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Abstract. In many real-world settings, particularly economic settings,
an adaptive agent is interested in maximizing its cumulative reward. This
may require a choice between different problems to learn, where the agent
must trade optimal reward against learning difficulty. A landscape is one
way of representing a learning problem, where highly rugged landscapes
represent difficult problems. However, ruggedness is not directly measur-
able. Instead, a proxy is needed.

We compare the usefulness of three different metrics for estimating rugged-
ness on learning problems in an information economy domain. We em-
pirically evaluate the ability of each metric to predict ruggedness and
use these metrics to explain past results showing that problems that
yield equal reward when completely learned yield different profits to an
adaptive learning agent.

1 Introduction

In many problems, such as learning in an economic context, an adaptive agent
that is attempting to learn how to act in a complex environment is interested
in maximizing its cumulative payoff; that is, optimizing its performance over
time. In such a case, the agent must make a tradeoff between the long-term
value of information gained through learning and the short-term cost incurred
in gathering information about the world. This tradeoff is typically referred to in
the machine learning literature as the exploration-ezploitation tradeoff [9]. If an
agent can estimate the amount of learning needed to produce an improvement
in performance, it can then decide whether to learn or, more generally, what
it should learn. However, making this estimate requires that an adaptive agent
know something about the relative difficulty of the problems it can choose to
learn.

In this paper, we demonstrate how metrics from landscape theory can be
applied to a particular agent learning problem, namely that of an agent learning



the prices of information goods. A landscape is a way of representing the relative
quality of solutions that lie near each other within some topology. We begin by
describing our past work on the problem and appeal to a pictorial description to
explain these results. Following this, we provide some background on landscapes
and metrics for assessing their ruggedness, or difficulty. We then empirically
evaluate two metrics, distribution of optima and autocorrelation, and show how
these metrics can explain our previous results. We conclude by summarizing and
discussing opportunities for future work.

2 Summarizing Price Schedule Learning Performance

In our previous work [1], we studied the problem of an adaptive agent selling
information goods to an unknown consumer population. This agent acted as a
monopolist and was interested in maximizing its cumulative profit. We assumed
that the learning algorithm (amoeba [8], a direct search method) was a fixed
feature of the agent. The adaptive agent’s decision problem involved selecting a
particular price schedule to learn, where this schedule served as an approximate
model of consumer preferences. These schedules are summarized in Table 1.

Pricing Schedule Parameters Description

Pure Bundling b Consumers pay a fixed price b for access
to all IV articles.

Linear Pricing P Consumers pay a fixed price p for each
article purchased.

Two-part Tariff f,p Consumers pay a subscription fee f, along
with a fixed price p for each article

Mixed Bundling b,p Consumers have a choice between a per-
article price p and a bundle price b

Block Pricing p1,p2, M Consumers pay a price p; for the first m

articles (m < N), and a price p2 for re-
maining articles.
Nonlinear Pricing D1y PN Consumers pay a different price p; for each
article .
Table 1. This table presents the parameters of six pricing schedules, ordering in terms
of increasing complexity. More complex schedules allow a producer to capture a greater
fraction of potential consumer surplus by fitting demand more precisely, but require
longer to learn, since they have more parameters.

We found that simple schedules were learned more easily, but yielded lower
profit per period once learned. More complex schedules took longer to learn, but
yielded higher profits per period after learning. We ran experiments comparing
the performance of six different pricing schedules (a sample is shown in Figure 1)
and found that moderately complex two-parameter schedules tended to perform



best in the short to medium-run, where learning is most important. In addition,
the relative performance of the different schedules changes as the total number
of articles (V) that the producer could offer was varied.

An agent that had these curves, which we call learning profiles, could then
apply decision theory to determine which schedule to select at every iteration.
The details of this are discussed in our previous work [1]; essentially, an agent
must compare the expected cumulative profits gained from each schedule and
select the one that yields the highest profits.

There are two problems with this approach. The experiments above do not
explain why one schedule outperforms another, or why the relative performance
of the schedules changes as the number of articles is varied. For example, two-
part tariff and mixed bundling yield the same profits under perfect information,
yet learning producers accrued higher profits per article with two-part tariff
than with mixed bundling when N = 100. This leads us to ask both why these
schedules have different learning profiles and why mixed bundling’s performance
depends upon N, whereas two-part tariff’s performance seems not to. One way of
explaining this is through an appeal to pictorial representations, such as Figure 3,
where we see that two-part tariff has a single hill, whereas mixed bundling has a
large plateau. As N increases, the size of this plateau grows, and so a large ‘flat
area’ in the landscape is introduced, thereby thwarting an adaptive agent that
employs a hill-climbing method.

Another complication is the number of consumers C in the population. For
small values of C, performance on most schedules is lower (per consumer) than
for large values of C. The conjectural argument is that large values of C' tend
to “smooth out” the landscape by producing a more uniform distribution of
consumer preferences. Figure 2 shows an example of this for the one-dimensional
linear pricing problem as N and C are varied. This type of pictorial argument is
helpful as a visualization aid, but it is not particularly rigorous, and cannot be
easily applied to functions with more than two inputs. A more precise measure
of why these problems are different is needed.

Using the learning profile to determine a problem’s complexity is also a prob-
lem in the many cases where an adaptive agent does not have this complete
learning profile. Instead, it might have some sample problems, and need to use
these to compare learning problems directly.

In order to estimate the difficulty of a learning problem when the learning
profile is either uninformative or not available, we draw on results from landscape
theory. Much of the recent work on landscape theory has taken place within the
context of the theoretical study of genetic algorithms (GAs). In this case, the
problem is to construct landscapes of varying difficulty to serve as benchmarks
for a particular GA. Our problem is different; we assume that the landscape (the
learning problem, or the mapping from inputs of the price schedule to profits)
is determined by an external process (such as the composition of the consumer
population) and our job is to characterize how hard it is. Rather than generating
a landscape with particular features and claiming that these features make it



1.8
16 |
3
p 4
| h |
[}
0.4 ‘ | ‘
1 10 100 1000 10000
a
|
Jmm—S
1.
o
1)
0 ‘ | ‘

1 | ) o 0000

Fig. 1. Learning curves for six price schedules when a monopolist offers N=10 (left)
and N=100 (right) articles. The schedules are: Linear pricing, where each article has
the same price p; pure bundling, where a consumer pays b for access to all articles,
two-part tariff, where a consumer pays a subscription fee f, plus a per-article price p
for each article purchased, mixed bundling, where a consumer can choose between the
per-article price p and the bundle price b, block pricing, where the consumer pays p:
for each of the first ¢ articles purchased and p; for each remaining article, and nonlinear
pricing, where the consumer pays a different price p; for each article purchased. The x
axis is number of iterations (log scale) and the y axis is average cumulative profit per
article, per customer.
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Fig. 3. Two-part tariff (left) and mixed bundling (right) landscapes. Even though they
have the same number of parameters and the same optimal profit, their landscapes are
very different.

difficult, we want to characterize the features of existing landscapes and identify
sets of features that make adaptation difficult.

In the following section, we provide a context for this work, identifying some
key results concerning landscape theory.

3 A Review of Landscape Theory

The concept of a landscape is a familiar one in evolutionary biology, optimization,
and artificial intelligence. Figure 3 appeals pictorially to the concept. A landscape
is visualized as a surface with one or more peaks, where each point on the
landscape corresponds to a solution. Optimizing a function is cast as locating
the highest peak. This idea is simple, yet extremely powerful. It allows a wide



range of seemingly dissimilar problems to be cast in a common framework. In
particular, the selection of a set of price schedule parameters that maximizes
profit is equivalent to finding the global peak of a profit landscape.

The primary distinction that is made is between those landscapes that are
smooth and those that are rugged. A smooth landscape is one that is easy to
ascend; the optima can be located without much effort, and there are typically
few local optima. A rugged landscape is one that contains discontinuities, many
local optima, and other features that make it difficult for a local search algorithm
(that is, one that is not able to see the entire landscape at once) to find the global
optimum.

The notion of a rugged landscape has received a great deal of attention in
the complex systems community. Kauffman [7] was one of the first researchers
to describe a landscape’s mathematical properties with respect to a search algo-
rithm. (The concept was originally proposed by Sewall Wright [11] as a model
for explaining natural selection.) Hordjik [3] and Jones [4], among others, tighten
up Kauffman’s concepts and apply more mathematical rigor.

A landscape consists of two components: an objective function F, and a
neighborhood relation R that indicates the elements of the domain of F' that are
adjacent to each other.

F is the function that an agent is interested in optimizing. The input of F’
is indicated by the vector x, where x can contain numeric (either real-valued or
integer) elements or symbolic elements. Since this is an optimization problem,
F maps into the reals; the goal of the problem is to find an x that maximizes
F'. In our price-setting problems, x is the parameters of the price schedule, and
F(x) is the resultant profit.

R is a neighborhood relation that, for any x, returns those elements that are
adjacent to x. This provides a topology over F', and allows us to describe it as a
surface. The choice of neighborhood relation may be exogenously determined by
the input variables, or it may be endogenously determined by the user, depending
upon the domain. If one is optimizing a price schedule and the inputs of x are
the parameters of that schedule, each category, it is natural to define R(x) to
be the schedule one gets when one parameter in the schedule is increased or
decreased by a set amount. In other problems, such as the traveling salesman
problem, the problem may be encoded in a number of different ways, leading to
different R relations and, subsequently, different landscapes that may be easier
or harder to search. We treat the neighborhood relation as exogenously given,
since we are searching over pricing parameters defined on either the reals or the
integers, which have natural neighborhood relations.

Jones [4] presents a slightly different formulation of the R relation which
depends upon the algorithm being used to traverse the landscape. Essentially,
Jones’ R is the successor relationship generated by a search algorithm; for a
given state, R gives all the states that can be reached in one step for a partic-
ular algorithm. This formulation works well for Jones’s purposes, which involve
developing a theory for genetic algorithms, but it makes it difficult to compare
two different landscapes and ask whether one is intrinsically easier or harder.



The distinction is that Jones couples the neighborhood relationship explicitly
to the particulars of the search algorithm being used, whereas we assume that
there are landscapes which have a natural neighborhood relationship. For exam-
ple, prices occur on the real line, making a neighborhood relationship based on
adjacency on the real line a natural choice. Since some price schedules induce
profit landscapes that appear to be intrinsically easier than others to optimize,
we would like our definition to capture this.

There have also been a variety of metrics proposed for comparing problem dif-
ficulty for genetic algorithms, in addition to the metrics described below. These
metrics include fitness distance correlation [5] and epistatis variance and corre-
lation [6]. Fitness distance correlation is similar to the autocorrelation metric
we describe below. It examines how closely correlated neighboring points in a
landscape are. Epistatis is a biological term that refers to the amount of ‘in-
terplay’ between two input variables. If there is no epistasis, then each input
variable can be optimized independently, whereas a large amount of epistasis (as
is found in most NP-hard problems) means that the optimal choice for one of
the inputs to F' depends upon the choices for other values of F'. Epistasis is most
useful and easily measured when evolutionary algorithms are being employed for
optimization.

4 Applying Landscape Theory to Price Schedule
Learning

By estimating a landscape’s ruggedness, an adaptive agent can then construct
an estimate of how long it will take it to find an optimum and the learning cost
associated with finding an optimum. However, ruggedness cannot be induced
directly. Instead, it must be inferred from other landscape characteristics. When
one is using a generative model such as the NK model to build landscapes,
it is fine to build your model so that a parameter such as K can be used to
tune those features of the landscape that make it difficult to optimize of and
then claim that K is the amount of ‘ruggedness.” However, when landscapes are
provided exogenously, this is not an option. Instead, an agent must look at the
measurable characteristics of a landscape and use this to estimate ruggedness.
In this section, we consider three possible observable landscape characteristics
and study their efficacy as estimators of ruggedness, using amoeba as a measure
of actual ruggedness. These measures are also applied to the two-part tariff
and mixed bundling landscapes and used to quantitatively explain the result we
argued for pictorially in Figure 3.

4.1 Number of Optima

One metric that is sometimes discussed [6] for determining the difficulty of find-
ing the global optimum of a particular landscape is the number of optima it
contains. Intuitively, if a landscape contains a single optimum, it should be easy
to locate. The exception to this is a landscape that contains a single narrow



peak and a large plateau. (See Figure 4 for an example of this.) Similarly, if
a landscape contains a large number of optima, it will be harder, particularly
when using a hill-climbing algorithm, to find the global optimum.
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Fig. 4. A landscape with a single peak, but large plateaus, which present a challenge
for hill-climbing algorithms.

If we accept that the number of optima is an indicator of ruggedness, and
therefore of learning difficulty, we must then ask how we can determine the num-
ber of optima a landscape contains. In general, it is not possible to exhaustively
search a landscape, at least one with more than a couple of dimensions. In ad-
dition, the profit landscapes we examine in this domain have continuous dimen-
sions. In addition, the landscapes typically contain ridges and discontinuities.
This makes the use of a standard hillclimbing algorithm to find optima a rather
arbitrary exercise. Since the input dimensions are continuous and landscape con-
tains ridges, the number of optima found will depend upon the granularity of
the hillclimbing algorithm (how large a step it takes), rather than any intrinsic
feature of the landscape. Given this problem, it is more useful to look at the
distribution of optima, rather than the number of optima.

4.2 Distribution of Optima

In addition to practical problems in calculating the number of optima on profit
landscapes with continuous inputs, there are deeper problems in using the num-
ber of optima as an estimator of ruggedness. A great deal of information is lost if
optima are simply counted. A landscape with a large number of optima that are
all clustered together at the top of a hill would seem to be qualitatively different
(and less rugged) than one in which the optima are evenly spaced throughout
the landscape. Again, thinking in terms of basins of attraction may make this



easier to understand. In general, we would conjecture that the more the distri-
bution of basin sizes tends toward uniform, the more rugged the landscape is. In
Figure 3, we can see that the optima, for two-part tariff are clustered on a hill,
whereas mixed bundling contains a large plateau. This is a possible explanation
for two-part tariff’s being more easily learned, and yielding higher cumulative
profit. In this section, we validate that argument by estimating the distribution
of optima, for two-part tariff and mixed bundling landscapes.

We will find the distribution of optima in a landscape by finding the distri-
bution of basin sizes. To do this, we use the following technique, inspired by a
similar approach used by Garnier and Kallel [2]. First, note that for any point
in a landscape, we can find the optimum of the basin it resides in by using a
steepest-ascent hillclimbing algorithm. We choose a random set p of starting
points and use steepest-ascent to locate the corresponding optima. The distribu-
tion will be stored in a sequence 3. For each optimum 4, we calculate (3;, which
is the number of points in p that lead to that optimum. Each element of 8 will
correspond to an optimum %, and so the value of element §; is the number of
points from p that are in the basin of optimum . If we sum all of the elements
of 8, we have a value for the ‘size’ of the landscape. (If we normalize this size,
then the elements of 8 are percentages.) By fitting a sorted S to a distribution,
we can estimate the clusteredness of the landscape’s optima.

For simplicity, we fit 8 to an exponential distribution e**, where the magni-
tude of A indicates the clusteredness of the optima. The exponential distribution
is convenient because it has only one free parameter, A, which governs the clus-
teredness of the optima. When A = 0, optima are uniformly distributed; as
abs(X) increases, the distribution becomes more clustered. By using an exponen-
tial distribution, we can then fit log(8) to a line, where the slope of the line is .
Of course, we have no a priori reason (other than observation) to assume that
an exponential distribution is the correct distribution. Future work will consider
more complicated distributions, particularly ones such as the Beta distribution
(not to be confused with our list § of basin sizes) that have “heavy tails.”

To determine the distribution of optima for two-part tariff and mixed bundling
landscapes, we performed the following experiment. For each schedule, we gener-
ated 10 landscapes using N = 10 and 10 landscapes using N = 100. Consumers
were generated identically to those in the experiments summarized in Figure 1.
For each landscape we chose p = 1000 points and ran a steepest-ascent hill-
climbing algorithm to determine . The value of p was determined by using a
X-square test, as in [2]; a p was selected, a distribution generated, and then the
expected and actual distributions were compared. p was then increased and this
comparison repeated. When increases in p no longer produced significant gains
in confidence, p was taken to be “large enough.”

Figure 5 compares the log distributions of 3 (averaged over 10 landscapes)
for two-part tariff and mixed bundling for N = 10 and N = 100. Previously, we
argued that two-part tariff performed well because the optima were clustered on
a hill, whereas mixed bundling contained a large flat region that served as a set



Fig. 5. Distribution of basin sizes for two-part tariff and mixed bundling. The z axis
ranks basins sorted by size and the y axis (log scale) is the size of a particular basin.
Each line is the fitted distribution of basin sizes. The left figure is for IV = 10 and the
right is for N = 100.

of optima. Figure 5 supports this argument; A is an order of magnitude larger
for two-part tariff than for mixed bundling.

We can also see that the optima for two-part tariff become less clustered as
we move from N = 10 to N = 100. A closer examination of Figure 3 shows that
the two-part tariff optima are located along a ridge; as N increases, this ridge
grows, since larger values for the fee will yield positive profit. This spreads out
the optima and reduces the magnitude of .

The distribution of optima for mixed bundling does not change as signif-
icantly as we move from N = 10 to N = 100. Recall that mixed bundling
offers consumers a choice between per-article and bundle pricing. This creates
a large plateau in the landscape where the per-article price is too high, and
so all consumers buy the bundle. A small change in per-article price gives an
adaptive agent no change in profit. As we increase N, this plateau takes up a
larger portion of the landscape, but the optima on this plateau (really just the
flat portion of the plateau) retain their relative basin sizes. This points out a
weakness in using this normalized approach: we are measuring the fraction of a
landscape occupied by each basin, rather than an absolute measure of its size,
which increases with V. Measuring the absolute size of each landscape is a dif-
ficult thing; it clearly affects the learning process, but it is hard to do without
making arbitrary assumptions.

4.3 Autocorrelation coefficient

Estimating the distribution of optima is a useful technique for explaining why
two-part tariff outperforms mixed bundling, but there are other questions about
landscape ruggedness that have been raised in this article, such as the role of N
(the number of articles) and C' (the number of consumers) in affecting rugged-
ness. In this section, we explain these differences in ruggedness using autocorre-
lation.



Hordjik [3] describes the use of autocorrelation as a method of measuring
the ruggedness of a landscape. To construct this measurement, one conducts a
random walk over a landscape, retaining all the (z, F(x)) pairs. This series of
pairs is then treated not as a sequence of steps but instead as a series of state
transitions generated by a Markov process. We can then apply a technique from
time series analysis known as autocorrelation to find an estimate of ruggedness.
What we wish to know is how well the last n points allow us to predict the
value of the n + 1th point. More importantly, we wish to know the largest ¢ for
which the n 4 tth point can be predicted from the nth point. The larger ¢ is, the
less rugged the landscape, since a learner will have a great deal of information
that it can use to predict the next point. A small ¢ indicates a rapidly changing
landscape in which past observations have little predictive value, which is what
is meant by ruggedness.

To be more precise, we begin by recalling that the covariance between two
series of points X and Y (Cov(XY) = E[XY] — puxpy) is an indicator of how
closely related these series are. If covariance is normalized by dividing by the
product of the standard deviations of X and Y, then we have the correlation
between X and Y, denoted p(X,Y) = Cou(X,Y)

Ox0Oy
Autocorrelation is a closely related concept, except that instead of comparing

two series, we are going to compare a series to itself, shifted by a time lag, as
a way of measuring the change in the process over time. The autocorrelation of

points i steps apart in a series y is defined as: p; = E[yty“f{',]a_:f%]E[t”"].

Autocorrelation allows us to determine the correlation length of a land-
scape [10], which we will use as an indicator of ruggedness. Correlation length
is the largest 4 for which there is a significantly nonzero autocorrelation.

We compare the autocorrelation of two-part tariff and mixed bundling land-
scapes as N and C are varied. In addition, we consider two different sorts of
paths: one collected through a steepest-ascent algorithm, which indicates rugged-
ness during optimization, and one collected through a random walk over the
landscape, which serves as an overall characterization of ruggedness. This will
help us to understand whether particular values of N and C' play a part in the
learnability of two-part tariff and mixed bundling.

The experiment works as follows: we generate a random profit landscape (us-
ing the distribution of consumers that generated the learning curves in Figure 1
and varying N and C between 10 and 100). We then choose 1000 random points
on the landscape and run a steepest-ascent hill-climbing algorithm from each
point until an optimum is reached. We then compute the autocorrelation over
that path for all window sizes from 1 to 40 and average the results to get a mean
autocorrelation (for each window size) during optimization for this landscape.
This is then averaged across 10 landscapes, giving an average autocorrelation
during optimization for each schedule. Next, for each landscape, we conduct
a random walk of length 1000 and measure the autocorrelation over this walk
with window sizes from 1 to 40. These random walk autocorrelations are then
averaged across 10 landscapes to yield a random walk autocorrelation for each
schedule.



Fig. 6. Autocorrelation as a function of window size for two-part tariff and mixed
bundling (N=10, C=10). The left figure uses a path generated by steepest ascent, and
the right uses a path generated by a random walk.

Fig. 7. Autocorrelation as a function of window size for two-part tariff and mixed
bundling (N=10, C=100). The left figure uses a path generated by steepest ascent,
and the right uses a path generated by a random walk.

Figures 6, 7, 8, and 9 compare autocorrelation over both random walks and
optimization paths for N = {10,100} and C = {10,100}. From these figures, we
can draw several conclusions. First, the significant window size is much smaller
when optimizing on either landscape than when performing a random walk;
this should not be surprising, since the whole point of optimizing is to change
one’s state, hopefully in a useful direction. It is interesting that both landscapes
produced very similar autocorrelations when optimizing, indicating that the dif-
ference in learning difficulty is probably not due to a difference in the ability
to effectively reach optima. Instead, our previous conclusion that distribution
of optima was more uniform for mixed bundling (meaning also that it is more
difficult to move between optima) gains credence.

Second, we note that, for random walks, mixed bundling shows little change
as N and C are varied, while two-part tariff improves when either N or C are



Fig. 8. Autocorrelation as a function of window size for two-part tariff and mixed
bundling (N=100, C=10). The left figure uses a path generated by steepest ascent,
and the right uses a path generated by a random walk.

Fig. 9. Autocorrelation as a function of window size for two-part tariff and mixed
bundling (N=100, C=100). The left figure uses a path generated by steepest ascent,
and the right uses a path generated by a random walk.

increased. We expected increasing either variable to improve autocorrelation,
since increasing C' appears to reduce the size of discontinuities in the landscape.
It is unclear why mixed bundling does not show the same improvement; however,
we can conclude that it is less resistant to a change in these parameters.

We also can see that autocorrelation is significantly higher for mixed bundling
than it is for two-part tariff, although only for random walks. It is very similar
when optimizing. We conjecture that the reason for this is due to the large
plateaus seen in the mixed bundling landscape; a random walk along a plateau
will have an autocorrelation of 1.

Finally, we note that the effective window size actually decreases for two-part
tariff when both N and C are 100 over the case where one variable is 10 and the
other 100. This may be due to a ‘stretching’ of the landscape as NV is increased;
the effective range of the fee parameter of two-part tariff grows with N.



In summary, these experiments help us to understand quantitatively what
we were previously able to explain only through a reliance on pictures and an
appeal to metaphors. There clearly seems to be a correlation between optima
distribution and learning difficulty with regard to two-part tariff and mixed
bundling. There is also some evidence that increasing C' and N reduces landscape
ruggedness, although not necessarily in a way that affects learning performance
for an algorithm such as amoeba.

5 Conclusions and future work.

In this article, we have described the problem of learning in an environment
where cumulative reward is the measure of performance and stressed the need
for an adaptive agent to consider what it chooses to learn as a way of optimizing
its total reward. We have argued that landscapes are a useful representation for
an agent’s learning problem and applied the analysis of landscapes to a particular
learning problem, that of learning price schedules in an information economy.
We showed that two metrics, distribution of optima and autocorrelation, can be
calculated and used as estimates of ruggedness, and further used these metrics
to explain results in our previous work. By using these metrics to estimate the
difficulty of different landscapes, an adaptive agent can thereby make a more
informed decision as to which learning problem it will choose to solve.

There are many possible directions for future research. One particular avenue
included the extension of this analysis to learning in nonstationary environments.
That is, where the landscape an agent is adapting to changes over time. In this
case, we would like to characterize how this change affects the difficulty of the
agent’s learning problem. In particular, we are interested in problems where
one agent’s learning affects the learning problem of another agent, and provid-
ing tools by which agents can minimize their impact on each other’s learning.
Measuring this impact is a necessary step toward solving that problem.
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