
Synchronous, Asynchronous and Hybrid Algorithms for
DisCSPs?

Ismel Brito and Pedro Meseguer

Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.fismel|pedrog@iiia.csic.es
Abstract. There is some debate about the kind of algorithms that are most suit-
able to solve DisCSP. Synchronous algorithms exchange updated information
with a low degree of parallelism. Asynchronous algorithms use less updated in-
formation with a higher parallelism. Hybrid algorithms combine both features.
Lately, there is some evidence that synchronous algorithmscould be more effi-
cient than asynchronous ones for one problem class. In this paper, we present
some improvements on existing synchronous and asynchronous algorithms, as
well as a new hybrid algorithm. We provide an empirical investigation of these
algorithms onn-queens and binary random DisCSPs.

1 Introduction

In the last years, the AI community has shown an increasing interest in distributed
problem solving. Regarding distributed constraint reasoning, several synchronous and
asynchronous backtracking procedures have been proposed to solve a constraint net-
work distributed among several agents [15, 16,6, 13, 1, 14, 4].

Broadly speaking, a synchronous algorithm is based on the notion of privilege, a
token that is passed among agents. Only one agent is active atany time, the one having
the privilege, while the rest of agents are waiting1. When the process in the active agent
terminates, it passes the privilege to another agent, whichnow becomes the active one.
These algorithms have a low degree of parallelism, but theiragents receive updated
information. In an asynchronous algorithm every agent is active at any time. They have
a high degree of parallelism, but the information that any agent knows about other
agents is less updated than in synchronous procedures.

There is some debate around the efficiency of these two type ofalgorithms. The
general opinion was that asynchronous algorithms were moreefficient than the syn-
chronous ones, because of their higher concurrency2. In the last decade, attention was? This research is supported by the REPLI project TIC-2002-04470-C03-03.

1 Except for special topological arrangements of the constraint graph. See [3] for a synchronous
algorithm where several agents are active concurrently.

2 However, a careful reading of [17] shows that ”synchronous backtracking might be as efficient
as asynchronous backtracking due to the communication overhead” (footnote 15).



mainly devoted to the study and development of asynchronousprocedures, which rep-
resented a new approach with respect to synchronous ones, directly derived from cen-
tralized algorithms.

Recently, Zivan and Meisels reported that the performance of a distributed and
synchronous version of Conflict-Based Backjumping (CBJ) surpasses Asynchronous
Backtracking (ABT) for the random problem classhn = 10;m = 10; p1 = 0:7i.

In this paper we continue this line of research, and we study the performance of three
different procedures, one synchronous, one asynchronous and one hybrid, for solving
sparse, medium and dense DisCSPs. The synchronous algorithm isSCBJ, a distributed
version of the Conflict-Based Backjumping (CBJ) [12] algorithm. The asynchronous
algorithm is the standardABT enhanced with some heuristics. The hybrid algorithm
is ABT-Hyb, a novelABT-like algorithm, where some synchronization is introducedto
avoid redundant messages. In addition, we present a detailed approach for processing
messages by packets instead of processing messages one by one, inABT andABT-Hyb.
We also provide an experimental evaluation for new low-costheuristics for variable and
value reordering.

The rest of the paper is organized as follows. In Section 2 we recall some basic def-
initions of DisCSP. In Section 3 we recall two existing algorithms for DisCSP solving:
the synchronousSCBJ, and the asynchronousABT. In Section 4 we presentABT-Hyb,
a new hybrid algorithm that combines asynchronous and synchronous elements, prov-
ing its soundness and completeness. In Section 5 we describethe experimental setting
(including some implementation details) and discuss the experimental results. Finally,
Section 6 contains several conclusions and directions of further work.

2 Distributed CSP

A constraint network is defined by a triple(X ;D; C), whereX = fx1; : : : ; xng is a set
of n variables,D = fD(x1); : : : ; D(xn)g is the set of their respective finite domains,
andC is a set of constraints declaring those value combinations which are acceptable
for variables. The CSP involves finding values for the problem variables satisfying all
constraints. We restrict our attention to constraints relating two variables, namelybinary
constraints. A constraint among the variablesxi andxj will be denoted bycij .

A distributed CSP (DisCSP) is a CSP where the variables, domains and constraints
of the underlying network are distributed among automated agents. Formally, a finite
variable-based distributed constraint network is defined by a 5-tuple(X ;D; C;A; �),
whereX , D andC are as before.A = f1; : : : ; pg is a set ofp agents, and� : X ! A
is a function that maps each variable to its agent. Each variable belongs to one agent.
The distribution of variables dividesC in two disjoint subsets,Cintra = fcijj�(xi) =�(xj)g, andCinter = fcijj�(xi) 6= �(xj)g, called intra-agent and inter-agent con-
straint sets, respectively. An intra-agent constraintcij is known by the agent owner
of xi andxj, and it is unknown by the other agents. Usually, it is considered that an
inter-agent constraintcij is known by the agents�(xi) and�(xj) [6, 17].

A solution of a distributed CSP is an assignment of values to variables satisfying
every constraint (although distributed CSP literature focuses mainly on solving inter-
agent constraints). Distributed CSPs are solved by the collective and coordinated action



of agentsA. Agents communicate by exchanging messages. It is assumed that the delay
in delivering a message is finite but random. For a given pair of agents, messages are
delivered in the order they were sent.

For simplicity purposes, and to emphasize on distribution aspects, along the rest
of the paper we assume that each agent owns exactly one variable. We identify the
agent number with its variable index (8xi 2 X ; �(xi) = i). For this assumption, in the
following we do not differentiate between a variable and itsowner agent.

3 Existing Algorithms for DisCSP

3.1 Synchronous Search: SCBJ

Synchronous procedures can be directly derived from constraint algorithms in central-
ized search when extended to distributed environments. Generally, only one agent is
active at any time in a a synchronous algorithm. Because of this, the active agent has
always updated information, in the form of either a partial solution (from the part of the
problem already assigned) or a backtracking.

The synchronous backtracking (SBT) algorithm for DisCSP was presented in [17].
Synchronous Conflict-Based Backjumping (SCBJ) [21] is a distributed version of the
centralized Conflict-Based Backjumping (CBJ) algorithm [11]. WhileSBTperforms
chronological backtrackking,SCBJdoes not. Each agent keeps theconflict set(CS),
formed by the assigned variables which are inconsistent with some value of the agent
variable. Letself be a generic agent. When a wipe-out occurs, it allows toself to back-
track directly to the closest conflict variable inCSself , sayxi and sendsCSself �fxig
to be added toCSi. Like SBT, SCBJexchangesInfo andBack messages, which are
processed as follows (self is the receiver):

– Info(partial-solution). self receives the partial solution, assigns its variable consis-
tently, selects the next variable and sends the new partial solution to it in a Info
message. If it has no consistent value,self sends aBack message to the closest
variable inCSself .

– Back(conflict-set). self has to change its value, becausesenderhas no value con-
sistent with the partial solution. The current value ofself is discarded, and the new
conflict-set ofself is the union of its old conflict-set and the one received. After
this,self behaves as after receiving aInfo message.

After receiving any of these messages,self becomes the active agent.self passes
the privilege to other agent sending to it anInfo or a Backmessage. The search ends
unsuccessfully when any agent encounters an empty domain and its CSis empty. Oth-
erwise, a solution will be found when the last agent is reached and there is a consistent
value for it.

3.2 Asynchronous Search: ABT

In asynchronous search, all agents are active at any time, having a high degree of par-
allelism. Asynchronous Backtracking (ABT) [15, 17–19] was a pioneer asynchronous



algorithm to solve DisCSP.ABT requires a total agent ordering. Agenti has higher pri-
ority than j if i appears beforej in the ordering. Each agent keeps its own agent view
and nogood store. Considering a generic agentself, the agent view ofself is the set
of values that it believes to be assigned to its higher priority agents. The nogood store
keeps nogoods as justifications of inconsistent values.

Whenself makes an assignment, it sendsInfo messages, to its lower priority agents,
informing about its current assignment. Whenself receives aBack message, the in-
cluded nogood is accepted if it is consistent withself’s agent view, otherwise it is dis-
carded as obsolete. An accepted nogood is added toself’s nogood store to justify the
deletion of the value it targets. In standardABT, whenself cannot take any value con-
sistent with its agent view, because of the original constraints or because of the received
nogoods, new nogoods are generated as inconsistent subsetsof the agent view, and are
sent, asBackmessages, to the closest agent involved, causing backtracking.

In our ABT implementation, we keep a single nogood per removed value. When
there is no value consistent with the agent view, a new nogoodis generated by resolving
all nogoods, as described in [1]. This nogood is sent in aBackmessage.

If self receives a nogood mentioning another agent not connected with it, self re-
quires to add a link from that agent toself. self sends an assignment to that agent and
after received, a link from the other agent toself will exist. The search terminates when
achieving quiescence in the network, meaning that a solution has been found because all
agents are agree with their current assignment, or when the empty nogood is generated,
meaning that the problem is unsolvable.

4 Hybrid Search: ABT-Hyb

In ABT, manyBackmessages are obsolete when they arrive to the receiver.ABT could
save much work if these messages were not sent. Although the sender agent cannot de-
tect those messages that will become obsolete when reachingthe receiver, it is possible
to avoid sending those which are redundant.

Let self be a generic agent. Whenself sends aBack message, it performs a new
assignment and informs of it to lower priority agents, without waiting to receive any
message showing the effect of theBackmessage in higher agents. This can be a source
of inefficiency in the following situation. Ifk sends aBackmessage toj causing a wipe-
out inj, thenj sends aBackmessage to some previous agenti. If j takes the same value
as before and sends anInfo message tok beforei changes its value,k will find again
the same inconsistency so it will send the same nogood toj in aBackmessage. Agentj
will discard this message as obsolete, sending again its value in anInfo. The process is
repeated generating useless messages, until some higher variable changes its value and
the correspondingInfo arrives toj andk.

Based on this intuition, we presentABT-Hyb, a hybrid algorithm that combines
asynchronous and synchronous elements.ABT-Hybbehaves likeABT when no back-
tracking is performed: agents take their values asynchronously and inform lower prior-
ity agents. However, when an agent has to backtrack, it does it synchronously as follows.
If self has no value consistent with its agent view and its nogood store, it sends aBack
message and enters in awaiting state. In this state,self has no assigned value, and it



does not send out any message. Any receivedInfo message is accepted, updatingself’s
agent view accordingly. Any receivedBackmessage is rejected as obsolete, sinceself
has no value assigned.self leaves the waiting state when receiving one the following
messages,

1. anInfo message that allowsself to has a value consistent with its agent view or,
2. an Info message from the receiver of the lastBack message (the one causing to

enter the waiting state) or,
3. aStopmessage informing that the problem has not solution.

When self receives one of these messages, it leaves the waiting state.At this point,
ABT-Hybswitches toABT.

Like in ABT, the problem is unsolvable if during the search an empty nogood is
derived. Otherwise, a solution is found when no messages aretravelling through the
network (i.e.quiescence is reached in the network). No matter the synchronous back-
tracking,ABT-Hybinherits the good theoretical properties ofABT, namely soundness,
completeness and termination. To proof these properties, we start with some lemmas.

Lemma 1. In ABT-Hyb, no agent will stay forever in a waiting state.

Proof. In ABT-Hyb, an agent enters the waiting state after sending aBackmessage to
a higher priority agent. The first agent (x1) in the ordering will not enter in the waiting
state because noBackmessage departs from it. Suppose that no agent inx1; x2; : : : ; xk�1
is waiting forever, and suppose thatxk enters the waiting state after sending aBackmes-
sage toxj (1 � j � k � 1). We will show thatxk will not be forever in the waiting
state.

Whenxj receives theBackmessage, there are two possible states:

1. xj is waiting. Since no agent inx1; x2; : : : ; xk�1 is waiting forever,xj will leave
the waiting state at some point. Ifxj has a value consistent with its new agent view,
it will send it toxk in an Info message. Ifxj has no value consistent with its new
agent view, it will backtrack and enter again in a waiting state. This can be done
a finite number of times (because there is a finite number of values per variable)
before finding a consistent value or discovering that the problem has no solution
generating aStopmessage. In both cases,xk will leave the waiting state.

2. xj is not waiting. TheBackmessage could be:
(a) Obsolete in the value ofxj. In this case, there is anInfo message travelling

from xj to xk that has not arrived toxk. After receiving such a message,xk
will leave the waiting state.

(b) Obsolete not in the value ofxj. In this case,xj resends toxk its value by an
Info message. After receiving such a message,xk will leave the waiting state.

(c) Not obsolete. The value ofxj is forbidden by the nogood in theBackmessage,
and a new value is tried. Ifxj finds another value consistent with its agent view,
it takes it and send anInfo message toxk, which will leave the waiting state.
Otherwise,xj has to backtrack to a previous agent in the ordering, and enters
the waiting state. Since no agent inx1; x2; : : : ; xk�1 is waiting forever,xj will
leave the waiting state at some point, and as explained in thepoint 1 above, it
will cause thatxk will leave the waiting state as well.



Therefore, we conclude thatxk will not stay forever in the waiting state. 2
Lemma 2. In ABT-Hyb, if an agent is in a waiting state, the network is not quiescent.

Proof. An agent is in a waiting state after sending aBackmessage. Because Lemma 1,
this agent will leave the waiting state in finite time. This isdone after receiving anInfo
or Stopmessage. Therefore, if there is an agent in a waiting state, the network cannot
be quiescent at least until one of those messages has been produced. 2
Lemma 3. A nogood, discarded as obsolete because the receiver is in a waiting state,
will be resent to the receiver until the sender realizes thatit has been solved, or the
empty nogood has been derived.

Proof. If an agentk sends a nogood to an agentj that is in a waiting state, this nogood
is discarded and agentk enters the waiting state. From Lemma 1, no agent can stay
forever in a waiting state, so agentk will leave that state in finite time. This is done
after receiving either,

1. An Info message fromj. If this message does not solve the nogood, it will be
generated and resend toj. If it solves it, this nogood is not generated, exactly in the
same way asABT does.

2. An Info message allowing a consistent value fork. In this case, the nogood is
solved, so it is not resent again.

3. A Stopmessage. The process terminates without solution.

Therefore, we conclude that the nogood is sent again until itis solved (either by anInfo
message fromj or from another agent) or the empty nogood is generated. 2
Proposition 1. ABT-Hyb is sound.

Proof. From Lemma 2,ABT-Hybreaches quiescence only when no agent is in a waiting
state. From this fact,ABT-Hybsoundness derives directly fromABT soundness: when
the network is quiescent all agents satisfy their constraints, so the current assignments
of agents form a solution. If this would not be the case, at least one agent would detect
a violated constraint and it would send a message, breaking the quiescence assumption.2
Proposition 2. ABT-Hyb is complete and terminates.

Proof. From Lemma 3, the synchronicity of backtracking inABT-Hybdoes not cause
to ignore any nogood. Then,ABT-Hybexplores the search space as good asABT does.
From this fact,ABT-Hybcompleteness comes directly fromABT completeness. New
nogoods are generated by logical inference from the initialconstraints, so the empty
nogood cannot be derived if there is a solution. Total agent ordering causes that back-
tracking discards one value in the highest variable reachedby theBackmessage. Since
the number of values is finite, the process will find a solutionif it exists, or it will derive
the empty nogood otherwise.



To see thatABT-Hybterminates, we have to prove that no agent falls into an infi-
nite loop. This comes from the fact that agents cannot stay forever in the waiting state
(Lemma 1), and thatABT agents cannot be in an endless loop. 2

Alternatively to synchronous backtracking, we can avoid resending redundantBack
messages assuming exponential-space algorithms. Let assume thatself stores every
nogood sent, while it is not obsolete. If a wipe-out occurs inself, if the new generated
nogood is equal to one of the stored nogoods, it is not sent. This allowsself not sending
identical nogoods until some higher agent changes its valueand the correspondingInfo
arrives toself. But it requires exponential space, since the number of nogoods generated
could be exponential in the number of agents with higher priority thanself. A similar
idea is also found in [16] for the asynchronous weak-commitment algorithm (AWC).

5 Experimental Results

We have testedSCBJ, ABT andABT-Hybalgorithms on the distributedn-queens prob-
lem and on random binary problems. Algorithmic performanceis evaluated considering
computation and communication costs. In synchronous algorithms, the computation ef-
fort is measured by the total number of constraint checks (cc), and the global commu-
nication effort is evaluated by the total number of messagesexchanged among agents
(msg).

For the asynchronous algorithmsABT and ABT-Hyb, computation effort is mea-
sured by the number of “concurrent constraint checks” (ccc), which was defined in [8],
following Lamport’s logic clocks [10]. Each agent has a counter for its own number of
constraint checks. The number of concurrent constraint checks is computed by attach-
ing to every message the current counter of the constraint checks of the sending agent.
When an agent receives a message, it updates its counter to the higher value between
its own counter and the counter attached to the received message. When the algorithm
terminates, the highest value among all the agent counters is taken as the number of con-
current constraint checks. Informally, this number approximates the longest sequence
of constraint checks not performed concurrently. As for synchronous search, we evalu-
ate the global communication effort as the total number of messages exchanged among
agents (msg).

5.1 Implementation Details

Nogood management.To assure polynomial space inABT and ABT-Hyb, we keep
one nogood per forbidden value. However, if several nogoodsare available for each
value, it may be advisable to choose the most appropriate resolvent in order to speed
up search. With this aim, we implement the following heuristic. If a value is forbidden
for some stored nogood, and a new nogood forbidding the same value arrives, we store
the nogood with the highest possible lowest variable involved. Notice that, even those
nogoods which are obsolete on the value of the receiving variable can be used to select
the most suitable nogood with respect to the heuristic.



Saving messages.In asynchronous algorithms, some tricks can be used to decrease the
number of messages exchanged. We implement the following:

1. Value inAddL. When a new link with agentk is requested byself, instead of send-
ing the AddL message and assuming this assignment until a confirmation isre-
ceived,ABT include in theAddLmessage the value ofxk recorded in the received
nogood. After reception of theAddL message, agentk informsself of its current
value only if it is different from the value contained in theAddL message. In this
way, some messages may be saved.

2. Avoid resending same values. ABT can keep track of the last value taken byself.
When selecting a new value, if it happens that the new value isthe same as the
last value,self does not resend it to�+(self), because this information is already
known. Again, this may save some messages.

Processing Messages by Packets. ABT agents can process messages one by one, react-
ing as soon as a message is received. However, this strategy of single-message process
may cause some useless work. For instance, consider the reception of anInfo message
reporting a change of an agent value, immediately followed by anotherInfo from the
same agent. Processing the first message causes some work that becomes useless as
soon as the second message arrives. More complex examples can be devised, causing
to waste substantial effort.

To prevent useless work, instead of reacting after each received message, the algo-
rithm reads all messages that are in the input buffer and stores them in internal data
structures. Then, the algorithm processes all read messages as a whole, ignoring those
messages that become obsolete by the presence of another message. We call this strat-
egyprocessing messages by packets, where a packet is the set of messages that are read
from the input buffer until it becomes empty. Somehow, this idea was mentioned in
[17] and [21]. In the latter, a comparison betweensingle-message processandprocess-
ing messages by packetsis presented. However, in none of them a formal protocol for
processing messages by packetsis completely developed.

When an agent processes messages by packets, it reads all messages from its input
buffer, and processes them as a whole. The agent looks for anyconsistent value after
its agent view and its nogood store are updated with these incoming messages. To do
that, we propose a protocol which requires three lists to store the incoming messages,
the Info-List, Back-List and theAddL-List. In each list is stored the messages of the
corresponding type, following the reception order. Each list of messages is processed
as follows.

1. Info-List. First, theInfo-List is processed. For each sender agent, allInfo mes-
sages but the last are ignored. The remainingInfo messages updateself agent view,
removing nogoods if needed.

2. Back-List. Second, theBack-List is processed. ObsoleteBack messages are ig-
nored.self stores nogoods of no obsolete messages, and it sendsAddL messages
to unrelated agents appearing in those nogoods. For those messages containing the
correct current value ofself, the sender is recorded inRemainderSet.

3. AddL-List. Third, theAddL-List is processed updating�+(self) without sending
theInfo message.



lex SCBJ ABT ABT-Hybn cc msg ccc msg ccc msg
10 1,612 170 2,223 740 1,699 502
15 31,761 2,231 56,412 13,978 32,373 6,881
20 6,518,652306,33711,084,0122,198,304 6,086,376 995,902
25 1,771,192 70,336 3,868,136 693,832 1,660,448 271,092

rand SCBJ ABT ABT-Hybn cc msg ccc msg ccc msg
10 965 91 1,742 332 916 238
15 4,120 247 7,697 1,185 4,007 786
20 19,532 921 20,661 4,772 15,720 2,748
25 21,372 746 31,849 6,553 27,055 3,863

min SCBJ ABT ABT-Hybn cc msg ccc msg ccc msg
10 2,800 204 3,716 896 2,988 555
15 35,339 2,210 49,442 11,055 32,303 5,906
20 215,816 10,765 320,278 63,378 165,338 28,686
25 19,949,074791,08938,450,7866,716,50517,614,3302,795,319

Table 1.Results for distributedn-queens with lex, random and min-conflict value ordering.

4. Consistent value. Fourth,self tries to find a value consistency with the agent view.
If a wipe-out happens in this process, the correspondingBackmessage is sent, and
a consistent value is searched.

5. Info sent. Fifth,Info messages containingself current value are sent to all agents in�+(self) and to all agents inRemainderSet. The three lists become empty.

As described in Section 3.2, the search ends when quiescenceis reached (i.e. all agents
are happy with their current assignment) or an empty nogood is derived.

5.2 Distributedn-queens Problem

The distributedn-queens problem is the classicaln-queens problem (locaten queens
in an n � n chessboard such that no pair of queens are attacking each other) where
each queen is hold by an independent agent. We have evaluatedthe algorithms for
four dimensionsn = 10; 15; 20; 25. In Table 1 we show the results in terms of con-
straint checks/concurrent constraint checks and total number of messages exchanged,
averaged over 100 executions with different random seeds (ties are broken randomly).
Lexicographic (static) variable ordering has been used forSCBJ, ABT, andABT-Hyb.
Three value ordering heuristics have been testedlex (lexicographic),rand (random) and
min (min-conflicts) [9] on all the algorithms. Given that an exact min computation re-
quires extra messages, we have made an approximation, whichconsists of computing
the heuristic assuming initial domains. With this approximation, theminvalue ordering
heuristic can be computed in a preprocessing step.



We observe that the random value ordering provides the best performance for every
algorithm and every dimension tested. Because of that, in the following we concentrate
our analysis on the results of random value ordering.

Considering the relative performance of asynchronous algorithms,ABT-Hybis al-
ways better thanABT, in both number of concurrent constraint checks and total number
of messages. It is relevant to scrutinize the improvement ofABT-HyboverABT with re-
spect to the type of messages. In Table 2, we provide the totalnumber of messages per
message type forSCBJ, ABT andABT-Hybwith random value ordering. InABT-Hyb
the number of obsoleteBackmessages decreases in one order of magnitude with respect
the same type of messages inABT, causingABT-Hybto improve overABT. However,
this improvement goes beyond the savings in obsoleteBackmessages, becauseInfo and
Backmessages decrement to a larger extent. This is due to the following collective ef-
fect. When anABT agent sends aBackmessage, it tries to get a new consistent value
without knowing the effect that backtracking causes in higher priority agents. If it finds
such a consistent value, it informs to lower priority agentsusing Info messages. If it
happens that this value is not consistent with new values that backtracking causes in
higher priority agents, theseInfo messages would be useless, and newBackmessages
would be generated.ABT-Hyb tries to avoid this situation. When anABT-Hybagent
sends aBackmessage, it waits until it receives notice of the effect of backtracking in
higher priority agents. When it leaves the waiting state, ittries to get a new consistent
value. At this point, it knows some effect of the backtracking on higher priority agents,
so the new value will be consistent with it. In this way, the new value has more chance
to be consistent with all higher priority agents, and theInfo messages carrying it will be
more likely to make useful work.

Considering the performance of synchronous vs. asynchronous algorithms, we com-
pareSCBJagainstABT-Hybwith random value ordering. In terms of computation ef-
fort (constraint checks)SCBJperforms better thanABT-Hyb for n = 25 and worse
for n = 20, with very similar results forn = 10; 15. In terms of communication cost,
SCBJuses less messages thanABT-Hybfor the four dimensions tested. This comparison
should be qualified, noting that the lenght ofInfo messages differ from synchronous to
asynchronous algorithms. InSCBJ, anInfo message contains the partial solution which
could be of sizen, while in ABT-Hyban Info message contains a single assignment of
size 1. Assuming that the communication cost depends more crucially on the number
of messages than on their length, we conclude thatSCBJis more efficient in communi-
cation terms thanABT-Hyb. Considering both aspects, computation effort and commu-
nication cost,SCBJseems to be the algorithm of choice for then-queens problem.

5.3 Random Problems

Uniform binary random CSPs are characterized byhn; d; p1; p2i wheren is the number
of variables,d the number of values per variable,p1 the networkconnectivitydefined
as the ratio of existing constraints, andp2 the constrainttightnessdefined as the ratio of
forbidden value pairs. We have tested random instances of 16agents and 8 values per
agent, considering three connectivity classes, sparse (p1=0.2), medium (p1=0.5) and
dense (p1=0.8).



rand SCBJ ABT ABT-Hybn Info Back Info BackObsol Info BackObsol
10 55 36 251 81 24 195 43 2
15 146 101 901 284 91 649 137 10
20 539 382 3,6121,160 408 2,293 455 38
25 452 294 5,0271,526 520 3,240 623 50

Table 2.Number of messages exchanged bySCBJ, ABT andABT-Hybper message type, for the
distributedn-queens problem with random value ordering.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
he

ck
s

p2

Solving <n = 16, m = 8, p1 = 0.20>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s

p2

Solving <n = 16, m = 8, p1 = 0.20>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
he

ck
s

p2

Solving <n = 16, m = 8, p1 = 0.50>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

5000

10000

15000

20000

25000

30000

35000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s

p2

Solving <n = 16, m = 8, p1 = 0.50>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

20000

40000

60000

80000

100000

120000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
he

ck
s

p2

Solving <n = 16, m = 8, p1 = 0.80>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

10000

20000

30000

40000

50000

60000

70000

80000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s

p2

Solving <n = 16, m = 8, p1 = 0.80>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

Fig. 1. Constraint checks and number of messages forSCBJ, SCBJ-amd1, SCBJ-amd2, ABT and
ABT-Hybon binary random problems.

In a synchronous algorithm, it is simple to implement some heuristic for dynamic
variable ordering. Considering the heuristic of minimum domain, an exact computation



rand SCBJ SCBJ-amd1 ABT ABT-Hybp2 Info Back Info Back Info BackObsolLink Info BackObsolLink0:20 2,6471,254 100 63 3,587 1,310 320 26 3,141 949 53 240:50 6,9133,556 477 321 24,725 7,025 2,336 40 17,6503,335 321 370:80 9,7615,265 1,052 758 58,28316,4326,497 19 37,0465,956 755 18

Table 3.Number of messages exchanged bySCBJ, SCBJ-amd1, ABT andABT-Hybper message
type, for random binary problems with random value ordering.

requires extra messages. To avoid this, we have implementedthe following approxima-
tions,

– AMD1. Each agent computes the interval[mini;maxi] of the minimum and max-
imum number of inconsistent values in the domain of every unassigned variablexi with the partial solution. This interval is included in theInfo message. Then,
the next variable to be assigned is chosen as follows: (i) if there isxi such thatmini � minfd;maxjg; 8xj unassigned, selectsxi (whered is the domain size);
(ii) otherwise, selects the variable with maximummaxj .

– AMD2. This approach only computes the current domains of theunassigned vari-
ables afterBackmessages. Whenself sends aBackmessage toxj, instead of send-
ing it directly toxj it goes chronologically. Each intermediate variable recognizes
that it is not its destination, and it includes the current size of its domain in the
message. This messages ends inxj and after assigning it, the minimum domain
heuristic without considering the effect ofxj ’s assignment can be applied on the
subset of intermediate variables. It causes some extra messages, but its benefits
pay-off.

In Figure 1, we report results averaged over 100 executions for SCBJ, SCBJ-amd1,
SCBJ-amd2, ABT andABT-Hyb, with random value ordering.

Considering synchronous algorithms, approximating minimum domains heuristic is
always beneficial both in computation effort and in communication cost. Consistently
in the three classes tested, the approximationamd1provides better results thanamd2,
both in terms of checks and messages. When usingamd1, the baseline of constraint
checks is not zero, due to the heuristic computation done as apreprocessing step.

Considering asynchronous algorithms, we observe again that ABT-Hyb is always
better thanABT for the three problem classes, in both computation effort and commu-
nication cost. We believe that this is due to the effect already described for the dis-
tributedn-queens problem. This is confirmed after analyzing the number of messages
per message type of Table 3.

Comparing the performance of synchronous vs.ABT-Hyb, we observe the follow-
ing. In terms of computation effort (constraint checks),SCBJ is always worse than
ABT-Hyb, andSCBJis often the worst algorithm (except in theh16; 8; 0:8i class, where
it is the second worst). This behaviour changes dramatically when adding the minimum
domain heuristic approximations:SCBJ-amd1andSCBJ-amd2are the best and second
best algorithms in the three classes tested, and they are always better thanABT-Hyb.



min SCBJ SCBJ-amd1 SCBJ-amd2 ABT ABT-Hybp1 cc msg cc msg cc msg ccc msg ccc msg0:20 7,100 3,277 907 153 1,811 687 3,771 4,006 3,448 3,5350:50 44,024 9,367 5,637 783 11,6772,669 30,71926,84022,22719,1410:80 102,15315,11116,2061,84340,4497,142101,49270,03358,42843,459

Table 4. Results near of the pick of difficulty on binary random classes hn = 16; m = 8i with
min-conflict value ordering.

Regarding communication costs, synchronous algorithms are always better than
asynchronous ones: consistently in the three classes tested, SCBJ-amd1, SCBJ-amd2
andSCBJare the three best algorithms (in this order). Again, the addition of minimum
domain approximations is very beneficial. As mentioned in Section 5.2,Info messages
are of different sizes in synchronous and asynchronous algorithms. Under the same as-
sumptions (communication costs depends more on the number of messages exchanged
than on their length), we conclude that for solving random binary problems,SCBJ-amd1
is the algorithm of choice.

We have also tested the three problem classes using the min-conflict value ordering.
Results appear in Table 4 for the peak of maximum difficulty. We observe a minor but
consistent improvement of all the algorithms with respect to the random value ordering.
In this case, the relative ranking of algorithms obtained with random value ordering
remains,SCBJ-amd1being the algorithm with the best performance.

We have also testedABT andABT-Hybwith random message delays. This issue was
raised first in [5], and subsequently in [21]. Preliminary results show thatABTdecreases
performance and alsoABT-Hybdoes, but to a lesser extent. This last algorithmexhibits a
more robust behavior in presence of random delays. It is worth noting that synchronous
algorithms do not increase the number of checks or messages in presence of delays.

6 Conclusions

We have presented three algorithms, one synchronousSCBJ, one asynchronousABT
and one hybridABT-Hyb, the two first being already known. We have proposedABT-
Hyb, a new algorithm that combines asynchronous and synchronous elements.ABT-Hyb
can be seen as anABT-like algorithm where backtracking is synchronized: an agent that
initiates backtracking cannot take a new value before having some notice of the effect
of its backtracking. This causes a kind of “contention effect” in backtracking agents.
Their decisions tend to be better founded than the corresponding decisions taken by
ABT agents, and therefore they are more likely to succeed.ABT-Hybinherits the good
theoretical properties ofABT: it is sound, complete and terminates.

We have implementedABT andABT-Hybwith a strategy for processing messages
by packets, together with some simple ideas to improve performance. OnSCBJwe
have proposed two approximations for the minimum domain heuristic. Empirically we
have observed thatABT-Hybclearly improves overABT, in both computation effort and
communication costs. ComparingSCBJwith ABT-Hyb, we observe thatSCBJalways
requires less messages thanABT-Hyb, for both problems tested. Considering compu-
tation effort,SCBJrequires a similar effort asABT-Hybin distributedn-queens, while



SCBJrequires more effort thanABT-Hybfor binary random problems. However, when
enhanced with minimum domain approximation for dynamic variable ordering,SCBJ-
amd1is the best algorithm in terms computation effort and in number of messages ex-
changed. Grouping these evidences together, we conclude that synchonous algorithms
enhanced with some minimum domain approximation are globally more efficient than
asynchronous ones. This does not mean that synchronous algorithms should always be
preferred to asynchronous ones, since they offer differentfunctionalities (synchronous
algorithms are less robust to network failures, privacy issues are not considered, etc.).
But for applications where efficiency is the main concern, synchronous algorithms
seems to be quite good candidates to solve DisCSP.

References

1. Bessière C., Maestre A. and Meseguer P. Distributed Dynamic Backtracking.IJCAI-01 Work-
shop on Distributed Constraint Reasoning, 9-16, Seattle, USA, 2001.

2. Bitner J. and Reingold E. Backtrack programming techniques.Communications of the ACM,
18:11, 651–656, 1975.

3. Collin Z., Dechter R., Shmuel K. On the Feasibility of Distributed Constraint Satisfaction.
In Proc. of the 12th International Joint Conference on Artificial Intelligence, IJCAI-91, 318–
324, 1991.

4. Dechter R. and Pearl J. Network-Based Heuristics for Constraint-Satisfaction Problems.Ar-
tificial Intelligence, 34, 1–38, (1988).

5. Fernandez C., Bejar R., Krishnamachari Gomes, K. Communication and Computation in
Distributed CSP Algorithms.In Proc. Principles and Practice of Constraint Satisfaction
Programming (CP-2002), 664–679, Ithaca NY, USA, July, 2002.

6. Hamadi Y., Bessière C., Quinqueton J. Backtracking in Distributed Constraint Networks.In
Proc. of the 13th ECAI, 219–223, Brighton, UK, 1998.

7. Hirayama K. and Yokoo M. The Effect of Nogood Learning in Distributed Constraint Satis-
faction.In Proceedings ICDCS’00, 169–177. 2000

8. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-
straint Processing Algorithms.AAMAS-02 Workshop on Distributed Constraint Reasoning,
86–93, Bologna, Italy, 2002.

9. Minton S. and Johnston M. and Philips A. and Laird P. Minimizing Conflicts: A Heuristic
Repair Method for Constraint Satisfaction and Scheduling Problems.Artificial Intelligence,
58, 161–205, 1992.

10. Lamport L. Time, Clock, and the Ordering of Evens in a Distributed System.Communica-
tions of the ACM, 21(7), 558–565, 1978.

11. Prosser, P. Hybrid Algorithm for the Constraint Satisfaction Problem.Computational Intel-
ligence, 9, 268–299, 1993.

12. Prosser, P. Domain Filtering can Degrade Intelligent Backtracking Search.Proc. IJCAI, 262–
267, 1993.

13. Silaghi M.C., Sam-Haroud D., Faltings B. Asynchronous Search with Aggregations.In Proc.
of the 17th AAAI, 917–922, 2000.

14. Silaghi M.C., Sam-Haroud D., Faltings B.Hybridizing ABT and AWC into a polynomial
space, complete protocol with reordering. Tech. Report EPFL, 2001.

15. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. Distributed Constraint Satisfaction for For-
malizing Distributed Problem Solving.In Proc. of the 12th International Conference on Dis-
tributed Computing System, 614–621, 1992.



16. Yokoo M. Asynchronous Weak-commitment Search for Solving Distributed Constraints Sat-
isfaction Problems.In Proceeding of the First International Conference on Principles and
Practice of Constraint Programming (CP-1995)88–102, 1995.

17. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms.IEEE Trans. Knowledge and Data Engineering10,
673–685, 1998.

18. Yokoo M., Ishida T. Search Algorithms for Agents. InMultiagent Systems, G. Weiss editor,
Springer, 1999.

19. Yokoo M.Distributed Constraint Satisfaction, Springer, 2001.
20. Yokoo M. , Suzuki, Hirayama K. Secure Distributed Constraint Satisfaction: Reaching

Agreement without Revealing Private Information.In Proc. of the 8th CP, 387–401, 2002.
21. Zivan, R. and Meisels, A.Synchronous and Asynchronous Search on DisCSPs.In Proc. of

EUMAS-2003, Oxford, UK, 2003


