.

In a recent research project we explored the dynamics of a
large agent system in which agents coordinate to solve a global
problem (graph-coloring) by locally exchanging information. This
exchange of information among the agents in our model is
constrained by the environment in which the agents are
embedded. Just as it is the case in many systems embedded in a
physical environment, there is a delay in the transmission of any
message (communication latency). In a separate paper [5] we
discuss in detail the emerging phase structure of the agent system
under varying problem, solution, and environmental parameters.

In this paper we use the distributed graph-coloring model as
an example for the systematic simulation approach to the analysis
of complex emergent system dynamics. After a brief description
of the agent model, we present a software infrastructure that we
developed to perform and manage hundreds of thousands of
individual simulation experiments to “sweep” selected regions of
the model’s parameter space systematically.

With our parameter sweep infrastructure we address the
bookkeeping issue, but we still have to select manually the next
configurations that we had to explore in the search for specific
structures in the system’s dynamics. Furthermore, many of the
experiments in a particular sweep were performed at
configurations that were not “interesting”. Thus we wasted a lot
of computing resources to map a selected region completely.

In this paper we present an agent-based system for the
automatic design of experiments based on a fitness function that
formally defines a level of interest and confidence at any point in
parameter space (configuration) of the model based on the
experiments that have been performed so far. The fitness function
spans a multi-dimensional multi-peaked landscape in which the
agents perform their search for the most interesting regions.

In the process of searching the landscape, the agents initiate
additional simulation experiments to gather more data and thus
increase the confidence in their findings. Thus the agents focus
the expenditure of computational resources on simulations in
interesting regions of the parameter space. In this paper we report
results from initial experiments with a prototypical
implementation of our agent-based search
infrastructure that found previously
uncharted phase changes in the graph-
coloring model with only one sixth of the
computational effort than a systematic
sweep would have required. We estimate
that a refined version of the distributed
search would reduce the effort by one or
two orders of magnitude compared to a full
sweep and thus we could find structures
significantly faster or search much larger
spaces.

Why is this paper important for the
agent community? The answer is twofold.
First, it presents a new multi-agent
algorithm for emergent optimization of the

use of computational resources in a parallel search in a high-
dimensional space. But secondly, the paper also presents a new
tool for the analysis of complex emergent dynamics of large
multi-agent systems with vast parameter spaces. Thus we use
agent technology to perform agent research.

The remainder of this paper is structured as follows. In
section two we present our generic software infrastructure for
systematic parameter sweeps and in section three we briefly
introduce the graph-coloring model that we explored with this
infrastructure. In section four we specify a fitness function that
formalizes our interest in creating new experiments based on
previously collected data, in section five we present a multi-agent
system that searches the resulting fitness landscape for interesting
regions, and in section six we present our initial experimental
results. We conclude in section seven.

2. SYSTEMATIC PARAMETER SWEEPS
In several recent research projects we chose to explore the
complex emergent dynamics of an agent system in a software
simulation. In the course of these projects we developed a generic
software infrastructure that enables us to configure and execute
simulation experiments automatically for ranges of the various
model parameters and to collect and archive observations of the
system’s operation in specified metrics. Furthermore, the
infrastructure may farm out individual experiments to be executed
in parallel on multiple computers in a local network.

Figure 1 shows the general architecture of the parameter
sweep infrastructure. We implement the respective simulation
model to be configured either through an XML setup file or
through an initialization data object that is provided to the
constructor of the simulation experiment. With the XML setup we
can manually configure and execute individual experiments
outside the sweep infrastructure, while the initialization object
permits the infrastructure to spawn new experiments efficiently
without saving the data into the file system. For simulation
models that are not able to receive an initialization object, maybe
because they are not implemented in JAVA or because they are
executed on a separate computer, the infrastructure configures
experiments through the file system.

We observe the execution of a simulation experiment
through various metrics. In our multi-agent systems, these metrics
may trace data from the internal processes or communication

activity of the individual agent, or they may
automatically aggregate such raw data
across agent populations or across time
using statistical or other compression
methods.

In the course of the increasingly
detailed investigation of the dynamics of an
agent system, we develop a wide range of
such metrics, which may focus on various
aspects of the system. Therefore, in any
given parameter sweep experiment, we do
not want to report all available metrics.
Rather, as part of the configuration process
of a simulation run, our infrastructure
initializes only those metrics that we
specified for this sweep.

simulation
experiment

pa
ra

m
et

er
s

m
et

ric
s

simulation
experiment

pa
ra

m
et

er
s

m
et

ric
s

parameter
sweep

pa
ra

m
et

er
ra

ng
es

m
et

ric
ssetup
file

(XML)

report
file

(XML)

parameter
sweep

pa
ra

m
et

er
ra

ng
es

m
et

ric
s

parameter
sweep

pa
ra

m
et

er
ra

ng
es

m
et

ric
ssetup
file

(XML)

report
file

(XML)

configuration
(XML file or

JAVA object)

report data
(XML file or

JAVA object)

Figure 1. The parameter sweep
infrastructure systematically executes
experiments in a specified region of the
model’s parameter space.

782

This specification of the
required metrics is part of the
configuration of the parameter
sweep, which is described in an
XML setup file. We archive the file
with the version of the simulation
model and the reported data to be
able to reproduce any experiment.
The setup file also specifies the
respective parameter values that are
to be explored. These values may
either be fixed, an explicit
enumeration of values, or they may
be taken from an interval at regular
steps. A future extension of the infrastructure may generate
parameter values from the functional combination of values of
other parameters.

For non-deterministic simulation models, the infrastructure
executes a fixed number of experiments (replicas) with varying
random seeds for all combinations of parameter values specified
in the setup file of the parameter sweep. The data reported from
these replicas form the basis of a Monte-Carlo analysis of the
system dynamics at these configurations.

In the integration of a simulation model with our
infrastructure we may choose whether the report data of the
selected metrics in an individual experiment is stored into the file
system or if it is handed to the infrastructure in a report object. To
avoid running out of internal memory we often choose the route
through the file system, especially for metrics that trace individual
agent activity over time and thus generate lots of data. But if the
data across multiple replicas should be processed further during
the parameter sweep, we may need to return the report directly.
The adaptive search for interesting regions reported in this paper
is an example for such a dynamic post-processing.

The infrastructure generates a final report of all data
collected across all experiments and saves it in XML format in the
file system. The internal structure of nested XML elements in the
report file reflects the structure of the region of the parameter
space that had been explored in this sweep. Each level of nesting
refers to a specific model parameter. Therefore subsequent
analyses know the configuration of the model parameters that
resulted in the respective data sets.

We archive the final report with the setup of the experiment
and we use various filters to transform the data into formats used
by our post-experiment analyses software. We currently use
Mathematica, Microsoft Excel, and specifically tailored JAVA
programs to analyze and graphically display our experiments such
as those reported in [5].

We have used our parameter sweep infrastructure in several
research projects to explore the dynamics of agent systems.
Currently, we run experiments with an agent-based supply-
network simulation implemented in the Swarm package, a JAVA
implementation of a distributed formation flying mechanism for
robotic planes, and we explore the emergent dynamics of a
swarming path planning algorithm.

3. AN EXAMPLE
SIMULATION MODEL
In the following we present a model
of a population of agents collectively
solving the graph-coloring problem.
In a recent research project we chose
this model to analyze the emergent
dynamics of multi-agent coordination
in resource-restricted environments.
Using our parameter sweep
infrastructure, we explored the
parameter space of the model and
found distinct phases of system-level

behavior. In this paper we demonstrate the use of an agent-based
experimentation infrastructure that searches efficiently for phase
changes in the graph-coloring model by automatically generating
simulation experiments.

3.1 The Model
The graph-coloring problem is a fundamental challenge problem
to which many other coordination tasks may be reduced. In this
paper as well as in more detail in [5] we analyze the dynamics of
a particular approach to this problem that has been proposed by
researchers at the Kestrel Institute in [7].

In its general form the graph-coloring problem seeks to
assign one color out of a globally fixed set of size G to each node
in an undirected graph so that the number of edges that connect
nodes of the same color is minimized. Soft, real-time distributed
graph coloring assigns an agent to each node in the graph that
needs to be colored. Thus there are N agents (one for each node in
the graph) in the multi-agent system and, according to the
undirected edges among the nodes, each agent has a number of
direct neighbors to whom it communicates changes of its color.

In our experiments we typically considered random graphs in
which each node has a fixed number of neighbors (K). We
implemented multiple ways (indexed by the GC parameter) of
sequentially constructing such graphs, each of which results in
graphs with specific characteristics. For instance, in one graph
construction mechanism, we randomly distribute the nodes on a
unit square and assign each node those K nearest neighbors that
do not yet have their complete set of neighbors assigned. This
mechanism typically produces graphs that may be embedded in
low-dimensional spaces. Another mechanism selects randomly
among those nodes that have the least number of neighbors
assigned already and connects the chosen one to another of these
most incomplete nodes. This mechanism tends to yield graphs
with a very short characteristic path length. In this paper we
present how our agents automatically found a phase change in
graphs constructed by one mechanism after we had manually
confirmed the phase change in graphs constructed by another
mechanism.

Any agent in the random graph cyclically performs steps in a
local hill-climbing mechanism in which it uses various rules
(indexed by the MD and CS parameters) to select a new color that
reduces the local Degree of Conflict (DoC) metric. The local DoC
is the node’s main performance metric. For any (assumed or real)
color of the node, it is the number of neighbors that share this
color divided by the overall number of neighbors of this node.

Table 1. Graph-Coloring Model Parameter

Model
Paramete

r
Description

N Number of Nodes in Graph
K Number of Neighbors per Node
G Number of Colors Available

GC Mechanism to Construct Graph
AL Probability to Activate Color Decision
CL Time of Message Transfer to Neighbor
MD Constraint on Change of Local DoC
CS Mechanism to Select Color

783

The rate at which the agent reconsiders its color
choice is determined by the global Activation
Level (AL) parameter. At fixed intervals the
agent decides probabilistically whether to
execute another hill-climbing step. The AL
parameter sets this probability.

If the color that the agent selects is
different from the current color, the agent
communicates the change to all its direct
neighbors in the graph. In our model we delay
the arrival of the change messages at the
neighboring nodes by a globally fixed time
specified in the “Communication Latency”
(CL) parameter.

Table 1 lists all available model
parameters that may be varied in the
exploration of the emergent system dynamics.
We implemented the graph-coloring model and
integrated the simulation with the parameter sweep infrastructure.

One of our metrics, called Option Set Entropy (OSE),
estimates the guidance in the currently available local information
as it is used by the agent’s decision process. The OSE is the
normalized Shannon (or Information) Entropy [10] applied to the
probability of an agent’s selecting a particular color in a decision
cycle at a specific point in time. This probability is determined by
the currently known colors of the node’s neighbors, the
constraints on the change of the local DoC, and the chosen color
selection mechanism.

3.2 A Phase Change
As we report in [5], in this graph-coloring model we find three
main regions of system-level behavior that drastically influence
the problem-solving performance of the agent population. Figure
2 maps these three regions in a space spanned by the two
parameters N (number of nodes) and G (number of colors)
observed through the OSE metric. We find two regions of good
performance, one, in which the system performs better than a
random color selection process and another where the problem
becomes so easy that the predicted performance of a random
process asymptotes towards the observed performance.

The third region is found at low values of N and G. In this
region the graph-coloring problem is very hard, because there are
only a few colors available and most nodes in the graph are direct
neighbors (N approaches K). Therefore, it is critical for the
individual agent to use correct information when making its next
color choice. But in the combination of the fixed decision rate
(AL parameter) and the delay of messages (CL parameter), at
some point in parameter space the system falls into thrashing
behavior. At this point too much false information has made its
way into the decision process and agents change
their node’s color to resolve a conflict that had
been solved by one of their neighbors already
and thus they recreate the conflict.

Figure 3 shows the result of a parameter
sweep across values of the AL parameter while
keeping all other parameters fixed. As we plot
measurements from individual experiments
(rather that the mean over all replicas as in
Figure 2), we discover that the transition into

thrashing behavior is sudden rather than
gradual and accompanied by a robust overlap
region, where we find systems attracted either
to the thrashing or to the benign behavior. The
overlap is due to a so-far unknown graph
characteristic that selects the performance
attractor in this critical region. As we will argue
in the next section, the existence of such an
overlap region helps us to identify the location
of the phase change solely based on
measurements from one configuration rather
than having to compare neighboring
configurations in parameter space.

Determining the location of the phase
change is very important in the deployment of
the agent system in a real-world scenario. On
the one hand, the decision rate determines the
speed at which a problem is solved and
typically we are required to find a solution as

fast as possible. On the other hand, if the system falls into
thrashing because the decision rate is too high for a given problem
and the communication latency of the specific environment, the
system will not find a good solution. Thus, for a given
deployment scenario we will have to define the globally largest
AL parameter for which none of the typically encountered
problems leads to thrashing.

 We may find this critical value by specifying what graph
structures and problems are typically encountered in a specific
deployment scenario and what the expected communication
latency will be and then systematically sweeping the parameter
space until we find the transition into thrashing. But this approach
may take a long time and waste a lot of computing resources
before it finds the interesting region. Rather, we propose to apply
an automated search of the parameter space that efficiently hones
in on the phase change guided by a fitness function that represents
our interest in an overlap region.

4. FORMALIZING INTEREST
The first step in an automated search for interesting structures in
the observed dynamics of a simulation model is to specify
formally the level of interest generated by a set of data points
sampled at a single configuration in parameter space. This
function then becomes the fitness function, which guides the
search of our agents in the parameter space of the underlying
simulation model.

In our example of the graph-coloring model we are interested
in finding the location of the transition from benign into thrashing
behavior. We observe this transition in many different metrics. In
the OSE metric the thrashing behavior results in high values while
in the benign region the observed values are significantly lower

(see Figure 3). The non-deterministic nature of
the model results in a variation of the actually
observed values around a statistical mean
determined by the phase in which the
respective experiment falls.

In the graph-coloring model chosen as an
example in this paper we find that at the
location of the phase change there is a small
region of coexistence in which some critical
characteristic of the specific problem graph

Figure 2. Parameter sweep over
N and G reveals three distinct
regions of system-level behavior.

Figure 3. Phase change across
AL parameter observed in OSE
metric.

784

decides into which phase a specific experiment will fall. Previous
parameter sweep experiments over extremely long periods of
simulation time confirmed the robustness of this overlap.

We specify a fitness function that for a variable number of
OSE observation points provides a single level-of-interest value,
which is high, if the provided data points seem to be part of two
clusters and low if the values could be explained by just one
random distribution. Obviously, as we operate on samples of
random functions, our confidence in our fitness evaluation grows
with the number of samples taken into account.

The following procedure determines the fitness of a
configuration based on a set of observed OSE values from
multiple runs at a single location in parameter space: 1) normalize
the observations so that the smallest value maps to zero and the
largest value maps to one, 2) sort the normalized set, 3) consider
the set of distances between neighboring values in the sorted set
of normalized observations. In a set with samples from two
clusters we expect to find a large number of similar distance
values from samples within the respective cluster and very few
large distance values as we compare samples from different
clusters. The statistical function Coefficient-of-Variation applied
to the set of distance values is high if a few values stand out and
low if the set is homogeneous. The function is defined as the
standard deviation divided by the mean of a set of data points.

The plots in Figure 4 illustrate the application of the fitness
function to a set of artificially constructed sample values from a
range of configurations. The first plot (4.a) shows the observed
data values. At the left side the observed system falls clearly into
phase one, which is characterized by a low constant mean (0.15)
and a small variance (0.0075). The samples on the right side of
the plot are all taken from a second phase with a linearly
increasing mean and a larger variance (0.05). For configurations
in the center of the plot we find both phases overlapping. At each
configuration we took 13 samples.

The second plot (4.b) shows the normalized sample values.
For each configuration we proportionally scale the data points so
that the smallest maps to zero and the largest maps to one. For
samples that are taken from only one distribution, the shared
variance results in an approximately even spread of data points.
Samples from two distributions with a different mean should be
less homogeneous. The normalization step is necessary since the
mean and the variation of the two clusters shifts as we move
across the parameter space, but we need a fitness function that is
independent of the range of values collected by the chosen metric.
The OSE metric is already limited to the interval [0,1], but other
metrics may provide samples from a different domain.

In the third step of our fitness estimation process we sort the
normalized data points and compute the distance between direct
neighbors. We need at least three samples for this step. The plot
4.c shows the distance values. An even spread of normalized

values results in lower to medium range distances, while
increased heterogeneity leads to a mix of very small and very
large distance values.

As we are interested in the degree of heterogeneity of our
sample data points (overlap region), we compute the statistical
Coefficient-of-Variation across the distance values. As expected,
this measure peaks for the configurations in the overlap region
(plot 4.d). Thus, our fitness function is the Coefficient-of-
Variation applied to the distances among sorted members of the
normalized set of observed OSE values.

In the following section we present a system of autonomous
agents that coordinate their exploration of a given region in
parameter space based on this fitness function to find the
interesting region of phase change without wasting computational
resources for simulations in regions of low interest.

5. AGENTS GUIDING SEARCH
In Figure 2 we explored a two-dimensional parameter sub-space,
but the graph-coloring model has nine mostly independent
parameters. The traditional approach to searching such a space is
a predefined search, based on an experimental design. Factorial
designs that exhaustively sweep the relevant ranges (for example,
using a tool such as Drone [2]) quickly become computationally
prohibitive, while designs such as Latin Squares that combine the
exploration of different factors in a single run are blind to
interaction effects. The problem is exacerbated when the
phenomenon we wish to detect (such as phase coexistence)
requires multiple simulation runs at each point in parameter
space. APSE (Adaptive Parameter Sweep Environment) is a
distributed, agent-based search mechanism that has the potential
of significantly reducing the effort involved with such a search.

The fitness function presented in the previous section assigns
a single value (level of interest) to each configuration in the
model’s parameter space. The resulting fitness landscape is noisy,
has many peaks and ridges, and it is initially not known as it only
emerges through repeated execution of simulation experiments at
a configuration.

Fitness landscapes of this size and nature are best searched in
parallel, using heuristics such as genetic algorithms. In this paper
we propose a fundamentally similar approach: local hill climbing
of individual agents combined with a global exchange of guidance
information. An immediate advantage of the agent approach is the
potential for distribution of the search over multiple processors.

Each Searcher agent represents one thread of the parallel
search for peaks in the fitness landscape spanned over the model’s
parameter space. In a particular search experiment, we deploy as
many Searchers as we can afford, given our computational
resources. Since each agent will execute simulation experiments
with the underlying model, we may only be able to deploy a few
agents per processor.

Figure 4. Our fitness function peaks at the overlap of the two phases, indicating a high level of interest.

785

The population of Searchers creates and searches the fitness
landscape at the same time. They are deployed in a supporting
environment that collects the samples taken by the agents at the
various locations (configurations). An individual sample is very
expensive computationally and therefore it is important that no
effort is duplicated.

5.1 Simulate or Move?
A Searcher has two objectives. For any location in parameter
space that it occupies it seeks to increase the confidence in the
local fitness estimate by executing additional runs, but at the same
time it wants to be located at a configuration that has a high
fitness. In the tradeoff of these two objectives across the agent
population a resource-aware search emerges.

Figure 5 illustrates the different situations in which an agent
may find itself. It may be located at a configuration for which no
samples have been collected yet. In this case, nothing is known
about this location’s fitness and the agent must execute a
minimum number of simulation experiments. At the other end of
the spectrum the agent may find itself at a configuration with a
sufficiently high confidence (maximum number of samples).
Again the agent has no choice. It may not execute more
experiments, and so it must find itself a different location.

If the agent’s location has a confidence higher than the
minimum requirement but lower than the maximum, the Searcher
considers the location’s current fitness estimate to make its
choice. In this case the general rule is that the higher the fitness
estimate the higher is the likelihood that the agent adds another
sample to the local collection of data points. Therefore more
experiments are executed in regions of high interest, while in less
interesting locations fewer resources are spent. The agent applies
the general rule probabilistically with a weighted coin-flip and
therefore even low-fitness regions have a non-zero chance of
being explored.

5.2 Simulate!
If a Searcher agent decides to sample the dynamics of the
underlying simulation model to increase the confidence of the
fitness estimate at its current location, it uses the same interfaces
to the model as the parameter sweep infrastructure. It creates a
configuration object or file that includes a random seed that has
not been used before at this location. Then it triggers the
execution of the model, which either returns a report object or
dumps its results into the file system.

The fitness estimate requires that the emergent dynamics of
the simulation run be characterized by a single value. In our
experiments with the distributed graph-coloring
model, we used the Option Set Entropy (OSE)
metric averaged over all agents and over a period
of time towards the end of the simulation for this
characterization. Other metrics may be more
informative in other models, depending also on
the system-level feature that we consider
interesting in the particular search.

After the simulation run is complete, the
Searcher agent extracts the characterizing value
from the report data and adds it to the collection of
sample values in the search environment

(database). Then it computes the fitness estimate for the new
sample set. At this point the agent returns to its simulate-or-move
decision.

5.3 Move!
Distributed optimization mechanisms generally execute a local
hill-climbing mechanism (deterministic or probabilistic) for the
individual representations of the current solution set. For instance,
an agent in the distributed graph-coloring model considers all its
options (available colors) and it prefers to select one that reduces
its local Degree of Conflict with its neighbors. Ants in a food-
foraging mechanism sample pheromone concentrations in their
local neighborhood and tend to move towards higher
concentrations.

A Searcher agent in our dynamics finder mechanism may
only move to neighboring configurations in the discretized
parameter space of the underlying model. At the outset of a search
experiment we specify the range of parameter values accessible to
the Searcher population and for those parameters that we permit
to change, we also specify the step size of the change. This prior
knowledge reduces the complexity of the agents’ search task.

An agent’s movement decision is always a probabilistic
choice across the set of neighboring locations. The agent first
integrates various driving forces into selection probabilities for
the respective location and then spins a roulette wheel with
segment sizes proportional to these probabilities.

The probability of the selection of a neighboring location is a
combination of local and global information. The local
information is the fitness of the location if it has been established
already or zero if the configuration has not been sampled yet. This
information is provided by the agents’ environment, which keeps
track of the sample data accumulated at the various locations.
Initially it is very unlikely that at any of the neighboring locations
the minimum confidence has been built and thus there is no
guidance for the agent to be found in this local information.

Global attracting forces between the Searcher agents temper
the local hill climbing. All agents at locations with a higher
fitness attract an agent that currently executes a movement
decision. This attraction is intended to focus the search of the
population on one region of high fitness rather than spreading the
agents out too thin. Such interaction among optimizers has been
shown to increase their effectiveness dramatically over
independent searchers [11].

The attracting forces are interpreted as vectors that point to
the respective attracting agent and whose length equals the

difference in the fitness. The sum of the vectors to
all attracting agents is the global information that
increases the selection probability of the
neighboring locations whose direction is similar to
this vector at the expense of those that would lead
the agent into the opposite direction.

The probabilistic integration of local and
global guidance information leads the agent to
climb towards local optima in the fitness
landscape but, if the local optimum is not as high
as other optima discovered somewhere else, the
agent may abandon the local ascent for a more

Fitness

C
on

fid
en

ce

low

high

Mov
e!

Sam
ple

!mov
e

sa
mple

Figure 5. Probabilistic
choice based on confidence
and fitness estimate.

786

promising pasture. The initial
absence of fitness information
leads to globally guided agent
movement. But over time fitness
at more and more locations is
mapped and the individual agents
focus more on local information.

5.4 Comparison with
Previous Research
APSE adapt the search of the
parameter space dynamically
during the simulation process.
Antecedents to this work include
exploratory modeling at RAND
[1], the EvCA (Evolving Cellular Automata) group at the Santa
Fe Institute [6] and Miller at CMU [8].

The RAND work outlines the potential for the sort of
exploration we are conducting, but does not solve the critical
problem of developing fitness functions that capture dynamic
phenomena of interest.

Miller uses evolution over parameter spaces to verify models
in the social sciences, seeking parameter values that break a
model. In contrast, we are searching the parameter space against
two criteria: 1) What are the bounds on performance that a given
approach can achieve? 2) Where might there be interesting
discontinuities in behavior (e.g., phase transitions) that require
further study?

The EvCA group’s use of evolution is closer to ours. They
evolve update rules for one-dimensional cellular automata to find
rules that will let the automaton compute a given function of its
initial state (e.g., setting all cells equal to the state of the majority
of the initial cells). We are searching for a much more complex
structure, and the target of our search will be much more difficult
to capture.

The key to adaptive search is defining an appropriate fitness
function against which to evaluate successive results. This
requirement is not onerous if we are searching for performance
bounds, since we simply use adaptive search to drive the
performance as high (or low) as it can, and examine the slope of
the performance landscape to detect leveling-off. In searching for
discontinuities, the appropriate fitness function can be much more
elusive. Such discontinuities are traditionally recognized by visual
inspection of plots of experimental results (e.g., Figure 3). Our
experiments show the promise of using the entropy of the
normalized distance between sample points.

6. EXPERIMENTAL RESULTS
Figure 6 shows the result of a preliminary experiment with a first
untuned implementation of the Searcher population and its
support infrastructure.

In previous parameter sweep experiments we found a phase
change into thrashing for graph-coloring problems in which the
graph was constructed with the MinimumNeighbor method,
which tends to produce graphs with very short characteristic path
length and which could only be embedded in very high-
dimensional spaces. At this point we were wondering whether
lower-dimensional graphs (e.g., graphs on a 2D surface) would
trigger the same phenomenon. Thus we implemented a graph

construction method that
randomly positioned the N nodes
on a unit-square surface and then
sequentially connected each node
with its K nearest neighbors that
had not yet K neighbors
themselves.

Finding the answer to our
question through manual sweep
experiments would have taken up
too much computational and
human resources that we needed
to use in other aspects of the
project. So we put our Searcher
agents to work in the background.

We asked our agents to map the location of a phase transition
on a N vs. K region of the model that would have required 121810
simulation runs in a systematic exploration. The plot in Figure 6
shows the level of interest divided by the degree of confidence
after 20046 runs. We clearly find high-interest regions with only
one-sixth of the effort. Subsequent sweep experiments of smaller
parameter spaces confirmed the existence of a phase change at the
locations of high interest.

Given the experimental nature of our implementation and the
lack of any fine-tuning of the agent decision process (weights
etc.) we expect to achieve at least a ten-fold reduction in effort
with more “serious” implementations.

6.1 Future Research
Our current results open two major directions for future research.
On the one hand we see a number of ways in which the
distributed agent-based search mechanism may be improved. On
the other hand, we are in the process of developing concepts by
which the agents may automatically balance the computational
load on a network of processors as they execute massive
simulation runs.

Currently, the movement of the agents through the parameter
space is only guided by the fitness and confidence values at the
various configurations. We believe that a major performance
improvement may be gained if the agents take existing domain
(model) knowledge into account. For instance, two agents
searching for a phase change should be attracted towards each
other, if the values that they observe in the reports of the
simulation runs (here OSE metric) are very different at the two
locations. The closer the agents are in parameter space, the
stronger is the attraction for the same observed difference, since
we may suspect at least a drastic change in the system’s
dynamics, which might be accompanied by an overlap region.
Other improved fitness metrics may be defined on neighboring
sets of locations rather than just on one model configuration.

The decision of an agent to move or to run another
simulation experiment is currently only guided by the observed
fitness and confidence values, but it does not take into account the
number of simulations currently under way at the local processor
of the agent. We envision a future enhancement that includes this
information into the agents’ decision process. Furthermore, we
believe that permitting the agents to switch their processing node

Figure 6: Searching for the phase change in N vs. K space.

787

may further enhance the balancing of the computational load
across the network.
7. CONCLUSION
In this paper we presented two related tools that we developed to
support our systematic exploration of complex emergent system
dynamics of multi-agent systems. The first tool – a parameter
sweep infrastructure – automatically configures and executes
simulation experiments across specified ranges of the various
model parameters and it aggregates the reports of metrics that had
been selected for the respective sweep. Supported by this tool we
analyzed several simulation models of multi-agent systems for
various applications.

Emergent system-level dynamics of large multi-agent
systems are often very complex even though the individual agent
may still be simple in its decision and interaction processes. For
instance, in an agent system for distributed graph coloring we
discovered qualitatively distinct phases of system-level behavior
and a robust overlap region in the transition from one phase to
another. Detailed results from this analysis are reported in [5]. In
this paper we use the agent model as an example for the
automated search for specific emergent dynamics in the vast
parameter space of a simulation model.

In the development of our second agent research support tool
presented in this paper we chose a multi-agent systems approach.
Thus we use agents to research agents! Manually searching a
model’s parameter space for the location of interesting dynamical
features may be a time consuming process if the formal
dependency of the dynamics on the model parameters is not
known. Even with our parameter sweep tool we could spend days
in large collections of simulation runs only to find “boring”
dynamics.

A formal estimate of the level of interest for a set of
observations collected from multiple simulation runs is the key to
the implementation of an automated search process that guides the
use of computational resources to regions in configuration space
that promise interesting dynamics. In this paper we present an
example of such a fitness function that peaks if the observed
dynamics indicate an overlap region of two system attractors.

The fitness function spans a noisy, multi-peaked and multi-
dimensional fitness landscape that is searched best in parallel. We
deploy a population of Search agents in an infrastructure that
tracks simulation results. At any point in time an agent is
“located” at a specific configuration of the underlying model and
it decides whether to move (change the model configuration) or if
it should initiate another simulation run with the current
configuration to improve the confidence in the fitness evaluation.
The agent is most likely to move it is at a high-confidence/low-
fitness location.

The movements of the agents tend to take them towards
regions of higher fitness. Collectively, the agents minimize the
use of computational resources for simulation runs of low interest
and maximize those for locations of high interest. In a
prototypical implementation we have been able to find previously
unknown locations of phase change in the graph-coloring model
with one sixth of the effort that would have been required to
completely sweep the parameter region that we had considered.

Our tools focus on two important issues that need to be
addressed when following the simulation approach in systems’
research. With a computer simulation model we are able to
explore the emerging system dynamics in many more scenarios
than we could with experiments with real-world systems. Thus it

is very important that we have tools that support bookkeeping of
the experiments and that help us to focus our resources on
interesting regions in parameter space.

Our multi-agent solution to the distributed search problem
addresses a novel problem: searching vast spaces with only
limited resources available to evaluate the quality of the
individual solution. Given the restrictions of this problem, the
agents combine a local hill-climbing mechanism for solution
optimization with a global attraction mechanism to coordinate
their resource usage.
ACKNOWLEDGMENTS
This work is supported in part by the DARPA ANTS program,
contract F30602-99-C-0202 to Altarum, under DARPA PM Vijay
Raghavan. The views and conclusions in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government. We
gratefully acknowledge the cooperation of Stephen Fitzpatrick at
Kestrel Institute for consultations on their graph-coloring model
for sensor allocation.

8. REFERENCES
[1] S. Bankes and J. Gillogly. Exploratory Modeling: Search

through Spaces of Computational Experiments. In
Proceedings of Third Annual Conference on Evolutionary
Programming, pages 353-360, World Scientific, 1994.

[2] T. C. Belding. Drone 1.01 User's Guide. 1996. HTML,
http://pscs.physics.lsa.umich.edu/Software/Drone/doc/drone
.html.

[3] S. Brueckner. Return from the Ant: Synthetic Ecosystems for
Manufacturing Control. Dr.rer.nat. Thesis at Humboldt
University Berlin, Department of Computer Science, 2000.

[4] S. Brueckner. Software Demonstration in Illustration to the
Paper: Ant-Like Missionaries and Cannibals - Synthetic
Pheromones for Distributed Motion Control. In Proceedings
of Autonomous Agents 2000, 2000.

[5] S. Brueckner and H. V. D. Parunak. Information-Based
Phase Changes in Multi-Agent Coordination. In
Proceedings of AAMAS'2003, 2003.

[6] EvCA Group. Evolving Cellular Automata. 2000. Web Site,
http://www.santafe.edu/projects/evca/.

[7] S. Fitzpatrick and L. Meertens. Soft, Real-Time, Distributed
Graph Coloring using Decentralized, Synchronous,
Stochastic, Iterative-Repair, Anytime Algorithms: A
Framework. Technical Report KES.U.01.5., Kestrel
Institute, 2001.

[8] J. H. Miller. Active Nonlinear Tests (ANTs) of Complex
Simulation Models. Management Science, 44(6 (June)):820-
30, 1998.

[9] S. Rasmussen and C. L. Barrett. Elements of a Theory of
Simulation. In F. Morán, A. Moreno, J. J. Merelo, and P.
Chacón, Editors, Advances in Artificial Life. Third
European Conference on Artificial Life, Granada, Spain,
June 4-6, 1995., vol. 929, Lecture Notes in Artificial
Intelligence, Springer, Berlin, 1995.

[10] C. E. Shannon and W. Weaver. The Mathematical Theory of
Communication. Urbana, IL, University of Illinois, 1949.

[11] J. A. K. Suykens, J. Vandewalle, and B. D. Moor.
Intelligence and Cooperative Search by Coupled Local
Minimizers. Int. J. Bifurcation and Chaos, 11(8):2133-
2144, 2001.

788

