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ABSTRACT 
The emerging science of simulation enables us to explore the 
dynamics of large and complex systems even if a formal 
representation and analysis of the system is intractable and a 
construction of a real-world instantiation for the purpose of 
experimentation is too expensive. A computer simulation model 
can be run for many more configurations and the accumulated 
observations deepen our understanding of the system’s operation, 
but it is very important that we have tools that help us manage the 
huge numbers of experiments that need to be run and the massive 
data sets that are collected. Furthermore, as we explore vast 
parameter spaces of simulation model, we need guidance in 
finding regions of interest in a resource efficient way. 

In this paper we use a model of agent-based graph coloring to 
introduce a software infrastructure for the systematic execution of 
experiments across large regions of parameter space (parameter 
sweep). Furthermore, we present a multi-agent system that 
searches large parameter spaces automatically for regions of 
interest specified by a fitness function. The fitness function 
captures the researcher’s interest in certain system dynamics. We 
specify a function that searches for overlap regions that 
accompany phase changes in the simulation model. The agents 
search the parameter space by executing simulation experiments 
in regions of high fitness. As a consequence, the use of 
computational resources is minimized.  

Categories & Subject Descriptors: I.2.11 Multiagent Systems 
General Terms: Algorithms, Performance, Experimentation 
Keywords: Search, Phase Change, Simulation, Graph Coloring 
 

Keywords 
Multi-Agent Coordination, Simulation, System Dynamics, Tools 
and Methods 

1. INTRODUCTION 
Large multi-agent systems may express very complex dynamics 
even if the individual agents and their interactions are simple and  

 

easy to represent and analyze. This emergent complexity may be 
even higher if the agents are embedded in a real-world  
environment that introduces additional constraints and dynamics. 

Consider for example an agent that controls a small segment 
of a material handling system. The segment has a number of entry 
and exit points and the agent’s only task is to transfer incoming 
material to one of the exits sequentially. The agent’s decision 
process is extremely simple. It cyclically decides whether to move 
the next item from an entry to an exit and if it does, it prefers to 
move items of the same type to the same exit as it did in the past. 
This very simple agent behavior leads to the emergence of very 
robust and flexible material sorting dynamics if multiple segments 
(and their agents) are joined into a larger system [3, 4]. While an 
implementation of the agent system is very simple and straight-
forward, a formal analysis of the emerging dynamics and 
expected sorting performance is far from trivial. 

In the case of the emergent material sorting as well as for 
many other agent systems it is possible to construct a sometimes 
abstract simulation of the agent and environmental dynamics even 
if a formal model of this system is not attainable. This simulation 
approach is the middle ground between the two traditionally 
chosen approaches in science – formal analysis and 
experimentation with real systems. These traditional approaches 
are no longer feasible for the type of systems we are confronted 
with. The emergent dynamics of large multi-agent systems 
quickly become intractable to any non-trivial formal 
representation and analysis and their sheer scale results in 
prohibitive costs for a real-world implementation for experimental 
purposes. Thus we see an emergence of a science of simulation 
[9] to which this paper hopes to contribute.  

In experiments with a software simulation we can observe 
the dynamics of a system in many more scenarios than in 
experiments with a real system. Therefore we can collect much 
more data and gain a deeper understanding of the operation of the 
system. Of course, as it is also the case with real-world 
experiments, two important issues have to be addressed in the 
simulation approach: bookkeeping and experimental design. 

Bookkeeping addresses the management of the collected 
data, which includes the tracking of the executed experiments 
w.r.t. the used parameter configuration, software version, applied 
metrics, the observed data, and the analyses that had been 
performed on this data. 

Experimental design is concerned with the higher-level 
question of which regions of the vast parameter space need to be 
explored next to confirm or disprove current hypotheses that we 
may have constructed to explain the previously observed data. 
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These hypotheses often describe specific structures in the system 
dynamics across regions of the parameter space (e.g. phase 
changes), and we perform experiments to refine our description of 
these structures. 

In a recent research project we explored the dynamics of a 
large agent system in which agents coordinate to solve a global 
problem (graph-coloring) by locally exchanging information. This 
exchange of information among the agents in our model is 
constrained by the environment in which the agents are 
embedded. Just as it is the case in many systems embedded in a 
physical environment, there is a delay in the transmission of any 
message (communication latency). In a separate paper [5] we 
discuss in detail the emerging phase structure of the agent system 
under varying problem, solution, and environmental parameters. 

In this paper we use the distributed graph-coloring model as 
an example for the systematic simulation approach to the analysis 
of complex emergent system dynamics. After a brief description 
of the agent model, we present a software infrastructure that we 
developed to perform and manage hundreds of thousands of 
individual simulation experiments to “sweep” selected regions of 
the model’s parameter space systematically. 

With our parameter sweep infrastructure we address the 
bookkeeping issue, but we still have to select manually the next 
configurations that we had to explore in the search for specific 
structures in the system’s dynamics. Furthermore, many of the 
experiments in a particular sweep were performed at 
configurations that were not “interesting”. Thus we wasted a lot 
of computing resources to map a selected region completely. 

In this paper we present an agent-based system for the 
automatic design of experiments based on a fitness function that 
formally defines a level of interest and confidence at any point in 
parameter space (configuration) of the model based on the 
experiments that have been performed so far. The fitness function 
spans a multi-dimensional multi-peaked landscape in which the 
agents perform their search for the most interesting regions. 

In the process of searching the landscape, the agents initiate 
additional simulation experiments to gather more data and thus 
increase the confidence in their findings. Thus the agents focus 
the expenditure of computational resources on simulations in 
interesting regions of the parameter space. In this paper we report 
results from initial experiments with a prototypical 
implementation of our agent-based search 
infrastructure that found previously 
uncharted phase changes in the graph-
coloring model with only one sixth of the 
computational effort than a systematic 
sweep would have required. We estimate 
that a refined version of the distributed 
search would reduce the effort by one or 
two orders of magnitude compared to a full 
sweep and thus we could find structures 
significantly faster or search much larger 
spaces. 

Why is this paper important for the 
agent community? The answer is twofold. 
First, it presents a new multi-agent 
algorithm for emergent optimization of the 

use of computational resources in a parallel search in a high-
dimensional space. But secondly, the paper also presents a new 
tool for the analysis of complex emergent dynamics of large 
multi-agent systems with vast parameter spaces. Thus we use 
agent technology to perform agent research. 

The remainder of this paper is structured as follows. In 
section two we present our generic software infrastructure for 
systematic parameter sweeps and in section three we briefly 
introduce the graph-coloring model that we explored with this 
infrastructure. In section four we specify a fitness function that 
formalizes our interest in creating new experiments based on 
previously collected data, in section five we present a multi-agent 
system that searches the resulting fitness landscape for interesting 
regions, and in section six we present our initial experimental 
results. We conclude in section seven. 

2. SYSTEMATIC PARAMETER SWEEPS 
In several recent research projects we chose to explore the 
complex emergent dynamics of an agent system in a software 
simulation. In the course of these projects we developed a generic 
software infrastructure that enables us to configure and execute 
simulation experiments automatically for ranges of the various 
model parameters and to collect and archive observations of the 
system’s operation in specified metrics. Furthermore, the 
infrastructure may farm out individual experiments to be executed 
in parallel on multiple computers in a local network. 

Figure 1 shows the general architecture of the parameter 
sweep infrastructure. We implement the respective simulation 
model to be configured either through an XML setup file or 
through an initialization data object that is provided to the 
constructor of the simulation experiment. With the XML setup we 
can manually configure and execute individual experiments 
outside the sweep infrastructure, while the initialization object 
permits the infrastructure to spawn new experiments efficiently 
without saving the data into the file system. For simulation 
models that are not able to receive an initialization object, maybe 
because they are not implemented in JAVA or because they are 
executed on a separate computer, the infrastructure configures 
experiments through the file system. 

We observe the execution of a simulation experiment 
through various metrics. In our multi-agent systems, these metrics 
may trace data from the internal processes or communication 

activity of the individual agent, or they may 
automatically aggregate such raw data 
across agent populations or across time 
using statistical or other compression 
methods. 

In the course of the increasingly 
detailed investigation of the dynamics of an 
agent system, we develop a wide range of 
such metrics, which may focus on various 
aspects of the system. Therefore, in any 
given parameter sweep experiment, we do 
not want to report all available metrics. 
Rather, as part of the configuration process 
of a simulation run, our infrastructure 
initializes only those metrics that we 
specified for this sweep.  
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Figure 1. The parameter sweep 
infrastructure systematically executes 
experiments in a specified region of the 
model’s parameter space. 
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This specification of the 
required metrics is part of the 
configuration of the parameter 
sweep, which is described in an 
XML setup file. We archive the file 
with the version of the simulation 
model and the reported data to be 
able to reproduce any experiment. 
The setup file also specifies the 
respective parameter values that are 
to be explored. These values may 
either be fixed, an explicit 
enumeration of values, or they may 
be taken from an interval at regular 
steps. A future extension of the infrastructure may generate 
parameter values from the functional combination of values of 
other parameters. 

For non-deterministic simulation models, the infrastructure 
executes a fixed number of experiments (replicas) with varying 
random seeds for all combinations of parameter values specified 
in the setup file of the parameter sweep. The data reported from 
these replicas form the basis of a Monte-Carlo analysis of the 
system dynamics at these configurations. 

In the integration of a simulation model with our 
infrastructure we may choose whether the report data of the 
selected metrics in an individual experiment is stored into the file 
system or if it is handed to the infrastructure in a report object. To 
avoid running out of internal memory we often choose the route 
through the file system, especially for metrics that trace individual 
agent activity over time and thus generate lots of data. But if the 
data across multiple replicas should be processed further during 
the parameter sweep, we may need to return the report directly. 
The adaptive search for interesting regions reported in this paper 
is an example for such a dynamic post-processing. 

The infrastructure generates a final report of all data 
collected across all experiments and saves it in XML format in the 
file system. The internal structure of nested XML elements in the 
report file reflects the structure of the region of the parameter 
space that had been explored in this sweep. Each level of nesting 
refers to a specific model parameter. Therefore subsequent 
analyses know the configuration of the model parameters that 
resulted in the respective data sets. 

We archive the final report with the setup of the experiment 
and we use various filters to transform the data into formats used 
by our post-experiment analyses software. We currently use 
Mathematica, Microsoft Excel, and specifically tailored JAVA 
programs to analyze and graphically display our experiments such 
as those reported in [5]. 

We have used our parameter sweep infrastructure in several 
research projects to explore the dynamics of agent systems. 
Currently, we run experiments with an agent-based supply-
network simulation implemented in the Swarm package, a JAVA 
implementation of a distributed formation flying mechanism for 
robotic planes, and we explore the emergent dynamics of a 
swarming path planning algorithm. 

3. AN EXAMPLE 
SIMULATION MODEL 
In the following we present a model 
of a population of agents collectively 
solving the graph-coloring problem. 
In a recent research project we chose 
this model to analyze the emergent 
dynamics of multi-agent coordination 
in resource-restricted environments. 
Using our parameter sweep 
infrastructure, we explored the 
parameter space of the model and 
found distinct phases of system-level 

behavior. In this paper we demonstrate the use of an agent-based 
experimentation infrastructure that searches efficiently for phase 
changes in the graph-coloring model by automatically generating 
simulation experiments. 

3.1 The Model  
The graph-coloring problem is a fundamental challenge problem 
to which many other coordination tasks may be reduced. In this 
paper as well as in more detail in [5] we analyze the dynamics of 
a particular approach to this problem that has been proposed by 
researchers at the Kestrel Institute in [7]. 

In its general form the graph-coloring problem seeks to 
assign one color out of a globally fixed set of size G to each node 
in an undirected graph so that the number of edges that connect 
nodes of the same color is minimized. Soft, real-time distributed 
graph coloring assigns an agent to each node in the graph that 
needs to be colored. Thus there are N agents (one for each node in 
the graph) in the multi-agent system and, according to the 
undirected edges among the nodes, each agent has a number of 
direct neighbors to whom it communicates changes of its color. 

In our experiments we typically considered random graphs in 
which each node has a fixed number of neighbors (K). We 
implemented multiple ways (indexed by the GC parameter) of 
sequentially constructing such graphs, each of which results in 
graphs with specific characteristics. For instance, in one graph 
construction mechanism, we randomly distribute the nodes on a 
unit square and assign each node those K nearest neighbors that 
do not yet have their complete set of neighbors assigned. This 
mechanism typically produces graphs that may be embedded in 
low-dimensional spaces. Another mechanism selects randomly 
among those nodes that have the least number of neighbors 
assigned already and connects the chosen one to another of these 
most incomplete nodes. This mechanism tends to yield graphs 
with a very short characteristic path length. In this paper we 
present how our agents automatically found a phase change in 
graphs constructed by one mechanism after we had manually 
confirmed the phase change in graphs constructed by another 
mechanism. 

Any agent in the random graph cyclically performs steps in a 
local hill-climbing mechanism in which it uses various rules 
(indexed by the MD and CS parameters) to select a new color that 
reduces the local Degree of Conflict (DoC) metric. The local DoC 
is the node’s main performance metric. For any (assumed or real) 
color of the node, it is the number of neighbors that share this 
color divided by the overall number of neighbors of this node. 

Table 1. Graph-Coloring Model Parameter 

Model 
Paramete

r 
Description 

N Number of Nodes in Graph 
K Number of Neighbors per Node 
G Number of Colors Available 

GC Mechanism to Construct Graph 
AL Probability to Activate Color Decision  
CL Time of Message Transfer to Neighbor 
MD Constraint on Change of Local DoC 
CS Mechanism to Select Color  
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The rate at which the agent reconsiders its color 
choice is determined by the global Activation 
Level (AL) parameter. At fixed intervals the 
agent decides probabilistically whether to 
execute another hill-climbing step. The AL 
parameter sets this probability. 

If the color that the agent selects is 
different from the current color, the agent 
communicates the change to all its direct 
neighbors in the graph. In our model we delay 
the arrival of the change messages at the 
neighboring nodes by a globally fixed time 
specified in the “Communication Latency” 
(CL) parameter. 

Table 1 lists all available model 
parameters that may be varied in the 
exploration of the emergent system dynamics. 
We implemented the graph-coloring model and 
integrated the simulation with the parameter sweep infrastructure. 

One of our metrics, called Option Set Entropy (OSE), 
estimates the guidance in the currently available local information 
as it is used by the agent’s decision process. The OSE is the 
normalized Shannon (or Information) Entropy [10] applied to the 
probability of an agent’s selecting a particular color in a decision 
cycle at a specific point in time. This probability is determined by 
the currently known colors of the node’s neighbors, the 
constraints on the change of the local DoC, and the chosen color 
selection mechanism. 

3.2 A Phase Change 
As we report in [5], in this graph-coloring model we find three 
main regions of system-level behavior that drastically influence 
the problem-solving performance of the agent population. Figure 
2 maps these three regions in a space spanned by the two 
parameters N (number of nodes) and G (number of colors) 
observed through the OSE metric. We find two regions of good 
performance, one, in which the system performs better than a 
random color selection process and another where the problem 
becomes so easy that the predicted performance of a random 
process asymptotes towards the observed performance. 

The third region is found at low values of N and G. In this 
region the graph-coloring problem is very hard, because there are 
only a few colors available and most nodes in the graph are direct 
neighbors (N approaches K). Therefore, it is critical for the 
individual agent to use correct information when making its next 
color choice. But in the combination of the fixed decision rate 
(AL parameter) and the delay of messages (CL parameter), at 
some point in parameter space the system falls into thrashing 
behavior. At this point too much false information has made its 
way into the decision process and agents change 
their node’s color to resolve a conflict that had 
been solved by one of their neighbors already 
and thus they recreate the conflict. 

Figure 3 shows the result of a parameter 
sweep across values of the AL parameter while 
keeping all other parameters fixed. As we plot 
measurements from individual experiments 
(rather that the mean over all replicas as in 
Figure 2), we discover that the transition into 

thrashing behavior is sudden rather than 
gradual and accompanied by a robust overlap 
region, where we find systems attracted either 
to the thrashing or to the benign behavior. The 
overlap is due to a so-far unknown graph 
characteristic that selects the performance 
attractor in this critical region. As we will argue 
in the next section, the existence of such an 
overlap region helps us to identify the location 
of the phase change solely based on 
measurements from one configuration rather 
than having to compare neighboring 
configurations in parameter space. 

Determining the location of the phase 
change is very important in the deployment of 
the agent system in a real-world scenario. On 
the one hand, the decision rate determines the 
speed at which a problem is solved and 
typically we are required to find a solution as 

fast as possible. On the other hand, if the system falls into 
thrashing because the decision rate is too high for a given problem 
and the communication latency of the specific environment, the 
system will not find a good solution. Thus, for a given 
deployment scenario we will have to define the globally largest 
AL parameter for which none of the typically encountered 
problems leads to thrashing. 

 We may find this critical value by specifying what graph 
structures and problems are typically encountered in a specific 
deployment scenario and what the expected communication 
latency will be and then systematically sweeping the parameter 
space until we find the transition into thrashing. But this approach 
may take a long time and waste a lot of computing resources 
before it finds the interesting region. Rather, we propose to apply 
an automated search of the parameter space that efficiently hones 
in on the phase change guided by a fitness function that represents 
our interest in an overlap region. 

4. FORMALIZING INTEREST 
The first step in an automated search for interesting structures in 
the observed dynamics of a simulation model is to specify 
formally the level of interest generated by a set of data points 
sampled at a single configuration in parameter space. This 
function then becomes the fitness function, which guides the 
search of our agents in the parameter space of the underlying 
simulation model. 

In our example of the graph-coloring model we are interested 
in finding the location of the transition from benign into thrashing 
behavior. We observe this transition in many different metrics. In 
the OSE metric the thrashing behavior results in high values while 
in the benign region the observed values are significantly lower 

(see Figure 3). The non-deterministic nature of 
the model results in a variation of the actually 
observed values around a statistical mean 
determined by the phase in which the 
respective experiment falls. 

In the graph-coloring model chosen as an 
example in this paper we find that at the 
location of the phase change there is a small 
region of coexistence in which some critical 
characteristic of the specific problem graph 

 

 
Figure 2. Parameter sweep over 
N and G reveals three distinct 
regions of system-level behavior. 

 
Figure 3. Phase change across 
AL parameter observed in OSE 
metric. 
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decides into which phase a specific experiment will fall. Previous 
parameter sweep experiments over extremely long periods of 
simulation time confirmed the robustness of this overlap. 

We specify a fitness function that for a variable number of 
OSE observation points provides a single level-of-interest value, 
which is high, if the provided data points seem to be part of two 
clusters and low if the values could be explained by just one 
random distribution. Obviously, as we operate on samples of 
random functions, our confidence in our fitness evaluation grows 
with the number of samples taken into account. 

The following procedure determines the fitness of a 
configuration based on a set of observed OSE values from 
multiple runs at a single location in parameter space: 1) normalize 
the observations so that the smallest value maps to zero and the 
largest value maps to one, 2) sort the normalized set, 3) consider 
the set of distances between neighboring values in the sorted set 
of normalized observations. In a set with samples from two 
clusters we expect to find a large number of similar distance 
values from samples within the respective cluster and very few 
large distance values as we compare samples from different 
clusters. The statistical function Coefficient-of-Variation applied 
to the set of distance values is high if a few values stand out and 
low if the set is homogeneous. The function is defined as the 
standard deviation divided by the mean of a set of data points. 

The plots in Figure 4 illustrate the application of the fitness 
function to a set of artificially constructed sample values from a 
range of configurations. The first plot (4.a) shows the observed 
data values. At the left side the observed system falls clearly into 
phase one, which is characterized by a low constant mean (0.15) 
and a small variance (0.0075). The samples on the right side of 
the plot are all taken from a second phase with a linearly 
increasing mean and a larger variance (0.05). For configurations 
in the center of the plot we find both phases overlapping. At each 
configuration we took 13 samples. 

The second plot (4.b) shows the normalized sample values. 
For each configuration we proportionally scale the data points so 
that the smallest maps to zero and the largest maps to one. For 
samples that are taken from only one distribution, the shared 
variance results in an approximately even spread of data points. 
Samples from two distributions with a different mean should be 
less homogeneous. The normalization step is necessary since the 
mean and the variation of the two clusters shifts as we move 
across the parameter space, but we need a fitness function that is 
independent of the range of values collected by the chosen metric. 
The OSE metric is already limited to the interval [0,1], but other 
metrics may provide samples from a different domain. 

In the third step of our fitness estimation process we sort the 
normalized data points and compute the distance between direct 
neighbors. We need at least three samples for this step. The plot 
4.c shows the distance values. An even spread of normalized 

values results in lower to medium range distances, while 
increased heterogeneity leads to a mix of very small and very 
large distance values. 

As we are interested in the degree of heterogeneity of our 
sample data points (overlap region), we compute the statistical 
Coefficient-of-Variation across the distance values. As expected, 
this measure peaks for the configurations in the overlap region 
(plot 4.d). Thus, our fitness function is the Coefficient-of-
Variation applied to the distances among sorted members of the 
normalized set of observed OSE values. 

In the following section we present a system of autonomous 
agents that coordinate their exploration of a given region in 
parameter space based on this fitness function to find the 
interesting region of phase change without wasting computational 
resources for simulations in regions of low interest. 

5. AGENTS GUIDING SEARCH 
In Figure 2 we explored a two-dimensional parameter sub-space, 
but the graph-coloring model has nine mostly independent 
parameters. The traditional approach to searching such a space is 
a predefined search, based on an experimental design. Factorial 
designs that exhaustively sweep the relevant ranges (for example, 
using a tool such as Drone [2]) quickly become computationally 
prohibitive, while designs such as Latin Squares that combine the 
exploration of different factors in a single run are blind to 
interaction effects. The problem is exacerbated when the 
phenomenon we wish to detect (such as phase coexistence) 
requires multiple simulation runs at each point in parameter 
space. APSE (Adaptive Parameter Sweep Environment) is a 
distributed, agent-based search mechanism that has the potential 
of significantly reducing the effort involved with such a search. 

The fitness function presented in the previous section assigns 
a single value (level of interest) to each configuration in the 
model’s parameter space. The resulting fitness landscape is noisy, 
has many peaks and ridges, and it is initially not known as it only 
emerges through repeated execution of simulation experiments at 
a configuration. 

Fitness landscapes of this size and nature are best searched in 
parallel, using heuristics such as genetic algorithms. In this paper 
we propose a fundamentally similar approach: local hill climbing 
of individual agents combined with a global exchange of guidance 
information. An immediate advantage of the agent approach is the 
potential for distribution of the search over multiple processors. 

Each Searcher agent represents one thread of the parallel 
search for peaks in the fitness landscape spanned over the model’s 
parameter space. In a particular search experiment, we deploy as 
many Searchers as we can afford, given our computational 
resources. Since each agent will execute simulation experiments 
with the underlying model, we may only be able to deploy a few 
agents per processor. 

 
Figure 4. Our fitness function peaks at the overlap of the two phases, indicating a high level of interest. 
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The population of Searchers creates and searches the fitness 
landscape at the same time. They are deployed in a supporting 
environment that collects the samples taken by the agents at the 
various locations (configurations). An individual sample is very 
expensive computationally and therefore it is important that no 
effort is duplicated. 

5.1 Simulate or Move? 
A Searcher has two objectives. For any location in parameter 
space that it occupies it seeks to increase the confidence in the 
local fitness estimate by executing additional runs, but at the same 
time it wants to be located at a configuration that has a high 
fitness. In the tradeoff of these two objectives across the agent 
population a resource-aware search emerges. 

Figure 5 illustrates the different situations in which an agent 
may find itself. It may be located at a configuration for which no 
samples have been collected yet. In this case, nothing is known 
about this location’s fitness and the agent must execute a 
minimum number of simulation experiments. At the other end of 
the spectrum the agent may find itself at a configuration with a 
sufficiently high confidence (maximum number of samples). 
Again the agent has no choice. It may not execute more 
experiments, and so it must find itself a different location. 

If the agent’s location has a confidence higher than the 
minimum requirement but lower than the maximum, the Searcher 
considers the location’s current fitness estimate to make its 
choice. In this case the general rule is that the higher the fitness 
estimate the higher is the likelihood that the agent adds another 
sample to the local collection of data points. Therefore more 
experiments are executed in regions of high interest, while in less 
interesting locations fewer resources are spent. The agent applies 
the general rule probabilistically with a weighted coin-flip and 
therefore even low-fitness regions have a non-zero chance of 
being explored. 

5.2 Simulate! 
If a Searcher agent decides to sample the dynamics of the 
underlying simulation model to increase the confidence of the 
fitness estimate at its current location, it uses the same interfaces 
to the model as the parameter sweep infrastructure. It creates a 
configuration object or file that includes a random seed that has 
not been used before at this location. Then it triggers the 
execution of the model, which either returns a report object or 
dumps its results into the file system. 

The fitness estimate requires that the emergent dynamics of 
the simulation run be characterized by a single value. In our 
experiments with the distributed graph-coloring 
model, we used the Option Set Entropy (OSE) 
metric averaged over all agents and over a period 
of time towards the end of the simulation for this 
characterization. Other metrics may be more 
informative in other models, depending also on 
the system-level feature that we consider 
interesting in the particular search. 

After the simulation run is complete, the 
Searcher agent extracts the characterizing value 
from the report data and adds it to the collection of 
sample values in the search environment 

(database). Then it computes the fitness estimate for the new 
sample set. At this point the agent returns to its simulate-or-move 
decision. 

5.3 Move! 
Distributed optimization mechanisms generally execute a local 
hill-climbing mechanism (deterministic or probabilistic) for the 
individual representations of the current solution set. For instance, 
an agent in the distributed graph-coloring model considers all its 
options (available colors) and it prefers to select one that reduces 
its local Degree of Conflict with its neighbors. Ants in a food-
foraging mechanism sample pheromone concentrations in their 
local neighborhood and tend to move towards higher 
concentrations. 

A Searcher agent in our dynamics finder mechanism may 
only move to neighboring configurations in the discretized 
parameter space of the underlying model. At the outset of a search 
experiment we specify the range of parameter values accessible to 
the Searcher population and for those parameters that we permit 
to change, we also specify the step size of the change. This prior 
knowledge reduces the complexity of the agents’ search task. 

An agent’s movement decision is always a probabilistic 
choice across the set of neighboring locations. The agent first 
integrates various driving forces into selection probabilities for 
the respective location and then spins a roulette wheel with 
segment sizes proportional to these probabilities. 

The probability of the selection of a neighboring location is a 
combination of local and global information. The local 
information is the fitness of the location if it has been established 
already or zero if the configuration has not been sampled yet. This 
information is provided by the agents’ environment, which keeps 
track of the sample data accumulated at the various locations. 
Initially it is very unlikely that at any of the neighboring locations 
the minimum confidence has been built and thus there is no 
guidance for the agent to be found in this local information. 

Global attracting forces between the Searcher agents temper 
the local hill climbing. All agents at locations with a higher 
fitness attract an agent that currently executes a movement 
decision. This attraction is intended to focus the search of the 
population on one region of high fitness rather than spreading the 
agents out too thin. Such interaction among optimizers has been 
shown to increase their effectiveness dramatically over 
independent searchers [11]. 

The attracting forces are interpreted as vectors that point to 
the respective attracting agent and whose length equals the 

difference in the fitness. The sum of the vectors to 
all attracting agents is the global information that 
increases the selection probability of the 
neighboring locations whose direction is similar to 
this vector at the expense of those that would lead 
the agent into the opposite direction. 

The probabilistic integration of local and 
global guidance information leads the agent to 
climb towards local optima in the fitness 
landscape but, if the local optimum is not as high 
as other optima discovered somewhere else, the 
agent may abandon the local ascent for a more 
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choice based on confidence 
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promising pasture. The initial 
absence of fitness information 
leads to globally guided agent 
movement. But over time fitness 
at  more and more locations is 
mapped and the individual agents 
focus more on local information. 

5.4 Comparison with 
Previous Research 
APSE adapt the search of the 
parameter space dynamically 
during the simulation process. 
Antecedents to this work include 
exploratory modeling at RAND 
[1], the EvCA (Evolving Cellular Automata) group at the Santa 
Fe Institute [6] and Miller at CMU [8]. 

The RAND work outlines the potential for the sort of 
exploration we are conducting, but does not solve the critical 
problem of developing fitness functions that capture dynamic 
phenomena of interest. 

Miller uses evolution over parameter spaces to verify models 
in the social sciences, seeking parameter values that break a 
model. In contrast, we are searching the parameter space against 
two criteria: 1) What are the bounds on performance that a given 
approach can achieve? 2) Where might there be interesting 
discontinuities in behavior (e.g., phase transitions) that require 
further study?  

The EvCA group’s use of evolution is closer to ours. They 
evolve update rules for one-dimensional cellular automata to find 
rules that will let the automaton compute a given function of its 
initial state (e.g., setting all cells equal to the state of the majority 
of the initial cells). We are searching for a much more complex 
structure, and the target of our search will be much more difficult 
to capture. 

The key to adaptive search is defining an appropriate fitness 
function against which to evaluate successive results. This 
requirement is not onerous if we are searching for performance 
bounds, since we simply use adaptive search to drive the 
performance as high (or low) as it can, and examine the slope of 
the performance landscape to detect leveling-off. In searching for 
discontinuities, the appropriate fitness function can be much more 
elusive. Such discontinuities are traditionally recognized by visual 
inspection of plots of experimental results (e.g., Figure 3). Our 
experiments show the promise of using the entropy of the 
normalized distance between sample points. 

6. EXPERIMENTAL RESULTS 
Figure 6 shows the result of a preliminary experiment with a first 
untuned implementation of the Searcher population and its 
support infrastructure. 

In previous parameter sweep experiments we found a phase 
change into thrashing for graph-coloring problems in which the 
graph was constructed with the MinimumNeighbor method, 
which tends to produce graphs with very short characteristic path 
length and which could only be embedded in very high-
dimensional spaces. At this point we were wondering whether 
lower-dimensional graphs (e.g., graphs on a 2D surface) would 
trigger the same phenomenon. Thus we implemented a graph 

construction method that 
randomly positioned the N nodes 
on a unit-square surface and then 
sequentially connected each node 
with its K nearest neighbors that 
had not yet K neighbors 
themselves. 

Finding the answer to our 
question through manual sweep 
experiments would have taken up 
too much computational and 
human resources that we needed 
to use in other aspects of the 
project. So we put our Searcher 
agents to work in the background. 

We asked our agents to map the location of a phase transition 
on a N vs. K region of the model that would have required 121810 
simulation runs in a systematic exploration. The plot in Figure 6 
shows the level of interest divided by the degree of confidence 
after 20046 runs. We clearly find high-interest regions with only 
one-sixth of the effort. Subsequent sweep experiments of smaller 
parameter spaces confirmed the existence of a phase change at the 
locations of high interest. 

Given the experimental nature of our implementation and the 
lack of any fine-tuning of the agent decision process (weights 
etc.) we expect to achieve at least a ten-fold reduction in effort 
with more “serious” implementations. 

6.1 Future Research 
Our current results open two major directions for future research. 
On the one hand we see a number of ways in which the 
distributed agent-based search mechanism may be improved. On 
the other hand, we are in the process of developing concepts by 
which the agents may automatically balance the computational 
load on a network of processors as they execute massive 
simulation runs. 

Currently, the movement of the agents through the parameter 
space is only guided by the fitness and confidence values at the 
various configurations. We believe that a major performance 
improvement may be gained if the agents take existing domain 
(model) knowledge into account. For instance, two agents 
searching for a phase change should be attracted towards each 
other, if the values that they observe in the reports of the 
simulation runs (here OSE metric) are very different at the two 
locations. The closer the agents are in parameter space, the 
stronger is the attraction for the same observed difference, since 
we may suspect at least a drastic change in the system’s 
dynamics, which might be accompanied by an overlap region. 
Other improved fitness metrics may be defined on neighboring 
sets of locations rather than just on one model configuration. 

The decision of an agent to move or to run another 
simulation experiment is currently only guided by the observed 
fitness and confidence values, but it does not take into account the 
number of simulations currently under way at the local processor 
of the agent. We envision a future enhancement that includes this 
information into the agents’ decision process. Furthermore, we 
believe that permitting the agents to switch their processing node 

 
Figure 6: Searching for the phase change in N vs. K space. 
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may further enhance the balancing of the computational load 
across the network. 
7. CONCLUSION 
In this paper we presented two related tools that we developed to 
support our systematic exploration of complex emergent system 
dynamics of multi-agent systems. The first tool – a parameter 
sweep infrastructure – automatically configures and executes 
simulation experiments across specified ranges of the various 
model parameters and it aggregates the reports of metrics that had 
been selected for the respective sweep. Supported by this tool we 
analyzed several simulation models of multi-agent systems for 
various applications. 

Emergent system-level dynamics of large multi-agent 
systems are often very complex even though the individual agent 
may still be simple in its decision and interaction processes. For 
instance, in an agent system for distributed graph coloring we 
discovered qualitatively distinct phases of system-level behavior 
and a robust overlap region in the transition from one phase to 
another. Detailed results from this analysis are reported in [5]. In 
this paper we use the agent model as an example for the 
automated search for specific emergent dynamics in the vast 
parameter space of a simulation model. 

In the development of our second agent research support tool 
presented in this paper we chose a multi-agent systems approach. 
Thus we use agents to research agents! Manually searching a 
model’s parameter space for the location of interesting dynamical 
features may be a time consuming process if the formal 
dependency of the dynamics on the model parameters is not 
known. Even with our parameter sweep tool we could spend days 
in large collections of simulation runs only to find “boring” 
dynamics. 

A formal estimate of the level of interest for a set of 
observations collected from multiple simulation runs is the key to 
the implementation of an automated search process that guides the 
use of computational resources to regions in configuration space 
that promise interesting dynamics. In this paper we present an 
example of such a fitness function that peaks if the observed 
dynamics indicate an overlap region of two system attractors. 

The fitness function spans a noisy, multi-peaked and multi-
dimensional fitness landscape that is searched best in parallel. We 
deploy a population of Search agents in an infrastructure that 
tracks simulation results. At any point in time an agent is 
“located” at a specific configuration of the underlying model and 
it decides whether to move (change the model configuration) or if 
it should initiate another simulation run with the current 
configuration to improve the confidence in the fitness evaluation. 
The agent is most likely to move it is at a high-confidence/low-
fitness location. 

The movements of the agents tend to take them towards 
regions of higher fitness. Collectively, the agents minimize the 
use of computational resources for simulation runs of low interest 
and maximize those for locations of high interest. In a 
prototypical implementation we have been able to find previously 
unknown locations of phase change in the graph-coloring model 
with one sixth of the effort that would have been required to 
completely sweep the parameter region that we had considered. 

Our tools focus on two important issues that need to be 
addressed when following the simulation approach in systems’ 
research. With a computer simulation model we are able to 
explore the emerging system dynamics in many more scenarios 
than we could with experiments with real-world systems. Thus it 

is very important that we have tools that support bookkeeping of 
the experiments and that help us to focus our resources on 
interesting regions in parameter space. 

Our multi-agent solution to the distributed search problem 
addresses a novel problem: searching vast spaces with only 
limited resources available to evaluate the quality of the 
individual solution. Given the restrictions of this problem, the 
agents combine a local hill-climbing mechanism for solution 
optimization with a global attraction mechanism to coordinate 
their resource usage. 
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