
Artificial Intelligence 161 (2005) 7–24

www.elsevier.com/locate/artint

Asynchronous backtracking without adding links:
a new member in the ABT family ✩

Christian Bessière a, Arnold Maestre a, Ismel Brito b,
Pedro Meseguer b,∗

a LIRMM-CNRS, 161 rue Ada, 34392 Montpellier, France
b IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain

Received 24 March 2004; accepted 31 August 2004

Abstract

Following the pioneer work of Yokoo and colleagues on the ABT (asynchronous backtracking)
algorithm, several ABT-based procedures have been proposed for solving distributed constraint net-
works. They differ in the way they store nogoods, but they all use additional communication links
between unconnected agents to detect obsolete information. In this paper, we propose a new asyn-
chronous backtracking algorithm which does not need to add links between initially unconnected
agents. To make the description simpler and to facilitate the comparisons between algorithms, we
present a unifying framework from which the new algorithm we propose, as well as existing ones,
are derived. We provide an experimental evaluation of these algorithms.
 2004 Elsevier B.V. All rights reserved.

Keywords:Distributed problem solving; Constraint satisfaction; Search

✩ The work of Ismel Brito and Pedro Meseguer is supported by the Spanish project REPLI: TIC-2002-04470-
C03-03.

* Corresponding author.
E-mail address:pedro@iiia.csic.es (P. Meseguer).

0004-3702/$ – see front matter  2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.artint.2004.10.002

8 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

1. Introduction
In the last years, the AI community has shown an increasing interest in distributed
problem solving using the agents paradigm. In particular, several works have considered
constraint satisfaction in a distributed form. They are motivated by naturally distributed
constraint problems, for which it is not convenient to gather the whole problem knowledge
into a single agent, and to solve it using centralized algorithms. The cost of collecting all
information into a single agent could be taxing. Besides, gathering all information into a
single agent could be undesirable for security or privacy reasons.

Considering complete algorithms for distributed constraint satisfaction, we mention the
pioneer work of Yokoo and colleagues, who proposed the asynchronous backtracking algo-
rithm (ABT) [15,16]. ABT assumes a variable-basedmodel, where each variable belongs
to one agent and constraints are shared between agents. ABT requires a total agent ordering.
When a dead-end is detected, it may require to add communication links between previ-
ously unconnected agents. Nogoods are exchanged among connected agents, and stored.
Several extensions were proposed, as its adaptation to dynamic agent re-ordering [12] or
consistency maintenance [11]. The distributed backtracking algorithm (DIBT) [6] performs
graph-based backjumping without nogood storage. However, DIBT is not complete in its
original form [1,14]. A different approach is the asynchronous aggregation search algo-
rithm (AAS) [10], that assumes a constraint-basedmodel where each constraint belongs to
one agent.

In this paper, we propose ABTnot, a new ABT-based algorithm that does not require to
add communication links between initially unconnected agents. We first present ABTkernel,
a simple procedure that contains the basic features of an asynchronous backtracking al-
gorithm for variable-based distributed constraint satisfaction. We show that ABTkernel is
sound but may not terminate, and we identify the condition that has to be accomplished
to obtain a complete procedure. Depending on the way this condition is implemented, we
obtain already known algorithms (such as Yokoo’s ABT or a correct version of DIBT),
or new ones.1 Among them, we emphasize on ABTnot, a new algorithm that behaves like
ABT without requiring to add new communication links. This algorithm could be use-
ful for applications where agents are not permitted to establish new communication links
(due to a security policy of the site, for instance). In addition, the algorithmic analysis of
ABTkernel allows us to understand better the behavior of asynchronous search, clarifying
the similarities and differences among ABT-based algorithms. We provide an experimental
evaluation of these algorithms, using random problems and distributed meeting scheduling
problems.

The rest of the paper is organized as follows. Section 2 contains some basic definitions
and a description the asynchronous backtracking algorithm. In Section 3, we introduce
ABTkernel and provide the condition to achieve completeness. In Section 4, we implement
this condition in several ways, deriving some already known algorithms and new ones like
ABTnot. Section 5 contains the experimental evaluation. Finally, Section 6 contains some
conclusions of this work.

1 A comprehensive description of the different algorithms derived from ABTkernel is presented in [2].

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 9

2. Preliminaries
Classically, constraint satisfaction problems (CSPs) have been defined for a centralized
architecture. A constraint network is defined by a triple (X ,D,C), where X = {x1, . . . , xn}
is a set of n variables, D = {D(x1), . . . ,D(xn)} is the set of their respective finite domains,
and C is a set of constraints specifying the acceptable value combinations for variables. The
CSP involves finding values for the variables that satisfy all the constraints. We consider
constraints involving two variables only, namely binary constraints. A constraint between
xi and xj is denoted by cij .

A distributed CSP (DisCSP) is a CSP where the variables, domains and constraints
of the underlying network are distributed among agents. A finite variable-based distributed
constraint network is defined by a 5-tuple (X ,D,C,A, ϕ), where X , D and C are as before.
A = {1, . . . , p} is a set of p agents, and ϕ :X → A is a function that maps each variable
to its agent. Each variable belongs to one agent. The distribution of variables divides C
in two disjoint subsets, Cintra = {cij | ϕ(xi) = ϕ(xj)}, and Cinter = {cij | ϕ(xi) �= ϕ(xj)},
called intra-agent and inter-agent constraint sets, respectively. An intra-agent constraint cij

is known by the agent owner of xi and xj , and it is unknown by other agents. Usually, it is
considered that an inter-agent constraint cij is known by the agents ϕ(xi) and ϕ(xj) [6,16].
As in the centralized case, a solution of a DisCSP is an assignment of values to variables
satisfying every constraint. DisCSPs are solved by the collective action of agents A, each
holding a process of distributed constraint satisfaction.

Agents communicate by sending messages. It is assumed that the delay in delivering
a message is finite but random. For a given pair of agents, messages are delivered in the
order they were sent. For simplicity, in the rest of the paper we assume that each agent
owns exactly one variable. We identify the agent number with its variable index (∀xi ∈
X , ϕ(xi) = i). From this assumption, all constraints are inter-agent constraints, so Cinter =
C and Cintra = ∅.

Asynchronous backtracking (ABT) [15,16] was a pioneer algorithm to solve DisCSP, its
first version dating from 1992. ABT is executed autonomously and asynchronously by each
agent in the network. Each agent takes its own decisions, informs other agents about them,
and no agent has to wait for decisions of others. It computes a global consistent solution (or
detects that no solution exists) in finite time; its correctness and completeness have been
proven.

ABT requires constraints to be directed. A constraint causes a directed link between
the two constrained agents: the value-sending agent, from which the link departs, and the
constraint-evaluating agent, to which the link arrives. To make the network cycle-free there
is a total order among agents, which is followed by the directed links.

Each agent keeps its own agent view and nogood store. Considering a generic agent
self, the agent view of self is the set of values that it believes to be assigned to agents
connected to self by incoming links. The nogood store keeps nogoods as justifications
of inconsistent values. Agents exchange assignments and nogoods. When self makes an
assignment, it informs those agents connected to it by outgoing links. self always accepts
new assignments, updating its agent view accordingly. When self receives a nogood, it is
accepted if it is consistent with self’s agent view, otherwise it is discarded as obsolete.
An accepted nogood is added to self’s nogood store to justify the deletion of the value

10 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

it targets. When self cannot take any value consistent with its agent view, because of the

original constraints or because of the received nogoods, new nogoods are generated as
inconsistent subsets of the agent view, and are sent to the closest agent involved, causing
backtracking. If self receives a nogood mentioning another agent not connected with it,
self requires to add a link from that agent to self. From this point on, a link from the other
agent to self will exist. The process terminates when achieving quiescence, meaning that a
solution has been found, or when the empty nogood is generated, meaning that the problem
is unsolvable.

3. The unifying kernel

In the following we describe ABTkernel, a generic algorithm for variable-based DisCSPs.
This algorithm is sound but it may fail termination. We identify the condition to assure
termination.

3.1. The ABTkernel algorithm

The ABTkernel algorithm requires, like ABT, that constraints are directed—from the
value-sending agent to the constraint-evaluating agent—forming a directed acyclic graph.
Agents are ordered statically in agreement with constraint orientation. Agent i has higher
priority than agent j if i appears before j in the total ordering. Considering a generic agent
self, Γ −(self) is the set of agents constrained with self appearing above it in the ordering.
Conversely, Γ +(self) is the set of agents constrained with self appearing below it in the
ordering.

A directed nogoodfor value c of variable xk is xi = a ∧xj = b∧ . . . ⇒ xk �= c, meaning
that the assignment of c to xk is inconsistent with the assignments of a, b, . . . to xi, xj ,
This nogood is a justification of c removal, as long as values a, b, . . . are assigned to
variables xi, xj , Its left-hand (lhs) and right-hand sides (rhs) are defined from the
position of ⇒. Nogoods can have been received from lower priority agents, or derived from
constraints with higher priority agents. ABTkernel takes the following options on nogoods:

1. One nogood per removed value. Each agent keeps only one nogood per removed value.
This option, also taken in some version of ABT, assures a polynomial space complex-
ity.

2. Nogood resolution. When every value of a variable xk is ruled out a nogood, these
nogoods are resolved computing a new nogood newNogoodas follows. Let xj be the
closest variable (in the total order) to xk in the left-hand side of the nogoods, with value
b. lhs(newNogood) is the conjunction of the left-hand sides of all nogoods for values
of xk removing xj . rhs(newNogood) is xj �= b. newNogoodis sent to xj . Agent k

removes from its nogood store nogoods with xj in their left-hand side.

Each agent keeps its agent view and a nogood store, which must be consistent. The
agent view of self is the set of values it believes are assigned to Γ −(self) agents. Agents
exchange assignments and nogoods until a solution is found or inconsistency is detected.

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 11

A message msgcan be of the following types (senderis the sending agent and self is the

receiver):

• Info: it informs self that senderhas done a new assignment msg.Assig.
• Back: it informs self that senderhas found a nogood msg.Nogoodas a cause of incon-

sistency requiring self not to take rhs(msg.Nogood).
• Stop: it informs self that no solution exists and causes it to stop.

ABTkernel appears in Fig. 1. In the main procedure ABTkernel, each agent selects a value
and informs other agents (CheckAgentView call, line 2). Then, a loop receives and
processes messages (lines 3–8).

Info messages are processed by ProcessInfo and they are always accepted. After
receiving an Info message, the agent view of self is updated to include the new as-
signment, and any nogood inconsistent with the agent view is removed (Update call,
line 1). Then, a consistent value for self is searched after the change in the agent view
(CheckAgentView call, line 2). CheckAgentView checks if the current value of self
is still consistent (line 1). If not, it tries to select a consistent value (ChooseValue call,
line 2). In this process, some values of self may appear as inconsistent. The nogoods jus-
tifying their removal are added to the nogood store (line 3 of ChooseValue). If a new
consistent value is found, this new assignment is notified to all agents in Γ +(self) through
Info messages (line 3). Otherwise, self has to backtrack (Backtrack call, line 4). Back-
track generates a new nogood by the resolution of existing nogoods for the values of self
(line 1). If the new nogood is empty, a Stopmessage is sent to the agent systemand the
process stops (lines 2–3). Otherwise, the new nogood is sent in a Back message to the
agent appearing in its rhs (line 5). The value of this agent is deleted from the agent view
(Update call, line 6), and a new consistent value is selected (CheckAgentView call,
line 7).

Backmessages are processed by ResolveConflict. A Backmessage coming from
senderis accepted if its nogood has the same assignments as Γ −(self) ∪ {self} (line 1). In
this case, the assignments in the nogood for variables not directly related with self are taken
to update the agent view (Update call, line 2). The nogood is stored, acting as justification
for removing the current value of self (line 3). A new consistent value for self is searched
(CheckAgentView call, line 4). If the message is not accepted, it is obsolete. Then, if
the value of self was correct in the received nogood, self resends its value to senderby
an Info message (line 5), because senderhas forgotten self value when sending the Back
message (line 6 of Backtrack). If not, self does nothing because there is an Info message
travelling from self towards senderthat has not arrived yet.

A Stopmessage means that the empty nogood has been derived, so the problem has no
solution and the process has to stop.

Eventually, the system can stabilize in a state where each agent has a value and no con-
straint is violated. This state is a global solution and the network has reached quiescence,
meaning that no message is travelling through it. Such a state can be detected using spe-
cialized snapshot algorithms [3]. If no solution exists, the empty nogood will be generated.

12 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

procedure ABT ()
kernel
1 myValue← empty; end← false;
2 CheckAgentView();
3 while (¬end) do
4 msg← getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end← true;

procedure CheckAgentView(msg)
1 if ¬consistent(myValue,myAgentView) then
2 myValue← ChooseValue();
3 if (myValue) then for each child ∈ Γ +(self) do sendMsg:Info(child,myValue);
4 else Backtrack();

procedure ProcessInfo(msg)
1 Update(myAgentView,msg.Assig);
2 CheckAgentView();

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood,Γ −(self) ∪ {self}) then
2 for each assig∈ lhs(msg.Nogood) \ Γ −(self) do Update(myAgentView,assig);
3 add(msg.Nogood,myNogoodStore); myValue← empty;
4 CheckAgentView();
5 else if msg.sender∈ Γ +(self) ∧ Coherent(msg.Nogood,self) then

SendMsg:Info(msg.sender,myValue);

procedure Backtrack()
1 newNogood← solve(myNogoodStore);
2 if (newNogood= empty) then
3 end← true; sendMsg:Stop(system);
4 else
5 sendMsg:Back(newNogood);
6 Update(myAgentView,rhs(newNogood) ← unknown);
7 CheckAgentView();

function ChooseValue()
1 for each v ∈ D(self) not eliminated by myNogoodStoredo
2 if consistent(v,myAgentView) then return (v);
3 else add(xj = valj ⇒ self �= v,myNogoodStore); /*v is inconsistent with xj ’s value */
4 return (empty);

procedure Update(myAgentView,newAssig)
1 add(newAssig,myAgentView);
2 for each ng∈ myNogoodStoredo
3 if ¬Coherent(lhs(ng),myAgentView) then remove(ng,myNogoodStore);

function Coherent(nogood,agents)
1 for each var ∈ nogood∪ agentsdo
2 if nogood[var] �= myAgentView[var] then return false;
3 return true;

Fig. 1. The ABTkernel algorithm for asynchronous backtracking search.

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 13

3.2. Formal properties
ABTkernel has the following formal properties.

Proposition 1. ABTkernel is sound.

Proof. If a solution is claimed, we have to prove that all agents satisfy their constraints.
Let us assume quiescence in the network. If the current assignments are not a solution,
there exists at least one violated constraint, i.e., an agent still unsatisfied with its current
assignment. In this case, at least one message has been sent from the unsatisfied agent to
the nearest culprit. This message is either not obsolete, in which case the recipient will
change its value and break our quiescence assumption by sending a message, or obsolete,
which means that some other message has not yet reached its destination and again breaks
our assumption. �
Proposition 2. ABTkernel cannot infer inconsistency if a solution exists.

Proof. Every nogood resulting from an Info message is redundant with regard to the
DisCSP to solve. Since all additional nogoods are generated by logical inference when
a domain wipe-out occurs, the empty nogood cannot be inferred if the network is satisfi-
able. �

In spite of these good properties, ABTkernel may fail to terminate. The problem lies
in the obsolescence of nogoods. The way nogoods are generated guarantees that every
variable appearing in the nogood is above self in the ordering. But nothing ensures that
those variables are in Γ −(self). This leads us to the following observation.

Lemma 1. ABTkernel may store obsolete information.

Proof. Since a nogood may contain an unrelated agent u above self in the ordering, it
cannot be locally checked for obsolescence as u will not send its new value to self. Thus,
an agent can end up storing indefinitely an information which is no longer updated. �

Worse, the agent may use that information to prune a value. If there is a solution includ-
ing this value, it will be missed. Since ABTkernel cannot infer inconsistency if a solution
exists, it will not terminate.

Lemma 2. Storing obsolete information, ABTkernel agents may fall into an infinite loop.

Proof. Let i be an agent keeping a nogood about an unrelated agent u above i in the
ordering, i.e., xu = a ⇒ xi �= c. Suppose this nogood is now obsolete since xu changed its
value, and c is the only value of xi in a solution. xi will try all other values in its domain,
find them unfeasible and generate a backtrack message. When this message will reach u, it
will be discarded as obsolete, and i will continue looping on the same subdomain, sending
backtrack messages which are doomed to be dropped by u. The solution will never be
detected. �

14 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

Proposition 3. ABTkernel may fail to terminate.

nd
Proof. The proof flows naturally from Lemmas 1 and 2. �
If we eliminate obsolete information in finite time, it means that crucial values will not

stay deleted forever. At least some of the backtrack messages will be processed, and will
thus delete a value on some agent above self in the ordering.

Lemma 3. The first agent in the ordering can never fall into an infinite loop.

Proof. Every variable in a nogood received by self is above self in the ordering. If agent
1 receives a nogood, it has an empty left-hand side. So it will never become obsolete. �
Lemma 4. If the firstk − 1 agents in the ordering are not trapped in an infinite loop a
obsolete information disappears in finite time, agentk cannot fall into an infinite loop.

Proof. Suppose agent k is looping. Since we assume that no obsolete information can last
forever, some of the backtracks sent by k will be seen as relevant, and will lead to value
deletions. Since no agent among 1, . . . , k − 1 is supposed to be in an infinite loop, they can
accept only a finite number of relevant backtrack messages. Thus, they will either stabilize,
in which case k will exit its so-called infinite loop as soon as the obsolete data are deleted,
or generate an empty nogood, which will also stop the entire system. So, k is not in an
infinite loop. �
Proposition 4. Removing obsolete information in finite time, ABTkernel will terminate.

Proof. By recurrence, Lemmas 3 and 4 show that none of our agents can fall into an
infinite loop. So ABTkernel terminates if obsolete information is erased in finite time. �

Therefore, complete algorithms based on ABTkernel should be able to discard obsolete
nogoods. If a nogood becomes obsolete, it may survive in the network for a limited period
of time.

4. The ABT family

In the following, we explore ways to remove obsolete information from ABTkernel in
finite time, producing several sound and complete algorithms. This allows us to rediscover
already existing algorithms, like ABT [16] or DIBT [6], derived from ABTkernel in a clean
and elegant form.

A first way to remove obsolete information is to add new communication links to allow
a nogood owner to determine whether this nogood is obsolete or not. An added link from
agent i to agent j can be seen as the universal constraint between xi and xj , permitting all
value tuples. xi should be included in Γ −(xj) and xj in Γ +(xi), which implies that xj will

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 15

be informed of the value changes of xi . These added links were proposed in the original

ABT algorithm [16].

A second way to remove obsolete information is to detect when a nogood could become
obsolete. In that case, the hypothetically obsolete nogood and the values of unrelated agents
are forgotten. These two alternative ways lead to the following four algorithms,

• Adding links as preprocessing: ABTall . This algorithm adds all the potentially useful
new links during a preprocessing phase. New links are permanent.

• Adding links during search: ABT. This algorithm adds new links between agents dur-
ing search. A link is requested by self when it receives a Back message containing
unrelated agents above self in the ordering. New links are permanent.

• Adding temporary links: ABTtemp. This algorithm adds new links between agents dur-
ing search, as ABT. The difference is that new links are temporary. This idea has been
informally proposed in [13]. A new link remains until a fixed number of messages
have been exchanged through it. After that, it is removed.

• No links: ABTnot. No new links are added between agents. To achieve completeness,
this algorithm has to remove obsolete information in finite time. To do so, when an
agent backtracks it forgets all nogoods that hypothetically could become obsolete.

In the following we present each of these algorithms in some detail.

4.1. ABTall : adding links as preprocessing

In a preprocessing phase, ABTall adds a permanent link between every pair of unrelated
agents i and j such that xj may receive a nogood mentioning xi during the execution
of ABTkernel. This is done adding exactly the same links as in the computation of the
induced constraint graph from the initial ordered constraint graph [4]. These new links
are computed as follows. Agents (graph nodes) are processed from last to first, along the
total ordering of agents. When an agent is processed, all its parents (related agents before
it in the ordering) are connected by new links if they were not connected before. These
new links are directed, following the total ordering of agents. The structure of the induced
graph is recorded in the sets Γ − and Γ + of each agent.

During the search phase, ABTall behaves exactly like ABTkernel, which is now a com-
plete algorithm because each agent is directly connected with every other agent that could
appear in a nogood contained in a Backmessage. Obsolete nogoods will be removed in
finite time, so ABTall is a sound and complete algorithm that terminates with a correct
answer.

Interestingly, it is possible to modify ABTall in such way that agents do not store no-
goods anymore, by fixing the agent to backtrack to the closest agent in Γ −(self). A some-
what erroneous form of this algorithm was published in [6] as the DIBT algorithm.

4.2. ABT: adding links during search

Instead of linking all possible sources of conflict beforehand, we can wait until the
conflict actually happens, and add a link at that point. The original ABT takes this approach.

16 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

ABT uses a fourth type of message, AddL, to request the addition of a new commu-

nication link. Each time an agent j receives information about a higher priority agent i

previously unheard of, an AddLmessage is sent. As a result, xi extends its Γ + to include
xj , and sends its current value on the newly created link. This way, each agent storing a
nogood is guaranteed to be informed whenever one of the variables in the nogood changes
its value.

The ABT algorithm appears in Fig. 2, only for those parts that differ from ABTkernel.
The main procedure ABT includes the reception of the AddLmessage (line 9.1), which is
processed by SetLink. When a link request arrives, the sender is included in Γ +(self)
(line 1) and self sends its value through an Info message (line 2). When a Back mes-
sage is received, ResolveConflict considers if a request for a new link must be sent
(CheckAddLink call, line 2.1). Also, the condition for resending self value to senders
of obsolete Backmessages is simplified (line 5.1). CheckAddLink checks if unrelated
agents appear in the received nogood (lines 1–2). In such case, it sends a request of new
link for each unrelated agent, adding it to Γ −(self) (lines 3–4). Finally, it updates its agent
view taking as the value of the unrelated agent the value coming in the nogood (line 5).

procedure ABT()
1 myValue← empty; end← false;
2 CheckAgentView();
3 while (¬end) do
4 msg← getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end← true;
9.1 AddL : SetLink(msg);

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood,Γ −(self) ∪ {self}) then
2.1 CheckAddLink(msg);
3 add(msg.Nogood,myNogoodStore); myValue← empty;
4 CheckAgentView();
5.1 else if Coherent(msg.Nogood,self) then sendMsg:Info(msg.sender,myValue);

procedure SetLink(msg)
1 add(msg.sender,Γ +(self));
2 sendMsg:Info(msg.sender,myValue);

procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if (var /∈ Γ −(self)) then
3 sendMsg:AddL(var,self);
4 add(var,Γ −(self));
5 Update(myAgentView,var ← varValue);

Fig. 2. The ABT algorithm with permanent links. Only the new or modified parts with respect to ABTkernel in
Fig. 1 are shown.

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 17

This value will be confirmed or discarded later, when the link request will cause the just

related agent to send its value to self.

4.3. ABTtemp: adding temporary links

Given that links added in ABT serve the sole purpose of informing self when some
nogood becomes obsolete, we may add them during search on a temporary basis. In fact,
as soon as self knows the new value for the linked agent, obsolete nogoods are discarded
and no further information from that agent is needed at this time, so this additional link
could be dropped. It may happen that future Backmessages will also mention this agent,
so the link will have to be established again. If this happens often, it may be more efficient
to keep the link active for a number of Info messages, carrying the value changes of the
linked agent to self.

This is the approach taken by ABTtemp. When a new link is set from agent i to j , it is
maintained for a fixed number k of Info messages going from xi to xj . After this number
of messages has been sent, the link is removed and agents i and j become disconnected.
The number k of messages for a link is known a priori by both agents, so two simple
counters—one in each agent—allow for an effective implementation of this technique.
When reporting results the number k is essential, and then this algorithm is mentioned as
ABTtemp(k).

4.4. ABTnot: no links any more

Instead of trying hard to be informed when an unconnected agent changes its value, self
can study its own course of action and update its knowledge accordingly. More precisely,
when all values of self have been removed, a new nogood is generated and sent to the
nearest culprit. self knows that this nogood will possibly reach every variable it contains,
forcing them all, in the worst case, to change their value. For those variables in Γ −(self),
there is no need to worry, because they are bound to inform self. For the others, the very ac-
tion of backtracking can lead to the obsolescence of any nogood inside which they appear.
Hence, self will forget those insecure variables and nogoods upon backtracking.

There are two cases which deserve some attention. First, it may happen that a forgotten
nogood does not become obsolete after all. If self takes the value that this nogood was
removing, then self will necessarily receive again this nogood, rediscovered by a lower
priority agent.

Second, it may happen that a nogood becomes obsolete because an unrelated, higher
priority agent has changed its value and self has not been notified. If the value suppressed
by the obsolete nogood is not mandatory to find a solution, this mistake does not com-
promise finding a solution. On the contrary, if that value is mandatory, self will be forced
to try every other value in its domain before backtracking. A new nogood resolving all
nogoods removing self values will be produced. This nogood will include the agent that
had changed its value, so when sending the Backmessage, its value will be forgotten and
search will be resumed.

The ABTnot algorithm takes this approach. This algorithm was described in [1], under
the name DisDB. ABTnot only differs from ABTkernel in the forgetting policy of nogoods

18 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

procedure Backtrack()

1 newNogood← solve(myNogoodStore);
2 if (newNogood= empty) then
3 end← true; sendMsg:Stop(system);
4 else
5 sendMsg:Back(newNogood);
6 Update(myAgentView,rhs(newNogood) ← unknown);
6.1 for each var ∈ lhs(newNogood) \ Γ −(self) do Update (myAgentView,var ← unknown);
7 CheckAgentView();

Fig. 3. The ABTnot algorithm with no links. Only the new or modified parts with respect to ABTkernel in Fig. 1
are shown.

that could become obsolete, and this concerns the procedure Backtrack that appears in
Fig. 3. This procedure computes the new nogood as the resolvent of the nogoods justifying
the wipe out of self. If the new nogood is not empty, it is sent in a Backmessage. Then,
self forgets the values of agents not in Γ −(self), and the nogoods including those agents
(line 6.1). Finally, a new value consistent with the agent view is searched.

4.5. Discussion

Consider two agents i and j (i preceding j in the ordering) not originally constrained
but connected in the induced constraint graph. The algorithms above differ in the way
information flows between these two agents. If i takes a new assignment, we say that j

is informed about this new assignment when j knows it. The cost of informing j is the
minimum number of messages required since i takes the new assignment until j is aware
of it. We will say that algorithm A is better informedthan algorithm B if, for the same
problem and the same agent ordering, the cost of informing j of i changes using A is less
than or equal to the cost of informing j using B .

Using this definition, we can order the ABT family algorithms following the quality
of the information they handle, from ABTall to ABTnot. ABTall is better informed than
ABT because both behave the same except when ABT detects a conflict between i and
j for the first time. In this case, ABT requires more messages to set up the link. ABT is
better informed than ABTtemp since the latter can require some extra messages to set up
again a suspended temporary link. And ABTtemp is better informed than ABTnot because
the former could inform j in one or two messages, while the latter always requires at least
two messages since j can be aware of i’s value only through a Backmessage.

5. Experimental results

We have tested the ABT family algorithms in an asynchronous, single-processor envi-
ronment. All agents are represented by Linux processes running on the same machine with
the same scheduling priority.

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 19

We provide results on the search effort, counting the number of “concurrent constraint

checks” (#c-ccks), as defined2 in [9], following Lamport’s logic clocks [8]. Informally,
the number of concurrent constraint checks approximates the longest sequence of con-
straint checks not performed concurrently. We prefer this parameter to the total number
of constraint checks, which does not take into account concurrency among agents. Also,
we evaluate the global communication effort as the total number of messages exchanged
among agents (#msgs). We do not report the number of concurrent messages (that were
computed following the same technique as #c-ccks) because it was completely propor-
tional to #c-ccks in all our experiments.

We implemented these algorithms considering the following improvements,

1. Value in AddL. When a new link with agent k is requested by self, instead of sending
the AddLmessage and wait for answer, ABTand ABTtempinclude in the AddLmessage
the value of xk recorded in the received nogood. After reception of the AddLmessage,
agent k informs self of its current value only if it is different from the value contained
in the AddLmessage. In this way, some Info messages can be saved.

2. Avoid resending same values. ABT family algorithms keep track of the last value taken
by self. When selecting a new value, if it happens that the new value is the same as
the last value, self does not resend it to Γ +(self), because this information is already
known. (See line 3 of CheckAgentView in Fig. 1.) Again, this may save some Info
messages.

3. Sequence numbers(ABTnot(seq)). It is possible to enhance slightly the quality of the
information stored by ABTnot in the agent view, as follows. Each agent keeps a se-
quence number, which is incremented each time its value changes. Each time it sends
its value, the sequence number is attached. The agent view stores the values and se-
quence numbers of previous agents in the ordering. When self receives a message, it
keeps the newest value for each variable in its agent view. In particular, a Backmes-
sage is discarded as obsolete if it contains older values than those recorded in self’s
agent view. When self sends a Backmessage, the computed nogood contains the val-
ues and sequence numbers of involved variables, forgetting the values of unconnected
variables but keeping their sequence numbers.

We have decided to keep one nogood per removed value. However, if two nogoods are
available for a value, it is possible to select the most appropriate one. With this idea, we
propose the following heuristic: when comparing two nogoods, select the one with the
highest possible lowest variable involved. The rationale for this heuristic is to ensure that
each time a wipe-out occurs, the Back message is sent as high as possible in the agent
ordering. A similar idea was proposed in [7]. This heuristic is computed as follows. When
self’s domain is wiped out, each value is checked against each agent in Γ −(self), looking
for a nogood better than the current one for this value. In addition, when self receives a
Backmessage with a nogood obsolete on self only, and removing value c, this nogood is

2 Except that in our implementation we do not take into account the cost of messages.

20 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

still a valid justification for removing c. Then, this nogood is taken if it is better than the

current stored nogood justifying c removal.

ABT algorithms, with or without the heuristic of selecting the best nogood, have been
tested on two kind of problems, random DisCSPs and distributed meeting scheduling. Their
results are reported and discussed in the following.

5.1. Random DisCSPs

Uniform binary random CSPs are characterized by 〈n,d,p1,p2〉 where n is the number
of variables, d the number of values per variable, p1 the network connectivitydefined
as the ratio of existing constraints, and p2 the constraint tightnessdefined as the ratio of
forbidden value pairs.

We have tested random instances of 16 agents and 8 values per agent, considering
two connectivity classes, sparse (p1 = 0.2) and medium (p1 = 0.5). Experiments are at
the complexity peak considering 50 instances. Specifically, we tested the random classes
〈16,8,0.2,0.7〉 (20 solvable instances out of 50) and 〈16,8,0.5,0.42〉 (27 solvable in-
stances out of 50). Results appear in Tables 1 and 2, where we report the number of
concurrent constraint checks and the total number of messages exchanged, averaged over
50 executions.

Table 1 contains the results for the plain ABT algorithms. The parameter k for ABTtemp

was adjusted manually after some trials. Only the results for the best value of k are given.
Considering the three algorithms adding links, ABTall , ABT, and ABTtemp, we observe that
the better informed the algorithm is, the less concurrent constraint checks it requires to
solve the problem. This is at the cost of exchanging more messages. ABTtemp is the algo-
rithm exchanging less messages, followed by ABT and ABTall . ABTnot requires the highest
number of concurrent constraint checks. Because it is the worst informed algorithm, it
is more likely to make wrong decisions, requiring more effort than previous algorithms

Table 1
Plain ABTs

p1 = 0.20 #c-ccks #msgs p1 = 0.50 #c-ccks #msgs

ABTall 5,196 8,095 ABTall 39,148 56,206
ABT 5,496 7,675 ABT 40,564 54,694
ABTtemp(10) 5,530 7,485 ABTtemp(5) 40,599 50,455
ABTnot 35,443 40,223 ABTnot 61,658 66,331
ABTnot(seq) 28,599 33,345 ABTnot(seq) 59,402 63,451

Table 2
ABTs with nogood selection heuristic

p1 = 0.20 #c-ccks #msgs p1 = 0.50 #c-ccks #msgs

ABTall 13,144 7,486 ABTall 101,898 51,891
ABT 13,939 7,470 ABT 102,367 50,558
ABTtemp(10) 13,889 7,174 ABTtemp(5) 103,401 48,120
ABTnot 75,020 36,454 ABTnot 153,320 60,393
ABTnot(seq) 47,437 27,558 ABTnot(seq) 128,164 58,907

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 21

to solve the same problem. This also implies a higher number of messages exchanged.

ABTnot(seq) dominates ABTnot because sequence numbers avoid some of the wrong deci-
sions taken by ABTnot.

The effect of using the nogood selection heuristic appears in Table 2. We observe that the
number of concurrent constraint checks increases because agents have to do more checks
in order to compare nogoods from the store with potentially better nogoods from the con-
straints. However, the number of messages decreases consistently for all the algorithms,
showing the benefits of the heuristic. The relative performance of the algorithms in #msgs
remains unchanged with respect to the plain versions.

5.2. Distributed meeting scheduling

To compare our algorithms on structured problems, we solved distributed meeting
scheduling problems: a number of people with an already partially filled planning, are
looking for a place where they can meet at the same time [5]. In our experiment, attendees
are divided into three thematic groups. A group, formed by four attendees, has its own
meeting to schedule in one of three cities. Two meetings cannot be held at the same time in
the same city. Cities are separated by a given travel time. One of the members of the group
is in charge of communicating with the other groups.

Each attendee is represented by an agent, with its starting domain matching the at-
tendee’s current planning: the predefined appointments (time/place pairs), as well as the
time/places which are unreachable because of said appointments, are removed from the
domain before the search starts. Our experiment is composed of 5 days, with 6 time slots
per day and 3 meeting places. This gives 5 · 6 · 3 = 90 possible values in the domain of
each agent. Meetings and time slots are both one hour long. The ’travel times’ between the
three cities are 1 hour, 1 hour, and 2 hours. The actual instances are generated by randomly
posting p predefined appointments in each agent’s planning. We have tested three differ-
ent classes of problems, with p = 8, p = 10, and p = 12 that correspond respectively to
under-constrained, critically constrained, and over-constrained problems. Results appear
in Tables 3 and 4, where we report #c-ccks and #msgs averaged over 100 instances.

Table 3 contains the results for plain ABTs. With p = 8 (left part of the table), we are at
the beginning of the phase transition, where 92% of the instances were satisfiable. On these
instances, the best informed algorithms, ABTall and ABT, show the worst performance in
number of messages exchanged. The temporary link policy of ABTtemp significantly pays
off. This can be explained by the fact that these problems are structured as cliques with
few constraints outside them. A single nogood between two agents belonging to different
cliques leads ABT to the addition of a link that will remain active during the whole search,
even if they no longer share nogoods. ABTtemp takes advantage of this by activating the
link just for solving the current conflict. A confirmation of this is that we observed that
ABTtemp(k) decays performance as soon as k > 2. Even ABTnot, with its poorly informed
agents, requires less messages than the two best informed algorithms, ABTall and ABT,
while on random problems it was always the greatest consumer of messages.

The number of concurrent constraint checks presents the same steady increase from bet-
ter informed to worse informed algorithms as on random problems, even if the differences
are smaller.

22 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

Table 3

Plain ABTs

p = 8 p = 10 p = 12

#c-ccks #msgs #c-ccks #msgs #c-ccks #msgs

ABTall 2,482 352 35,937 3,511 2,312 328
ABT 2,513 336 38,439 3,503 2,517 310
ABTtemp(1) 2,606 220 38,888 3,018 2,873 308
ABTnot 3,607 319 47,257 3,793 3,403 375
ABTnot(seq) 3,417 307 44,017 3,319 3,268 359

Table 4
ABTs with nogood selection heuristic

p = 8 p = 10 p = 12

#c-ccks #msgs #c-ccks #msgs #c-ccks #msgs

ABTall 3,046 346 55,944 3,451 2,812 322
ABT 3,053 335 59,723 3,438 3,024 303
ABTtemp(1) 3,119 218 59,892 2,962 3,198 301
ABTnot 3,993 317 72,350 3,744 4,013 369
ABTnot(seq) 3,717 303 65,742 3,492 3,807 354

Finally, it is worth noting that if we limit the analysis to the 8 inconsistent instances,
ABTall and ABTobtain results much closer to ABTtemp(232 messages in average for ABTall

and 225 for ABT versus 217 for ABTtemp). On these inconsistent problems, ABTnot is the
worst (250 messages for both versions).

Increasing the number of predefined appointments per agent changes the proportion of
solvable instances. With p = 10 (middle of Table 3), the problems are at the complexity
peak (49% of satisfiable instances), and when p = 12 (right of Table 3), they are slightly
over-constrained (only 12% of satisfiable instances). We observe that as inconsistent in-
stances become more frequent, the average behavior changes. Regarding the number of
messages, at the complexity peak, the benefit of ABTtempwith respect to ABTall and ABT
decreases, and ABTnot becomes worse than ABT. At the right of the complexity peak, dif-
ferences between ABT and ABTtempare quite small, while differences between ABTnot and
ABT increase. In this case, the relative results of the different algorithms are very similar
to those observed on the 8 inconsistent instances with p = 8. The number of concurrent
constraint checks reflects again the same trend: the more the problems are constrained, the
better informed algorithms behave.

Table 4 shows the effect of the nogood selection heuristic. Regarding the number of
messages, it appears that the heuristic is almost useless. One of the reasons is probably
that in our implementation, the agents are ordered according to the 4-cliques. Hence, the
causes of a conflict are most of the time circumscribed to a clique, which does not give the
opportunity to select a nogood jumping much higher than another one chosen arbitrarily.
As a consequence, the number of concurrent constraint checks can only increase since the
heuristic has a tiny benefit on the search performance while it requires extra constraint
checks.

Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24 23

5.3. Discussion
We have tested the ABT family algorithms on unstructured (random) problems as well
as structured ones (meeting scheduling). From the results, we observe the following facts.

Regarding the search effort, consistently for all problems, the more informed an algo-
rithm is, the smaller the number of concurrent constraint checks it requires. Regarding the
number of messages exchanged, the dynamic links of ABT improve over the static ap-
proach of ABTall . Temporary links of ABTtemp dominate the permanent link approach of
ABT, and this dominance depends on the kind of problems. On unstructured problems,
ABTtemp improves over ABT by a narrow margin, which becomes larger on structured
problems, especially consistent ones. When considering unsatisfiable instances only, both
algorithms exhibit a similar performance. ABTnot, the algorithm not adding links, is com-
petitive only for structured problems at the left of the complexity peak, showing a slight
improvement when sequence numbers are used. This leads us to conclude that when prob-
lems do not show some structure, or are not under-constrained, ABTnot has to be selected
only if some privacy policy justifies its use.

Regarding the nogood selection heuristic, we observe clear benefits on unstructured
problems but only minor advantages on structured ones. Apparently, the structure of the
meeting scheduling problems prevents the heuristic to find large jumps over the network.

While ABTtempappears as a good algorithm for asynchronous backtracking, the follow-
ing question remains: how many Info messages to allow through a temporary link? In the
reported experiments this parameter was adjusted manually after some trials. We believe
that it has not to be a fixed parameter of the algorithm, but it could be adjusted automatic
and dynamically, customized for each agent. The automatic selection of this parameter is
a direction for further research.

6. Conclusion

We have proposed ABTnot, a new asynchronous backtracking algorithm for distributed
CSPs. This procedure is the first one that does not add links between agents not sharing
constraints. This property can be important to avoid messages sent to agents which may
not need to be informed. We presented ABTnot via a basic kernel that is sound but does
not guarantee termination. By implementing the condition for termination in this kernel,
we obtained existing ABT family algorithms, or new ones, such as ABTnot. We compared
experimentally several algorithms from the ABT family.

References

[1] C. Bessière, A. Maestre, P. Meseguer, Distributed dynamic backtracking, in: Notes of the IJCAI’01 Work-
shop on Distributed Constraint Reasoning, Seattle, WA, 2001, pp. 9–16.

[2] C. Bessière, I. Brito, A. Maestre, P. Meseguer, The asynchronous backtracking family, Technical Report,
LIRMM-CNRS, Montpellier, France, 2003.

[3] K.M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed systems, ACM
Trans. Comput. Syst. 3 (1) (1985) 63–75.

24 Ch. Bessière et al. / Artificial Intelligence 161 (2005) 7–24

[4] R. Dechter, J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artificial Intelligence 34

(1988) 1–38.

[5] E.C. Freuder, M. Minca, R.J. Wallace, Privacy/efficiency trade-offs in distributed meeting scheduling by
constraint-based agents, in: Notes of the IJCAI’01 Workshop on Distributed Constraint Reasoning, Seattle,
WA, 2001, pp. 63–71.

[6] Y. Hamadi, C. Bessière, J. Quinqueton, Backtracking in distributed constraint networks, in: Proc. 13th Eu-
ropean Conference on Artificial Intelligence, ECAI’98, Brighton, UK, 1998, pp. 219–223.

[7] K. Hirayama, M. Yokoo, The effect of nogood learning in distributed constraint satisfaction, in: Proc. 20th
International Conference on Distributed Computing Systems, ICDCS’00, 2000, pp. 169–177.

[8] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. ACM 21 (7) (1978)
558–565.

[9] A. Meisels, E. Kaplansky, I. Razgon, R. Zivan, Comparing performance of distributed constraints processing
algorithms, in: Notes of the AAMAS’02 Workshop on Distributed Constraint Reasoning, Bologna, Italy,
2002, pp. 86–93.

[10] M.C. Silaghi, D. Sam-Haroud, B. Faltings, Asynchronous search with aggregations, in: Proc. 17th National
Conference on Artificial Intelligence, AAAI’00, Austin TX, 2000, pp. 917–922.

[11] M.C. Silaghi, D. Sam-Haroud, B. Faltings, Consistency maintenance for ABT, in: Proc. 7th International
Conference on Principles and Practice of Constraint Programming, CP’01, Paphos, Cyprus, 2001, pp. 271–
285.

[12] M.C. Silaghi, D. Sam-Haroud, B. Faltings, Hybridizing ABT and AWC into a polynomial space, complete
protocol with reordering, Technical Report, EPFL, Lausanne, 2001.

[13] M.C. Silaghi, D. Sam-Haroud, B. Faltings, Polynomial space and complete multiply asynchronous search
with abstractions, in: Notes of the IJCAI’01 Workshop on Distributed Constraint Reasoning, Seattle, WA,
2001.

[14] M. Yokoo, Personal communication, 2000.
[15] M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distrib-

uted problem solving, in: Proc. 12th International Conference on Distributed Computing Systems, ICD-
CS’92, 1992, pp. 614–621.

[16] M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, The distributed constraint satisfaction problem: formaliza-
tion and algorithms, IEEE Trans. Knowledge Data Engrg. 10 (5) (1998) 673–685.

