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Abstract. There is some debate about the kind of algorithms that ar¢ suits
able to solve DisCSP. Synchronous algorithms exchangeteghdaformation
with a low degree of parallelism. Asynchronous algorithres less updated in-
formation with a higher parallelism. Hybrid algorithms coime both features.
Lately, there is some evidence that synchronous algoritoutd be more effi-
cient than asynchronous ones for one problem class. In #pempwe present
some improvements on existing synchronous and asynchsaalgarithms, as
well as a new hybrid algorithm. We provide an empirical ifigegtion of these
algorithms om-queens and binary random DisCSPs.

1 Introduction

In the last years, the Al community has shown an increasiterést in distributed
problem solving. Regarding distributed constraint reasgprseveral synchronous and
asynchronous backtracking procedures have been proposadve a constraint net-
work distributed among several agents [15, 16,6, 13,1,]14,4

Broadly speaking, a synchronous algorithm is based on themof privilege a
token that is passed among agents. Only one agent is activg &éitne, the one having
the privilege, while the rest of agents are waitlngvhen the process in the active agent
terminates, it passes the privilege to another agent, wivehbecomes the active one.
These algorithms have a low degree of parallelism, but thgénts receive updated
information. In an asynchronous algorithm every agenttis@at any time. They have
a high degree of parallelism, but the information that angriéagknows about other
agents is less updated than in synchronous procedures.

There is some debate around the efficiency of these two typdgofithms. The
general opinion was that asynchronous algorithms were raffi@ent than the syn-
chronous ones, because of their higher concurrénbythe last decade, attention was

* This research is supported by the REPLI project TIC-2002704C03-03.

1 Except for special topological arrangements of the coimttmgaph. See [3] for a synchronous
algorithm where several agents are active concurrently.

2 However, a careful reading of [17] shows that "synchronacdracking might be as efficient
as asynchronous backtracking due to the communicatiomesaef (footnote 15).



mainly devoted to the study and development of asynchropoacedures, which rep-
resented a new approach with respect to synchronous omestlylderived from cen-
tralized algorithms.

Recently, Zivan and Meisels reported that the performarfce distributed and
synchronous version of Conflict-Based Backjumpi@B() surpasses Asynchronous
Backtracking ABT) for the random problem clags = 10, m = 10, p; = 0.7).

Inthis paper we continue this line of research, and we stielpérformance of three
different procedures, one synchronous, one asynchromalsrge hybrid, for solving
sparse, medium and dense DisCSPs. The synchronous algisi#CBJ a distributed
version of the Conflict-Based BackjumpinGBJ) [12] algorithm. The asynchronous
algorithm is the standardBT enhanced with some heuristics. The hybrid algorithm
is ABT-Hyh a novelABT-like algorithm, where some synchronization is introdutzed
avoid redundant messages. In addition, we present a dktgjgroach for processing
messages by packets instead of processing messages ore byABIT andABT-Hyh
We also provide an experimental evaluation for new low-bestristics for variable and
value reordering.

The rest of the paper is organized as follows. In Section 2esall some basic def-
initions of DisCSP. In Section 3 we recall two existing ali¢fums for DisCSP solving:
the synchronouSCBJ and the asynchronodsBT. In Section 4 we prese®BT-Hyh
a new hybrid algorithm that combines asynchronous and sgnolus elements, prov-
ing its soundness and completeness. In Section 5 we deskalexperimental setting
(including some implementation details) and discuss thpeemental results. Finally,
Section 6 contains several conclusions and directionsrtfiéawork.

2 Distributed CSP

A constraint network is defined by a tripl’, D, C), whereX = {z,..., 2, } isaset
of n variables,D = {D(a1),..., D(x,)} is the set of their respective finite domains,
and(C is a set of constraints declaring those value combinatidrislware acceptable
for variables. The CSP involves finding values for the problariables satisfying all
constraints. We restrict our attention to constraintgirdgtwo variables, namelginary
constraints. A constraint among the variabtegndz; will be denoted by:; ;.

A distributed CSP (DisCSP) is a CSP where the variables, dwnaad constraints
of the underlying network are distributed among automatghts. Formally, a finite
variable-based distributed constraint network is defingé I5-tuple(X', D, C, A, ¢),
whereX’, D and(C are as befored = {1,...,p} is a set ofp agents, and : ¥ — A
is a function that maps each variable to its agent. Each blartzelongs to one agent.
The distribution of variables dividein two disjoint subsetsy,,.:,. = {cijlo(x) =
&(x;)}, andCipnser = {cijlé(x;) # é(x;)}, called intra-agent and inter-agent con-
straint sets, respectively. An intra-agent constrajptis known by the agent owner
of #; andx;, and it is unknown by the other agents. Usually, it is consideéhat an
inter-agent constraing; is known by the agents(r;) andé(z;) [6, 17].

A solution of a distributed CSP is an assignment of valuesartables satisfying
every constraint (although distributed CSP literaturaufms mainly on solving inter-
agent constraints). Distributed CSPs are solved by theaole and coordinated action



of agents4. Agents communicate by exchanging messages. It is assuragth¢ delay
in delivering a message is finite but random. For a given plaiigents, messages are
delivered in the order they were sent.

For simplicity purposes, and to emphasize on distributispeats, along the rest
of the paper we assume that each agent owns exactly one leaVdb identify the
agent number with its variable index«; € X', ¢(z;) = 7). For this assumption, in the
following we do not differentiate between a variable anditsier agent.

3 Existing Algorithms for DisCSP

3.1 Synchronous Search: SCBJ

Synchronous procedures can be directly derived from cainstlgorithms in central-

ized search when extended to distributed environmentsei@iiy, only one agent is
active at any time in a a synchronous algorithm. Becauseigftthe active agent has
always updated information, in the form of either a parttdlion (from the part of the

problem already assigned) or a backtracking.

The synchronous backtrackin§BT) algorithm for DisCSP was presented in [17].
Synchronous Conflict-Based BackjumpirgGBJ [21] is a distributed version of the
centralized Conflict-Based Backjumping B.7) algorithm [11]. WhileSBT performs
chronological backtrackkingsCBJdoes not. Each agent keeps ttanflict set(C9),
formed by the assigned variables which are inconsisteltit satne value of the agent
variable. Letself be a generic agent. When a wipe-out occurs, it allonsetbto back-
track directly to the closest conflict variable(itt;.; s, sayz; and sends'S;.;r — {#;}
to be added ta”'s;. Like SBT, SCBJexchangesnfo and Back messages, which are
processed as follows¢lf is the receiver):

— Info(partial-solution) self receives the partial solution, assigns its variable censis
tently, selects the next variable and sends the new padiatisn to it in alnfo
message. If it has no consistent valself sends aBack message to the closest
variable inC'Ss.; .

— Back(conflict-set)self has to change its value, becawsnderhas no value con-
sistent with the partial solution. The current valueseff is discarded, and the new
conflict-set ofself is the union of its old conflict-set and the one received. Afte
this, self behaves as after receivindréfo message.

After receiving any of these messageslf becomes the active agemself passes
the privilege to other agent sending to it brfo or a Backmessage. The search ends
unsuccessfully when any agent encounters an empty domdinsa@Sis empty. Oth-
erwise, a solution will be found when the last agent is redaral there is a consistent
value for it.

3.2 Asynchronous Search: ABT

In asynchronous search, all agents are active at any timadha high degree of par-
allelism. Asynchronous Backtracking\BT) [15, 17-19] was a pioneer asynchronous



algorithm to solve DisCSRABT requires a total agent ordering. Agethias higher pri-
ority thanj if i appears beforgin the ordering. Each agent keeps its own agent view
and nogood store. Considering a generic agetlf the agent view oself is the set

of values that it believes to be assigned to its higher ggi@gents. The nogood store
keeps nogoods as justifications of inconsistent values.

Whenself makes an assignment, it seridfo messages, to its lower priority agents,
informing about its current assignment. Whself receives éBack message, the in-
cluded nogood is accepted if it is consistent waif's agent view, otherwise it is dis-
carded as obsolete. An accepted nogood is addedlfs nogood store to justify the
deletion of the value it targets. In standaBT, whenself cannot take any value con-
sistent with its agent view, because of the original commstsar because of the received
nogoods, new nogoods are generated as inconsistent sab#etsagent view, and are
sent, aBackmessages, to the closest agent involved, causing backtgack

In our ABT implementation, we keep a single nogood per removed vallenV
there is no value consistent with the agent view, a new nogogeherated by resolving
all nogoods, as described in [1]. This nogood is sentBaekmessage.

If self receives a nogood mentioning another agent not connectibdtyself re-
quires to add a link from that agent $elf. self sends an assignment to that agent and
after received, a link from the other agenstif will exist. The search terminates when
achieving quiescence in the network, meaning that a soltiés been found because all
agents are agree with their current assignment, or whemtpé&yenogood is generated,
meaning that the problem is unsolvable.

4 Hybrid Search: ABT-Hyb

In ABT, manyBackmessages are obsolete when they arrive to the recéiBdrcould
save much work if these messages were not sent. Althougletiikesagent cannot de-
tect those messages that will become obsolete when reaitt@mgceiver, it is possible
to avoid sending those which are redundant.

Let self be a generic agent. Wheself sends éBack message, it performs a new
assignment and informs of it to lower priority agents, withavaiting to receive any
message showing the effect of tBackmessage in higher agents. This can be a source
of inefficiency in the following situation. I sends 8ackmessage t¢ causing a wipe-
outiny, thenj sends 8ackmessage to some previous agerit j takes the same value
as before and sends émfo message té& before: changes its valug; will find again
the same inconsistency so it will send the same nogogdita Backmessage. Agent
will discard this message as obsolete, sending again i valaninfo. The process is
repeated generating useless messages, until some higiadanie@ahanges its value and
the correspondintnfo arrives toj andk.

Based on this intuition, we preseABT-Hyh a hybrid algorithm that combines
asynchronous and synchronous elemeABT-Hybbehaves likeABT when no back-
tracking is performed: agents take their values asynchrsigy@nd inform lower prior-
ity agents. However, when an agent has to backtrack, it degschronously as follows.
If self has no value consistent with its agent view and its nogoa® sitosends @ack
message and enters innaaiting state. In this stateself has no assigned value, and it



does not send out any message. Any receliéaimessage is accepted, updatsadf’'s
agent view accordingly. Any receivegiack message is rejected as obsolete, ssalé
has no value assignesklf leaves the waiting state when receiving one the following
messages,

1. aninfo message that allovelf to has a value consistent with its agent view or,

2. aninfo message from the receiver of the I&ick message (the one causing to
enter the waiting state) or,

3. aStopmessage informing that the problem has not solution.

When self receives one of these messages, it leaves the waiting statkis point,
ABT-Hybswitches toABT.

Like in ABT, the problem is unsolvable if during the search an empty adge
derived. Otherwise, a solution is found when no messagesrarelling through the
network (i.e.quiescence is reached in the network). Noendlie synchronous back-
tracking,ABT-Hybinherits the good theoretical propertiesABT, namely soundness,
completeness and termination. To proof these propertiestart with some lemmas.

Lemma 1. In ABT-Hyb, no agent will stay forever in a waiting state.

Proof. In ABT-Hyh an agent enters the waiting state after sendiBgek message to
a higher priority agent. The first agent;{ in the ordering will not enter in the waiting
state because iBackmessage departs from it. Suppose thatno agentins, . . ., =
is waiting forever, and suppose thatenters the waiting state after sendingackmes-
sage tar; (1 < j < k — 1). We will show thatz; will not be forever in the waiting
state.

Whenz; receives th®ackmessage, there are two possible states:

1. »; is waiting. Since no agent ify, -, . .., #;_ iS waiting forever; will leave
the waiting state at some pointalf has a value consistent with its new agent view,
it will send it to «;, in anInfo message. I%; has no value consistent with its new
agent view, it will backtrack and enter again in a waitingestd his can be done
a finite number of times (because there is a finite number afegaper variable)
before finding a consistent value or discovering that thélera has no solution
generating &topmessage. In both cases, will leave the waiting state.

2. x; is not waiting. TheBackmessage could be:

(a) Obsolete in the value af;. In this case, there is amfo message travelling
from z; to x5 that has not arrived te;. After receiving such a message,
will leave the waiting state.

(b) Obsolete not in the value of;. In this case;:; resends ta:;; its value by an
Info message. After receiving such a messagewill leave the waiting state.

(c) Not obsolete. The value of; is forbidden by the nogood in tigackmessage,
and a new value is tried. if; finds another value consistent with its agent view,
it takes it and send amfo message ta,, which will leave the waiting state.
Otherwise;z; has to backtrack to a previous agent in the ordering, andsente
the waiting state. Since no agentip, z-, . .., 25 _1 iS waiting foreverx:; will
leave the waiting state at some point, and as explained ipdh# 1 above, it
will cause thatr;, will leave the waiting state as well.



Therefore, we conclude thaf, will not stay forever in the waiting state. a
Lemma 2. In ABT-Hyb, if an agentis in a waiting state, the network is quaiescent.

Proof. An agentis in a waiting state after sendinBackmessage. Because Lemma 1,
this agent will leave the waiting state in finite time. Thiglsne after receiving almfo

or Stopmessage. Therefore, if there is an agent in a waiting stagenétwork cannot
be quiescent at least until one of those messages has bekrcedo a

Lemma 3. A nogood, discarded as obsolete because the receiver is aitmg state,
will be resent to the receiver until the sender realizes ihaas been solved, or the
empty nogood has been derived.

Proof. If an agentk sends a nogood to an agerthat is in a waiting state, this nogood

is discarded and age#tenters the waiting state. From Lemma 1, no agent can stay
forever in a waiting state, so agehtwill leave that state in finite time. This is done
after receiving either,

1. An Info message from. If this message does not solve the nogood, it will be
generated and resenddf it solves it, this nogood is not generated, exactly in the
same way a#\BT does.

2. An Info message allowing a consistent value forln this case, the nogood is
solved, so itis not resent again.

3. A Stopmessage. The process terminates without solution.

Therefore, we conclude that the nogood is sent again uigisitlved (either by ainfo
message from or from another agent) or the empty nogood is generated. a

Proposition 1. ABT-Hyb is sound.

Proof. From Lemma 2ABT-Hybreaches quiescence only when no agent is in a waiting
state. From this factABT-Hybsoundness derives directly froABT soundness: when
the network is quiescent all agents satisfy their conssago the current assignments
of agents form a solution. If this would not be the case, atleae agent would detect

a violated constraint and it would send a message, breakeguiescence assumption.
0

Proposition 2. ABT-Hyb is complete and terminates.

Proof. From Lemma 3, the synchronicity of backtrackingABT-Hybdoes not cause
to ignore any nogood. TheABT-Hybexplores the search space as goodB3$ does.
From this fact ABT-Hybcompleteness comes directly frodBT completeness. New
nogoods are generated by logical inference from the intbalstraints, so the empty
nogood cannot be derived if there is a solution. Total agem¢ning causes that back-
tracking discards one value in the highest variable reablyedtieBackmessage. Since
the number of values is finite, the process will find a solutidrexists, or it will derive
the empty nogood otherwise.



To see thaABT-Hybterminates, we have to prove that no agent falls into an infi-
nite loop. This comes from the fact that agents cannot stagwéw in the waiting state
(Lemma 1), and thaABT agents cannot be in an endless loop. a

Alternatively to synchronous backtracking, we can avosmraling redundarmack
messages assuming exponential-space algorithms. Lehasthatself stores every
nogood sent, while it is not obsolete. If a wipe-out occursel if the new generated
nogood is equal to one of the stored nogoods, itis not sei.allowsself not sending
identical nogoods until some higher agent changes its \aidehe correspondirigfo
arrives toself But it requires exponential space, since the number of odggenerated
could be exponential in the number of agents with higherrfiyidghan self. A similar
idea is also found in [16] for the asynchronous weak-commiithalgorithm AWC).

5 Experimental Results

We have teste&CBJ ABT andABT-Hybalgorithms on the distributee-queens prob-
lem and on random binary problems. Algorithmic performasevaluated considering
computation and communication costs. In synchronous ihgos, the computation ef-
fort is measured by the total number of constraint cheeks &nd the global commu-
nication effort is evaluated by the total number of messayebanged among agents
(msg).

For the asynchronous algorithm8T and ABT-Hyh computation effort is mea-
sured by the number of “concurrent constraint checks®)( which was defined in [8],
following Lamport’s logic clocks [10]. Each agent has a crautior its own number of
constraint checks. The number of concurrent constrairgkshiss computed by attach-
ing to every message the current counter of the constragukshof the sending agent.
When an agent receives a message, it updates its counter higther value between
its own counter and the counter attached to the receivedagesi/hen the algorithm
terminates, the highest value among all the agent coursteakén as the number of con-
current constraint checks. Informally, this number apprates the longest sequence
of constraint checks not performed concurrently. As forckyonous search, we evalu-
ate the global communication effort as the total number cfsages exchanged among

agents{nsg).

5.1 Implementation Details

Nogood managementTo assure polynomial space ABT and ABT-Hyh we keep
one nogood per forbidden value. However, if several nog@wdsavailable for each
value, it may be advisable to choose the most appropriatévess in order to speed
up search. With this aim, we implement the following heueidf a value is forbidden
for some stored nogood, and a new nogood forbidding the salue arrives, we store
the nogood with the highest possible lowest variable ined\Notice that, even those
nogoods which are obsolete on the value of the receivinglbrican be used to select
the most suitable nogood with respect to the heuristic.



Saving messagesn asynchronous algorithms, some tricks can be used to aleetbe
number of messages exchanged. We implement the following:

1. Value inAddL. When a new link with agerit is requested bgelf, instead of send-
ing the AddL message and assuming this assignment until a confirmatices is
ceived,ABT include in theAddL message the value of, recorded in the received
nogood. After reception of thAddL message, ageritinformsself of its current
value only if it is different from the value contained in tAeldL message. In this
way, some messages may be saved.

2. Avoid resending same valuegsBT can keep track of the last value taken dBjf.
When selecting a new value, if it happens that the new valikeissame as the
last value self does not resend it to'+ (sel f), because this information is already
known. Again, this may save some messages.

Processing Messages by PackeBT agents can process messages one by one, react-
ing as soon as a message is received. However, this strategygte-message process
may cause some useless work. For instance, consider theticecef aninfo message
reporting a change of an agent value, immediately followedrwotherinfo from the
same agent. Processing the first message causes some wdnkdbmes useless as
soon as the second message arrives. More complex examplég cievised, causing
to waste substantial effort.

To prevent useless work, instead of reacting after eaclveztenessage, the algo-
rithm reads all messages that are in the input buffer an@éstibvem in internal data
structures. Then, the algorithm processes all read messega whole, ignoring those
messages that become obsolete by the presence of anotlsaigaed/e call this strat-
egyprocessing messages by packetsere a packet is the set of messages that are read
from the input buffer until it becomes empty. Somehow, tlisa was mentioned in
[17] and [21]. In the latter, a comparison betwesimgle-message proceasdprocess-
ing messages by packeésspresented. However, in none of them a formal protocol for
processing messages by packstsompletely developed.

When an agent processes messages by packets, it readssdbeméom its input
buffer, and processes them as a whole. The agent looks foc@rsgistent value after
its agent view and its nogood store are updated with theserimg messages. To do
that, we propose a protocol which requires three lists teestoe incoming messages,
thelnfo-1.ist, Back Iist and theAddL-/.ist. In each list is stored the messages of the
corresponding type, following the reception order. Eashdf messages is processed
as follows.

1. Info-T.ist. First, thelnfo-I.ist is processed. For each sender agent|rdtl mes-
sages but the last are ignored. The remaitirigmessages updaself agent view,
removing nogoods if needed.

2. Backlist. Second, thdBack.ist is processed. ObsoleBack messages are ig-
nored.self stores nogoods of no obsolete messages, and it afdlsmessages
to unrelated agents appearing in those nogoods. For thassages containing the
correct current value dafelf, the sender is recorded RemainderSet

3. AddL-T.ist. Third, theAddL-/.ist is processed updating™ (sel f) without sending
thelnfo message.



lex SCBJ ABT ABT-Hyb

n ccf msg ccd msg ccd msg
10 1,612 170 2,22 740 1,69 502
15 31,761 2,231 56,412 13,978 32,373 6,881
20| 6,518,652306,33711,084,0122,198,304 6,086,376 995,902
25| 1,771,192 70,336 3,868,136 693,832 1,660,448 271,092

rand SCBJ ABT ABT-Hyb

n ccf msg ccd msg ccd msg
10 965 91 1,742 332 916 238
15 4,120 247, 7,697 1,185 4,007 786

20 19,537 921 20,661 4,772 15,729 2,748
25 21,374 746 31,849 6,553 27,055 3,863

min SCBJ ABT ABT-Hyb
n ccf msg ccd msg ccd msg
10 2,800 204 3,71 896 2,98 555

15 35,339 2,210 49,447 11,05% 32,303 5,904
20| 215,816 10,765 320,278 63,37§ 165,33 28,684
25119,949,074791,08938,450,785,716,50%17,614,33(2,795,319

Table 1. Results for distribute@-queens with lex, random and min-conflict value ordering.

4. Consistent value. Fourtkelf tries to find a value consistency with the agent view.
If a wipe-out happens in this process, the corresponBarkmessage is sent, and
a consistent value is searched.

5. Info sent. FifthInfo messages containisglf current value are sent to all agents in
't (sel f) and to all agents iRemainderSefrhe three lists become empty.

As described in Section 3.2, the search ends when quiestereached (i.e. all agents
are happy with their current assignment) or an empty nogedeiived.

5.2 Distributed n-queens Problem

The distributedh-queens problem is the classiealqueens problem (locate queens
in ann x n chessboard such that no pair of queens are attacking eaeh) athere
each queen is hold by an independent agent. We have evaltiegealgorithms for
four dimensions: = 10,15, 20, 25. In Table 1 we show the results in terms of con-
straint checks/concurrent constraint checks and totaleuraf messages exchanged,
averaged over 100 executions with different random seéglsgte broken randomly).
Lexicographic (static) variable ordering has been use®foB] ABT, and ABT-Hyb
Three value ordering heuristics have been teleflexicographic)rand (random) and
min (min-conflicts) [9] on all the algorithms. Given that an exagin computation re-
quires extra messages, we have made an approximation, adndists of computing
the heuristic assuming initial domains. With this approaiion, theminvalue ordering
heuristic can be computed in a preprocessing step.



We observe that the random value ordering provides the leefsirmance for every
algorithm and every dimension tested. Because of thatgihaffiowing we concentrate
our analysis on the results of random value ordering.

Considering the relative performance of asynchronousrilgos, ABT-Hybis al-
ways better thaABT, in both number of concurrent constraint checks and totalber
of messages. It is relevant to scrutinize the improvemeABJ-Hybover ABT with re-
spect to the type of messages. In Table 2, we provide thertotaber of messages per
message type foBCBJ ABT and ABT-Hybwith random value ordering. IABT-Hyb
the number of obsole@ackmessages decreases in one order of magnitude with respect
the same type of messagesABT, causingABT-Hybto improve overABT. However,
this improvement goes beyond the savings in obs@attkmessages, becaulsgo and
Backmessages decrement to a larger extent. This is due to tlee/fol collective ef-
fect. When amABT agent sends Back message, it tries to get a new consistent value
without knowing the effect that backtracking causes in bigiriority agents. If it finds
such a consistent value, it informs to lower priority agemdsgInfo messages. If it
happens that this value is not consistent with new valuashifektracking causes in
higher priority agents, thedafo messages would be useless, and Bawk messages
would be generateddBT-Hybtries to avoid this situation. When ahBT-Hybagent
sends Backmessage, it waits until it receives notice of the effect afkbiaacking in
higher priority agents. When it leaves the waiting stat&jés to get a new consistent
value. At this point, it knows some effect of the backtrackan higher priority agents,
so the new value will be consistent with it. In this way, thevn@lue has more chance
to be consistent with all higher priority agents, andltife messages carrying it will be
more likely to make useful work.

Considering the performance of synchronous vs. asynchissagorithms, we com-
pareSCBJagainstABT-Hybwith random value ordering. In terms of computation ef-
fort (constraint checkspCBJperforms better thadBT-Hybfor n — 25 and worse
for n = 20, with very similar results fon = 10, 15. In terms of communication cost,
SCBJuses less messages theBIT-Hybfor the four dimensions tested. This comparison
should be qualified, noting that the lenghtinfo messages differ from synchronous to
asynchronous algorithms. BCBJ aninfo message contains the partial solution which
could be of sizen, while in ABT-Hyban Info message contains a single assignment of
size 1. Assuming that the communication cost depends marggadlly on the number
of messages than on their length, we conclude$i@BJis more efficient in communi-
cation terms thaABT-Hyh Considering both aspects, computation effort and commu-
nication costSCBJseems to be the algorithm of choice for theueens problem.

5.3 Random Problems

Uniform binary random CSPs are characterizedbyl, p1, p2) wheren is the number
of variables, the number of values per variabjg, the networkconnectivitydefined
as the ratio of existing constraints, angdthe constraintightnessiefined as the ratio of
forbidden value pairs. We have tested random instances afjébts and 8 values per
agent, considering three connectivity classes, sparse0(2), medium %,=0.5) and
dense §,=0.8).



ran SCBJ ABT ABT-Hyb

n ||Info|Back]| Info| BacklObsol| Info|BacklObso
10| 55 36| 251 81 24| 195 43 2
151|146 101 901 284 91| 649 137 10
20||539 382|3,6121,160 408|2,293 455 38
25 (/452 294|5,0271,524 520/3,24Q 623 50

Table 2. Number of messages exchanged3%BJ ABT andABT-Hybper message type, for the
distributedr-queens problem with random value ordering.

Solving <n =16, m =8, p1 = 0.20>

Solving <n =16, m = 8, p1 = 0.20>
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Fig. 1. Constraint checks and number of messageSB.J SCBJ-amd1SCBJ-amd2ABT and
ABT-Hybon binary random problems.

In a synchronous algorithm, it is simple to implement someriséic for dynamic
variable ordering. Considering the heuristic of minimunmddn, an exact computation



ran SCBJ (|sCBJ-amd ABT ABT-Hyb

p> || Info| Backl| Info| Back] Info| BackObsol|Link|| Info| BackObsolLink
0.20([2,6471,254| 100 63| 3,587 1,310 320 26|| 3,141 949 53 24
0.50|/6,9133,556| 477 321j|24,728 7,0252,334 40|(17,6503,335 321 37
0.80((9,7615,265|1,052 758|58,28316,4346,497 19||37,0465,95 755 18

Table 3. Number of messages exchanged3§BJ SCBJ-amdJABT andABT-Hybper message
type, for random binary problems with random value ordering

requires extra messages. To avoid this, we have implemémegdllowing approxima-
tions,

— AMDL1. Each agent computes the inter{@lin, , maz;] of the minimum and max-
imum number of inconsistent values in the domain of everyssigamed variable
x; with the partial solution. This interval is included in th&o message. Then,
the next variable to be assigned is chosen as follows: (héfd isz; such that
min; > min{d, mazx;},Ve; unassigned, selecis (whered is the domain size);
(i) otherwise, selects the variable with maximuima. ;.

— AMD2. This approach only computes the current domains ofitessigned vari-
ables afteBackmessages. Wheself sends @ackmessage te;, instead of send-
ing it directly tox; it goes chronologically. Each intermediate variable reipes
that it is not its destination, and it includes the currezesif its domain in the
message. This messages ends  irand after assigning it, the minimum domain
heuristic without considering the effect 8f’s assignment can be applied on the
subset of intermediate variables. It causes some extraagessbut its benefits
pay-off.

In Figure 1, we report results averaged over 100 executimSE€BJ SCBJ-amdl
SCBJ-amd2ABT andABT-Hyh with random value ordering.

Considering synchronous algorithms, approximating mimimgomains heuristic is
always beneficial both in computation effort and in commatian cost. Consistently
in the three classes tested, the approximatimmi 1provides better results thamd?2
both in terms of checks and messages. When uaimd] the baseline of constraint
checks is not zero, due to the heuristic computation donepaspocessing step.

Considering asynchronous algorithms, we observe agatnABa-Hybis always
better thamABT for the three problem classes, in both computation effattt@mmu-
nication cost. We believe that this is due to the effect alyedescribed for the dis-
tributedn-queens problem. This is confirmed after analyzing the nurabmessages
per message type of Table 3.

Comparing the performance of synchronousABT-Hyh we observe the follow-
ing. In terms of computation effort (constraint checkSi;BJis always worse than
ABT-Hyh andSCBJis often the worst algorithm (except in thes, 8, 0.8) class, where
itis the second worst). This behaviour changes dramagiedien adding the minimum
domain heuristic approximationSCBJ-amdhandSCBJ-amdare the best and second
best algorithms in the three classes tested, and they aagabetter tha\BT-Hyh



min SCBJ SCBJ-amdl] SCBJ-amd? ABT ABT-Hyb

P cc] msg cc[ msg cc] msg ccd msg ccd msg
0.20( 7,10q 3,274 907| 153 1,811 687 3,771 4,004 3,448 3,535
0.50| 44,024 9,367 5,631 78311,6712,669 30,71926,84022,22719,141]
0.80(102,15315,11116,2061,84340,4497,142101,49270,03358,42843,459

Table 4. Results near of the pick of difficulty on binary random classe = 16, m = 8) with
min-conflict value ordering.

Regarding communication costs, synchronous algorithmsabways better than
asynchronous ones: consistently in the three classesl (&EBJ-amd,1lSCBJ-amd2
andSCBJare the three best algorithms (in this order). Again, thetaddof minimum
domain approximations is very beneficial. As mentioned icti®a 5.2,/n fo messages
are of different sizes in synchronous and asynchronousitiigts. Under the same as-
sumptions (communication costs depends more on the numbeessages exchanged
than on their length), we conclude that for solving randonaby problemsSCBJ-amd1
is the algorithm of choice.

We have also tested the three problem classes using theanflietvalue ordering.
Results appear in Table 4 for the peak of maximum difficultg. 8dserve a minor but
consistent improvement of all the algorithms with respec¢he random value ordering.
In this case, the relative ranking of algorithms obtainethwandom value ordering
remains SCBJ-amdbeing the algorithm with the best performance.

We have also testefBT andABT-Hybwith random message delays. This issue was
raised firstin [5], and subsequently in [21]. Preliminarsuies show thafBT decreases
performance and als®BT-Hybdoes, butto a lesser extent. This last algorithm exhibits a
more robust behavior in presence of random delays. It iswating that synchronous
algorithms do not increase the number of checks or messagssence of delays.

6 Conclusions

We have presented three algorithms, one synchroB8@RB) one asynchronousBT
and one hybricdABT-Hyh the two first being already known. We have propos&-
Hyb, a new algorithm that combines asynchronous and synchsaiementsABT-Hyb
can be seen as &BT-like algorithm where backtracking is synchronized: anragleat
initiates backtracking cannot take a new value before lgasome notice of the effect
of its backtracking. This causes a kind of “contention dfféc backtracking agents.
Their decisions tend to be better founded than the correpgrdecisions taken by
ABT agents, and therefore they are more likely to succA&T-Hybinherits the good
theoretical properties &&BT: it is sound, complete and terminates.

We have implementedBT and ABT-Hybwith a strategy for processing messages
by packets, together with some simple ideas to improve pedoce. OnSCBJwe
have proposed two approximations for the minimum domainmikc. Empirically we
have observed th&BT-Hybclearly improves oveABT, in both computation effort and
communication costs. ComparigCBJwith ABT-Hyh we observe thaBCBJalways
requires less messages thaBT-Hyh for both problems tested. Considering compu-
tation effort, SCBJrequires a similar effort a8BT-Hybin distributedn-queens, while



SCBJrequires more effort thaABT-Hybfor binary random problems. However, when
enhanced with minimum domain approximation for dynamigalzle orderingSCBJ-
amdlis the best algorithm in terms computation effort and in nandf messages ex-
changed. Grouping these evidences together, we conclatleythchonous algorithms
enhanced with some minimum domain approximation are glpbadre efficient than
asynchronous ones. This does not mean that synchronouglageshould always be
preferred to asynchronous ones, since they offer diffdramdtionalities (synchronous
algorithms are less robust to network failures, privacyéssare not considered, etc.).
But for applications where efficiency is the main concermctyonous algorithms
seems to be quite good candidates to solve DisCSP.
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