The Asynchronous Backtracking Family

Christian Bessiere! Ismel Brito? Arnold Maestre! Pedro Meseguer?

I LIRMM-CNRS, 161 rue Ada, 34392 Montpellier, France
bessiere@lirmm.fr maestre@lirmm.fr
2[ITA-CSIC, Campus UAB, 08193 Bellaterra, Spain

ismel@iiia.csic.es pedro@iiia.csic.es

TR 03139
March 2003
LIRMM-CNRS

Abstract

In the last years, the Al community has shown an increasing interest in distributed
problem solving. In the scope of distributed constraint reasoning, several asynchronous
backtracking procedures have been proposed for finding solutions in a constraint network
distributed among several computers. They differ in the way they store failing combinations
of values (nogoods), and in the way they check the possible obsolescence of these nogoods.
In this paper, we propose a unifying framework for asynchronous backtracking search. We
discuss the choices that can be made to obtain a correct and complete algorithm. These
choices can lead to already known procedures, or to new algorithms. Our framework permits
to better understand the basic steps of these procedures, and to highlight their differences and
similarities. We present original techniques that can be added to these algorithms to improve
their behavior and to better fit the features of distributed networks. Finally, experiments
permit to assess the relative performances of the different versions of the algorithms, and to
show the benefit of using some of the proposed improvements.

1 Introduction

In the last years, the Al community has shown an increasing interest in distributed problem
solving using the agents paradigm. Different parts of the problem are held by different agents,
which behave autonomously and collaborate among themselves in order to achieve a global
solution. The World Wide Web offers many opportunities to actually solve real problems through
agents.

Several works consider constraint satisfaction in a distributed form (see [15] for an introduc-
tion). These works are motivated by the existence of naturally distributed constraint problems,
for which it is impossible or undesirable to gather the whole problem knowledge into a single
agent, and to solve it using centralized algorithms.! There are several reasons for that. The cost
of collecting all information into a single agent could be taxing. This includes not only commu-
nication costs, but also the cost of translating the problem knowledge into a common format,
which could be prohibitive for some applications. Furthermore, gathering all information into
a single agent implies that this agent knows every detail about the problem, which could be
undesirable for security or privacy reasons [17].

!By centralized we mean single processor, as opposed to distributed.

Considering complete algorithms for distributed constraint satisfaction, we have to mention
the pioneer work of Yokoo and colleagues, who proposed the asynchronous backtracking (ABT)
algorithm [13, 14]. This algorithm assumes a variable-based distributed model, where each prob-
lem variable belongs to one agent and constraints are shared between agents. ABT requires a
total ordering among agents. When a dead-end is detected, it may require to add communication
links between previously non connected agents; then, nogoods are exchanged among connected
agents, and stored. This algorithm has been used as a basis from which several extensions were
proposed, as for example its adaptation to dynamic agent re-ordering [10] or consistency mainte-
nance [9]. A different approach is the distributed backtracking algorithm (DIBT) [4, 5], which
performs graph-based backjumping without nogood storage. However, in its formulation given
in [4, 5], DIBT is not complete [12, 1]. More recently, a new algorithm, called Asynchronous
Aggregation Search (AAS) has been proposed in [8]. It is based on exchange of sets of partial
solutions assuming a constraint-based distributed model, where each constraint belongs to one
agent and variables shared by two constraints not belonging to the same agent are duplicated.

Understanding precisely the behavior of an algorithm is much more difficult in a distributed
environment than in a centralized one. In the search for solutions in distributed constraint
networks, it is quite difficult to circumscribe what are the necessary/sufficient operations that
ensure completeness and correctness of a procedure. In this paper, we propose a unifying frame-
work for asynchronous backtracking search in a variable-based distributed constraint network.
We first present a simple procedure that contains all the basic features of a backtracking algo-
rithm for distributed constraint satisfaction. We characterize why such a simple procedure is not
correct. Then, we analyze the changes that have to be made to obtain a correct and complete
algorithm. Depending on the way we modify the basic procedure, we obtain already known
algorithms (such as Yokoo’s ABT or a correct version of DIBT'), or new ones. We believe this
will help to better understand the behavior of asynchronous search, and to emphasize on the
differences and similarities between the possible versions. The pseudo-codes we present for the
different algorithms are written to be as explicit as possible. We sometimes had to take decisions
with respect to existing versions that let some implementation choices to the programmer. We
discuss the consequences of these choices with regard to other alternatives. For instance, our
algorithms are based on a one nogood per value principle. We analyze the effect of the selection
of nogoods on the search process, and propose heuristics to select better nogoods. Afterwards,
we give to the agents the possibility to be less reactive to single messages, which means that
we give them the capability to process several messages as a whole instead of processing them
one by one. This raises some questions on how to deal with this concurrent, and possibly con-
flicting information. We propose answers to these issues. Finally, an experimental evaluation is
presented. The test-bed is composed of randomly generated problems and distributed meeting
scheduling problems. We compare the different versions of asynchronous search, and evaluate
the amount of improvement produced by the new heuristics we propose.

The rest of the paper is organized as follows. Section 2 contains some basic definitions. Sec-
tion 3 recalls the asynchronous backtracking algorithm. In Section 4, we introduce our framework
as the kernel for asynchronous backtracking, showing that it is sound but incomplete. In Sec-
tion 5, we analyze several ways to reach completeness deriving several algorithms, some already
known in the literature while others are new. This derivation allows one to understand better
the relations between different algorithmic approaches, as well as their mutual dependencies. In
Section 6, the nogood selection is discussed, and some heuristics are proposed to decrease the
search effort. Section 7 considers the issue of processing packets of messages as a whole, instead
of processing them one by one. Section 8 contains the experimental evaluation. Finally, Section
9 contains some conclusions of this work.

2 Preliminaries

Classically, constraint satisfaction problems (CSPs) have been defined for a centralized archi-
tecture. A constraint network is defined by a triple (X, D,C), where X = {x1,...,2z,} is a set
of n variables, D = {D(x1),...,D(x,)} is the set of their respective finite domains, and C is
a set of constraints declaring those value combinations which are acceptable for variables. The
CSP involves finding values for the problem variables that satisfy all the constraints, namely,
the solutions of the constraint network. We restrict our attention to constraints involving two
variables, namely binary constraints. A constraint among the variables x; and x; will be denoted
by Cij-

A distributed CSP (DisCSP) is a CSP where the variables, domains and constraints of the
underlying network are distributed among automated agents. Formally, a finite variable-based
distributed constraint network is defined by a 5-tuple (X,D,C, A, ¢), where X, D and C are as
before. A ={1,...,p} is a set of p agents, and ¢ : X — A is a function that maps each variable
to its agent.

Each variable belongs to one agent. The distribution of variables divides C in two disjoint
subsets, Cintra = {cij|0(zi) = ¢(z;)}, and Cinter = {cij|P(xi) # ¢(x;)}, called intra-agent and
inter-agent constraint sets, respectively. An intra-agent constraint c;; is known by the agent
owner of z; and x;, and it is unknown by the other agents. Usually, it is considered that an
inter-agent constraint c;; is known by the agents ¢(x;) and ¢(z;) [14, 4].

As in the centralized case, a solution of a DisCSP is an assignment of values to variables
satisfying every constraint (although DisCSP literature focuses mainly on solving inter-agent
constraints). DisCSPs are solved by the collective and coordinated action of agents A, each
holding a process of constraint satisfaction.

Agents communicate by sending messages, with the following assumptions [14],

1. An agent can send a message to other agents iff it knows the addresses of the receivers.

2. The delay in delivering a message is finite but random; for a given pair of agents, messages
are delivered in the order they were sent.

For simplicity purposes, and to emphasize on the distribution aspects, in the rest of the paper
we assume that, each agent owns exactly one variable. We identify the agent number with its
variable index (Vz; € X,¢(x;) =). From this assumption, all constraints are inter-agent
constraints, so C = Cinter and Cintra = 0.

We have to point out here that this definition of DisCSPs fits the one used in ABT [14] and
DIBT [4], but not the one used in AAS [8]. In this last case, there are no inter-agent constraints.
The way consistency of values is ensured for a variable shared by two constraints not in the same
agent is duplication of the variable on these agents. The communication protocol guarantees
consistency of the values taken by this variable on each agent (simulating an equality constraint
between the two copies of the variable).

3 The Asynchronous Backtracking algorithm

Asynchronous Backtracking (ABT) [13, 14, 15, 16] was a pioneer algorithm to solve DisCSP,
dating its first version from 1992. ABT is an asynchronous algorithm executed autonomously
by each agent in the distributed constraint network. Each agent takes its own decisions and
informs other agents of them, and no agent has to wait for decisions of others. It computes a
global consistent solution (or detects that no solution exists) in finite time; its correctness and

completeness have been proven. In the following, we provide a short description of ABT'; for
further details the interested reader is addressed to the original sources.

ABT requires constraints to be directed. A constraint causes a directed link between the two
constrained agents: the value-sending agent, from which the link departs, and the constraint-
evaluating agent, to which the link arrives. When the value-sending agent makes an assignment,
it informs the constraint-evaluating agent, which tries to find a consistent value. If it cannot, it
sends back a message to the value-sending agent to cause backtracking. To make the network
cycle-free there is a total order among agents, which is followed by the directed links.

The ABT algorithm is executed on each agent, keeping its own agent view and nogood list.
Considering a generic agent self, the agent view of self is the set of values that it believes
to be assigned to agents connected to self by incoming links. The nogood list keeps the no-
goods received by sel f as justifications of inconsistent values. Agents exchange assignments and
nogoods. ABT always accepts new assignments, updating the agent view accordingly. When
receiving a nogood, it is accepted if it is consistent with the agent view of sel f, otherwise it is
discarded as obsolete. An accepted nogood is used to update the nogood list. When an agent
cannot find any value consistent with its agent view, because the original constraints or because
the received nogoods, new nogoods are generated from its agent view and sent to the closest
agent in the new nogood, causing backtracking. If self receives a nogood including another
agent not connected with it, self requires to add a link from that agent to self. From this
point on, a link from the other agent to self will exist. The process terminates when achieving
quiescence, meaning that a solution has been found, or when the empty nogood is generated,
meaning that the problem is unsolvable.

4 The Unifying Kernel

More than a single algorithm, ABT provides an algorithmic schema that can be instantiated in
different ways. In the following we describe ABTkernel, @ generic search algorithm for variable-
based DisCSPs. This algorithm captures the fundamentals of ABT, and its subsequent analysis
will allow us to identify the main elements of asynchronous backtracking assessing their roles
and costs. From it, we will consider the different alternatives to obtain sound and complete
algorithms, all sharing this basic kernel.

4.1 The ABT,., . algorithm

The ABTjerne algorithm requires, like ABT, that constraints are directed —from the value-
sending agent to the constraint-evaluating agent— forming a directed acyclic graph. Agents are
ordered statically in agreement with constraint orientation. Agent ¢ has higher priority than
agent j if ¢ appears before j in the total ordering. Considering a generic agent self, I'~(self) is
the set of agents constrained with self appearing above it in the ordering. Conversely, I' ™ (sel f)
is the set of agents constrained with sel f appearing below it in the ordering.

Regarding nogood management, generated). a nogood for a value ¢ of variable zj is an
expression of the form,

ri=alAx;=bA...=> 2 #cC

meaning that the assignment of ¢ to z; is inconsistent with the assignments of a,b,... to
Z;,Zj,.... This nogood is a justification of ¢ removal, as long as values a,b, ... are assigned
to variables x;,x;,.... This is a directed nogood. Its left-hand and right-hand sides (abbreviated
as 1hs and rhs respectively) are defined from the position of =. ABT}erne takes the following
options on nogoods,

1. One nogood per removed value. At each agent, only one nogood is maintained per removed
value. This option, also taken in some versions of the original ABT, assures a polynomial
complexity in space.

2. Nogood resolution. A new nogood is generated from nogood resolution. When all values of
the variable x; are ruled out by some nogood, they are resolved computing a new nogood
as follows. Let x; be the closest variable (in the total order) to xj in the left-hand side of
the nogoods, with value b. The left-hand side of the new nogood is the conjunction of the
left-hand sides of all nogoods for values of zj removing variable ;. The right-hand side
of the new nogood is x; # b. The new nogood is sent to z;, removing those nogoods with
variable x; in their left-hand side.

Each agent keeps some amount of local information about the global search, namely an agent
view and a nogood store. The agent view is the set of values assigned (from sel f's point of view)
to agents above it in the ordering. The agent view and the nogoods kept in the store need to
be consistent. Agents exchange assignments and nogoods, and perform the search by repeating
a very simple loop until a solution is found or inconsistency is detected.

ABTyerner allows the following types of messages (where sel f is the receiver agent),

e Info(agent,value). It informs self that agent has taken value as its current value; this
message is sent by agent to the agents in I't (agent).

e Back(agent,nogood). It informs self that agent has found nogood as the cause of incon-
sistency, and it requires self to change its value. This message is sent when agent has no
consistent value with its agent view, and self is the closest agent included in nogood.

e Stop. It informs self that no solution exists and causes it to stop. This message occurs
between normal agents and an extra agent called system.

The ABTerner algorithm appears in Figure 1. The main procedure ABT gerne; iS €xecuted on
every agent. After initialization (line 1), each agent selects a value and informs other agents
of its decision (CheckAgentView call, line 2). Then, a loop considers the reception of the three
possible message types: Info, Back and Stop.

Info messages are processed by the procedure ProcessInfo and they are always accepted.
After receiving an Info message, the agent view of self is updated to include the new assign-
ment, and any nogood inconsistent with the agent view is removed (Update call, line 1). Then,
a consistent value for self is searched after the change in the agent view (CheckAgentView
call, line 2). The procedure CheckAgentView checks if the current value of self is still consis-
tent, and in this case it does nothing (line 1). Otherwise, it tries to select a consistent value
(ChooseValue call, line 2). In this process, some values of self may appear as inconsistent. In
this case, the nogoods justifying their removal are added to the nogood store (line 3 of procedure
ChooseValue). If a new consistent value is found, this new assignment is notified to all agents in
I'*(self) through Info messages (line 3). Otherwise, every value of self is forbidden by some
nogood and sel f has to backtrack (Backtrack call, line 4). The procedure Backtrack generates
a new nogood by the resolution of existing nogoods for the values of self (line 1). If the new
nogood is empty, a Stop message is sent to the agent system and the process stops (lines 2-3).
Otherwise, the new nogood is sent in a Back message to the agent appearing in its rhs (line 5).
The value of this agent is deleted from the agent view (Update call, line 6), and a new consistent
value is selected (CheckAgentView call, line 7). removed

Back messages are processed by the procedure ResolveConflict. A Back message coming
from sender is accepted if its nogood is coherent with (it has the same values as) I' " (self) U

procedure ABTgerpne; O

1 myValue — empty; end «— false;

2 CheckAgentView();

3 while (—end) do

4 msg — getMsg();

5 switch(msg.type)

6 Info : ProcessInfo(msg);

7 Back : ResolveConflict(msg);
8 Stop : end «+ true;

procedure ProcessInfo(msg)
1 Update(myAgentView, msg.Assig);
2 CheckAgentView();

procedure ResolveConflict(msg)

1 if Coherent(msg.Nogood,I'~(self) U {self}) then

2 for each assig € 1hs(msg.Nogood) \ T~ (self) do Update(myAgentView, assig);

3 add(msg.Nogood, myN ogoodStore); myV alue «— empty;

4 CheckAgentView();

5 else if msg.sender € T (self) A Coherent(msg.Nogood, sel f) then SendMsg:Info(msg.sender, myValue);

procedure CheckAgentView(msg)

1 if —consistent(myValue, myAgentView) then

2 myValue <+ ChooseValue();

3 if (myValue) then for each child € T " (self) do sendMsg:Info(child, myValue);
4 else Backtrack();

procedure Backtrack()

1 newNogood «— solve(myNogoodStore);

2 if (newNogood = empty) then

3 end < true; sendMsg:Stop(system);

4 else

5 sendMsg:Back(newNogood);

6 Update(myAgentView,rhs(newNogood) < unknown);
7 CheckAgentView();

function ChooseValue()

1 for each v € D(self) not eliminated by myNogoodStore do

2 if consistent(v, myAgentView) then return (v);

3 else add(z; = val; = self # v,myNogoodStore); /*v is inconsistent with x;’s value */
4 return (empty);

procedure Update(myAgentView, newAssig)

1 add(newAssig, myAgentView);

2 for each ng € myNogoodStore do

3 if —Coherent(lhs(ng), myAgentView) then remove(ng, myNogoodStore);

function Coherent(nogood, agents)

1 for each var € nogood U agents do

2 if nogood[var] # myAgentView[var] then return false;
3 return true;

Figure 1: The ABTjerne algorithm for asynchronous backtracking search.

{self}, that is, the part of the agent view directly connected with self (line 1). In this case, the
assignments in the nogood for variables not directly related with self are taken to update the
agent view (Update call, line 2). The nogood is stored, acting as justification for removing the
current value of self (line 3). A new consistent value for self is searched (CheckAgentView call,
line 4). If the message is not accepted, it is considered obsolete. Considering obsolete messages,
if the value of self was correct in the received nogood, self resends its value to sender by an
Info message (line 5), because sender has forgotten sel f value when sending the Back message
(line 6 of procedure Backtrack). Otherwise, it does nothing because there is an I'n fo message
containing the value of sel f, travelling towards sender but it has not arrived yet.

A Stop message means that the empty nogood has been derived, so the problem has no
solution and the process has to stop.

Eventually, the system can stabilize in a state where each agent has a value and no constraint
is violated. This state is a global solution and the network has reached quiescence, meaning
that no message is travelling through it. Such a state can be detected using specialized snapshot
algorithms. If no solution exists, the empty nogood will be generated.

4.2 Formal Properties

ABTyerne is a sound algorithm that cannot infer inconsistency if the problem is solvable. These
properties are proved in the following propositions.

Proposition 1 ABTcner S sound.

Proof. This simple kernel is sound, since whenever a solution is claimed, the system is in a
stable state. We mean by this that a termination detection algorithm is used at system level
to detect quiescence in the network. Hence, all agents must satisfy all their constraints. Let us
assume quiescence in the network. If the global state is not a solution, there exists at least one
violated constraint, i.e., an agent still unsatisfied with its current state. In this case, at least
one message has been sent from the unsatisfied agent to the nearest culprit. We can easily see
that this message is either not obsolete, in which case the recipient will change its value and
break our quiescence assumption by sending a message, or obsolete, which means that some
other message has not yet reached its destination and again breaks our assumption.]

Proposition 2 ABTyemne cannot infer inconsistency if a solution exists.

Proof. We can see every nogood resulting from an Info message as a redundant constraint
with regard to the DisCSP to solve: its knowledge is implicitly enclosed in the initial constraint
network. Since all additional nogoods are then generated by logical inference when a domain
wipe-out occurs, all nogoods that can be generated during search are logical extensions of the
initial constraint network. In particular, this means that the empty nogood cannot be inferred
if the network is satisfiable. O

In spite of these good properties, we will show that ABTgeqne; may fail to terminate under
some circumstances. The main problem lies in the obsolescence of nogoods. On the one hand,
the way the nogoods are generated guarantees that every variable appearing in the nogood is
above self in the ordering. On the other hand, nothing ensures that those variables are in
I~ (self). (If they were in I'"(self), each obsolete nogood would be discarded as soon as sel f
would receive a new value for one of the variables involved.) This leads us to the following
observation.

Lemma 1 ABTjrne; may store obsolete information.

Proof. Since a nogood may contain an unrelated agent x, above self in the ordering, it
cannot be locally checked for obsolescence as x,, will not send its new value to self. Thus, an
agent can end up storing indefinitely an information which no longer accurately describes the
so-called global state of the system. a

Worse, the agent will be using that information to prune a value in its domain. If this value is
part of a solution, this solution will be missed. Since we know that the algorithm cannot infer
inconsistency if a solution exists, it will then fail to terminate.

Lemma 2 In the presence of obsolete information, some ABTperner agents may fall into an
infinite loop

Proof. To see how this may happen, let us consider an agent x; keeping a nogood about an
unrelated agent x,, above z; in the ordering, for example x, = a = x; # c¢. Let us now imagine
that this nogood has become obsolete since x,, changed its value. Finally, let us assume that c
is the only value in z; domain belonging to a solution. x; will then try all other values in its
domain, find them unfeasible (locally or from the agents beneath), and generate a backtrack
message. When this message will reach z,, it will be discarded for it is now obsolete, and z;
will continue looping on the same inconsistent subdomain, sending backtrack messages which
are doomed to be dropped by x,. The solution will never be detected. O

Proposition 3 ABTyerner may fail to terminate.

Proof. The proof flows naturally from lemma 1 and 2. O

If however we have some way of eliminating obsolete information in finite time, the problem
becomes completely different, because it means that crucial values will not stay deleted forever.
At least some of the backtrack messages will be processed, and will thus delete a value on some
agent above self in the ordering. We will first discuss the behaviour of the first agent in the
ordering, then use our findings to qualify the behaviour of a larger set of agents.

Lemma 3 Let x1 be the variable of the first agent in the distributed agent ordering. x1 can
never fall into an infinite loop.

Proof. We have seen that whenever agent sel f receives newer information about an agent x;
inside a backtrack message (which will forcibly discard all those nogoods in self inconsistent
with the new value for z;), x; precedes self in the ordering. In particular, whenever z; receives
a nogood ng, it has an empty left side, so ng will not make any existing nogood obsolete, nor
will it ever be removed by any later one. a

Lemma 4 If the first k—1 agents in the ordering are not trapped in an infinite loop and obsolete
information disappears in finite time, xy cannot fall into an infinite loop.

Proof. Let us suppose zj is looping. Since we assume that no obsolete information can last
forever, some of the backtracks sent by z; will indeed be seen as relevant, and will lead to value
deletions. Since no agent among x1,...x;_1 is supposed to be in an infinite loop, they can
accept only a finite number of relevant backtrack messages. Thus, they will either stabilize, in
which case xj will exit its so-called infinite loop as soon as the obsolete data are deleted, or
generate an empty nogood, which will also stop the entire system. So, z is not in an infinite
loop. O

Proposition 4 Any instance of ABTerner in which obsolete information is eliminated in finite
time will eventually terminate.

Proof. By recurrence, lemma 3 and lemma 4 show that none of our agents can fall into an
infinite loop. An instance of ABTjerpner is thus guaranteed to terminate if obsolete information
is erased in finite time. O

Therefore, complete algorithms based on ABT}ene should be able to discard obsolete no-
goods, no matter which variables they include. In fact, one has to make sure that a given
information may survive in the network for only a limited period of time after it has become
obsolete. We will now describe such strategies.

5 The ABT Family

In the following, we explore different techniques to remove obsolete information from the ABT ke mnel
in finite time, producing several sound and complete algorithms. We globally name these algo-
rithms the ABT family, because its close relation with ABT'. This process allow us to rediscover
already existing algorithms, like ABT [14], DIBT [4] or DisDB [1], which are derived from
ABT}erner in a clean and elegant form. In this way, a number of algorithms proposed indepen-
dently in the past can be seen inside an unifying framework, understanding that they share a
large common root and clarifying the points in which they differ.

Since the bane of ABTyerner is the lack of information from unrelated agents, a possible
solution is to add communication links in the network of agents, in order to give a more accurate
view of the global state of the system to the holder of a given nogood, thus allowing it to
determine whether or not the nogood holds.

A communication link from agent 7 to agent j can be seen as the universal constraint between
x; and xj, which permits all value tuples. In addition, ¢ and j are related, so z; € I'"(z;)
and z; € I'"(z;), which implies that z; will be informed of the value changes of x;. While
communication links do not change the solution space for the problem at hand, they allow
recipients to accurately discard outdated information. Communication links were proposed [14]
as a part of the original ABT algorithm. Here, we consider the different alternatives,

1. Permanent links. When a new link is added it is maintained until the end of the execution.
Two linked agents remain connected.

2. Temporary links. When a new link is added, it is maintained until some condition (typ-
ically, on the number of messages sent by this link) is achieved. After that, the link is
removed disconnecting the two agents.

3. No links. No new links are added between agents.
These three options generate the following four algorithms,

e ABTy,y;. This algorithm adds all the potentially useful links during a preprocessing phase.
These new links are permanent.

e ABT. This algorithm adds dynamically links between agents. A link is requested by sel f
when it receives a Back message containing unrelated agents above self in the ordering.
New links are permanent. This approach is taken by the original ABT.

o ABTemp. This algorithm add dynamically links between agents, as ABT. The difference
with ABT is that new links are temporary. When a new link is set, it remains until a
fixed number of messages have been exchanged through this link. After that, it is removed
disconnecting both agents.

e ABT,,. No new links are added between agents. To achieve completeness, this algorithm
has to remove obsolete information in finite time. To do so, when it backtracks it forgets
all nogoods that hypothetically could become obsolete.

In the following we present each of these algorithms in some detail. Experimental results of
these algorithms are presented in Section 8.

5.1 ABT,;: Adding links as preprocessing

In a preprocessing phase before search starts, ABT,; adds a permanent link between every
pair of unrelated agents ¢ and j such that z; may receive a nogood mentioning z; during the
execution of ABTjerne;- This is done adding exactly the same links as the computation of the
induced constraint graph from the initial constraint graph [2]. These new links are computed
as follows. Agents (graph nodes) are processed from last to first, along the total ordering of
agents. When an agent (graph node) is processed, all its parents (related agents before it in the
ordering) are connected by new links if they were not connected before. These new links are
directed, following the total ordering of agents. The structure of the induced graph is recorded
in the sets '™ and I'" of each agent.

During the search phase, ABT,; behaves exactly like ABTyernel, which is now a complete
algorithm because each agent is directly connected with every other agent that could appear
in a nogood contained in a Back message. Obsolete nogoods will be removed in finite time, so
ABT,; is a sound and complete algorithm that terminates with a correct answer.

Interestingly, it is possible to modify ABT,; in such way that agents do not store nogoods
anymore, by fixing the agent to backtrack to the closest agent in I' " (self). A somewhat erro-
neous form of this algorithm was published in [4] as the DiBT algorithm.

ABT,;; can be downgraded even more, by adding new directed links compatible with the
agent ordering such that the constraint graph is now a clique. This is equivalent to include
all agents below self in I'"(self), and all agents above self in '™ (self). Again, there is no
need to store nogoods. A backtrack from self is always directed to the previous agent in the
ordering. The agent view is attached to allow the recipient to choose whether he should discard
its current value or not. This algorithm acts like a distributed asynchronous version of the
well known chronological backtracking, the agent ordering being used instead of the order of
instantiation.

5.2 ABT': Adding links during search

Instead of linking all possible sources of conflict beforehand, cluttering the communication graph
and incurring the corresponding cost in terms of message passing, we can wait until the conflict is
actually detected during search, and dynamically add a link at that point. This is the approach
taken by the original ABT algorithm, that we rename here as ABT for homogeneity purposes.

ABT has been proven correct and complete, and uses a fourth type of message, AddL, to
request the addition of a new communication link. Each time an agent j receives information
about a higher priority agent ¢ previously unheard of, an AddL message is sent. As a result, x;
extends its I'" to include z;, and sends its current value on the newly created link. This way,
each agent storing a nogood is guaranteed to be informed whenever one of the variables in the
nogood changes its value.

The ABT algorithm appears in Figure 2, only for those parts that differ from ABT e pne;- The
main procedure ABT includes the reception of the AddL message (line 9.1), which is processed
by the SetLink procedure. When a link request arrives, the sender is included in T " (self) (line
1) and sel f sends its value through an In fo message (line 2). When a Back message is received,

10

procedure ABT()

1 myValue < empty; end «— false;

2 CheckAgentView();

3 while (—end) do

4 msg — getMsg();

5 switch(msg.type)

6 Info : ProcessInfo(msg);

7 Back : ResolveConflict(msg);

8 Stop : end «+ true;

9.1 AddL : SetLink(msg);

procedure ResolveConflict(msg)

1 if Coherent(msg.Nogood,T'~(self) U {self}) then

2.1 CheckAddLink(msg);

3 add(msg.Nogood, myN ogoodStore); myV alue «— empty;
4 CheckAgentView();

5.1 else if Coherent(msg.Nogood, self) then sendMsg:In fo(msg.sender, myValue);

procedure SetLink(msg)
1 add(msg.sender, T (sel f));
2 sendMsg:Info(msg.sender, myValue);

procedure CheckAddLink(msg)

1 for each (var € 1hs(msg.Nogood))

2 if (var ¢ T~ (self)) then

3 sendMsg:AddL(var, sel f);

4 add(var, '~ (self));

5 Update(myAgentView, var «— varV alue);

Figure 2: The ABT algorithm with permanent links. Only the new or modified parts with
respect to ABTyerne; in Figure 1 are shown.

procedure ResolveConflict considers if a request for a new link must be sent (CheckAddLink
call, line 2.1). Also, the condition for resending sel f value to senders of obsolete Back messages is
simplified (line 5.1). Procedure CheckAddLink checks if unrelated agents appear in the received
nogood (lines 1-2). In such case, it sends a request of new link for each unrelated agent, adding
it to I'"(self) (lines 3-4). Finally, it updates its agent view taking as the value of the unrelated
agent the value coming in the nogood (line 5). This value will be confirmed or discarded later,
when the link request will cause the just related agent to send its value to self.

5.3 ABT,.n,: Adding temporary links

Given that links used in ABT serve the sole purpose of informing sel f when some of its nogoods
become obsolete, we might want to add them dynamically, but on a temporary basis. In fact,
as soon as self knows the new value for the linked agent, obsolete nogoods are discarded and
no further information from that agent is needed at this time, so this additional link could then
be dropped. It may happen that future Back messages will also mention this agent, so the link
will have to be established again. If this happen very often, it will be cost-effective to keep the
link active for a number of Info messages, carrying the value changes of the connected agent
to self.

This is the approach taken by the ABT}epn, algorithm, which requests links dynamically,
exactly like ABT. When a new link is set from agent ¢ to j, it is maintained for a fixed number
k of In fo messages going from z; to ;. After this number of messages has been sent, the link is

11

procedure ABTic,,, ()

1 myValue — empty; end «— false;

2 CheckAgentView();

3 while (—end) do

4 msg — getMsg();

5 switch(msg.type)

6 Info : ProcessInfo(msg);

7 Back : ResolveConflict(msg);
8 Stop : end «+ true;

9.1 AddL : SetLink(msg);

procedure ProcessInfo(msg)

1 Update(myAgentView, msg.Assig);

1.1 if istemporarylink(msg.sender)

1.2 counter[msg.sender| < counter[msg.sender] — 1;
1.3 if counter[msg.sender] = 0 then

1.4 remove(msg.sender, '~ (sel f));

1.5 Update(myAgentView, msg.sender «+ unknown);
2 CheckAgentView();

procedure ResolveConflict(msg)

1 if Coherent(msg.Nogood,I'~(self) U {self}) then

2.1 CheckAddLink(msg);

3 add(msg.Nogood, myN ogoodStore); myValue — empty;

4 CheckAgentView();

5.1 else if Coherent(msg.Nogood, sel f) then SendInfo(msg.sender, myValue);

procedure CheckAgentView(msg)

1 if —consistent(myValue, myAgentView) then

2 myValue «— ChooseValue();

3.1 if (myValue) then for each child € T (self) do SendInfo(child, myValue);
4 else Backtrack();

procedure SetLink(msg)

1 add(msg.sender, T (self));

1.1 counter[msg.sender] «— maxInfo;
2.1 SendInfo(msg.sender, myValue);

procedure CheckAddLink (msg)

1 for each (var € 1hs(msg.Nogood))

2 if (var ¢ T~ (self)) then

3 sendMsg:AddL(var, sel f);

4 add(var,I'~ (sel f));

4.1 counter[var] + maxInfo;

5 Update(myAgentView, var «— varV alue);
procedure SendInfo (agent, myValue)

1 sendMsg:Info(agent, myValue);

2 if istemporarylink(agent) then

3 counter[agent] «— counter[agent] — 1;

4 if (counter[agent] < 0) then remove(agent, 't (self));

Figure 3: The ABT}emy algorithm with temporary links. Only the new or modified parts with
respect to ABTyerne; in Figure 1 are shown.

12

removed and agents 7 and j become disconnected. The number k of messages for a link is known
a priori by both agents, so two simple counters —one in each agent— allow for an effective
implementation of this technique. When reporting results the number k is essential, and then
this algorithm is mentioned as ABTyepp (k).

The ABTep,, algorithm appears in Figure 3, only for those parts that differ from ABTyeype;-
It is very close to ABT, their differences come from the management of temporary links. The
main procedure ABTiey,, is the same as ABT (Figure 2). Procedure SetLink processes the recep-
tion of an AddL message, initializing the counter of Info messages that can be sent through
this link (line 1.1) and sending the first one (line 2.1). Procedure CheckAddLink detects, as in
ABT, if a new link is needed, and in this case initializes the counter of Info messages that are
expected through this new link (line 4.1). Procedure ProcessInfo processes the reception of an
Info message. If it comes through a temporary link, the corresponding counter is decremented
(line 1.2), and if it has reached zero the link is removed, forgetting the value of the connected
agent (lines 1.3-1.5). Procedure SendInfo encapsulates the sending of Info messages, decre-
menting the counter if the used link is temporary, and if the counter has reached zero, the link
is disconnected (lines 2-4). Finally, procedures ResolveConflict and CheckAgentView behave
like in ABT but the sendMsg call has been substituted by the SendInfo call.

5.4 ABT,,: No links any more

The problem of obsolete nogoods can be tackled the other way around: instead of trying hard
to be informed when the status of one of its conflicting ancestors evolves, the agent responsible
for the storage of a particular nogood can study its own course of action over the value of the
knowledge it holds, and update this knowledge accordingly. More precisely, whenever a nogood
store is solved to generate a new nogood to be sent to the nearest culprit, the sender sel f knows
that this nogood will possibly reach each and every node it contains, forcing them all, in the
worst case, to change their value. For those nodes appearing in I'~(self), there is no need to
worry, because they are bound to inform it. For all the other ones, the very action of initiating
the backtrack can lead to the obsolescence of any nogood inside which they appear. Hence, sel f
will forget those insecure nogoods upon backtracking, eliminating the risk of keeping an obsolete
nogood in memory.

Since the agent forgets these insecure nogoods only upon backtracking, what does it happen
if a nogood becomes obsolete because an unrelated, higher priority agent has changed its value
for any reason and self has not been notified? In this case there are two possibilities: either
the value suppressed by the obsolete nogood is not mandatory to find a solution, or it is. In the
first situation, and in the worst case, sel f will keep the obsolete nogood as if it were up-to-date,
until the end of the search, which will end in a finite amount of time since we assumed that
this mistake does not compromise the network capacity to find a solution. On the contrary,
if that value is mandatory, self will be forced to try every other value in its domain before
backtracking. At this point, a new nogood resolving all nogoods removing sel f values will be
produced. This nogood will include the agent that had changed its value, so when sending the
Back message, its value will be forgotten and search will be resumed.

This is the approach taken by the ABT,: algorithm, which does not add any link. This
algorithm was described in [1], under the name DisDB. We call it here ABT,, to follow our
scheme. The ABT, algorithm only differs from ABTgerner in the forgetting policy of nogoods
that could become obsolete, and this concerns the procedure Backtrack that appears in Figure
4. This procedure computes the new nogood as the resolvent of the nogoods justifying the wipe
out of self. If the new nogood is not empty, the Back message is built and sent. In this case,
sel f forgets the values of agents not in I' " (sel f), and consequently the nogoods including those

13

procedure Backtrack()

1 newNogood «— solve(myNogoodStore);

2 if (newNogood = empty) then

3 end < true; sendMsg:Stop(system);

4 else

5 sendMsg:Back(newNogood);

6 Update(myAgentView,rhs(newNogood) < unknown);

6.1 for each var € lhs(newNogood) \ '~ (self) do Update(myAgentView, var « unknown);
7 CheckAgentView();

Figure 4: The ABT, algorithm with no links. Only the new or modified parts with respect to
ABT}erne in Figure 1 are shown.

agents (line 6.1). Finally, a new value consistent with the agent view is searched.

5.5 Complexity Analysis
5.5.1 Number of links

We presented instantiations of the ABTyc,ne; that differ in the technique used to check nogoods
for obsolescence. Some of them ABTg;, ABT and ABT}ey,p, put additional links between non
connected agents, while ABT,.; uses a forgetting policy on the nogoods that permits termina-
tion without adding links. In the former case, these links are added before starting search by
ABTyy, or on the fly when necessary (ABT, ABT}ep,). Finally, a link is added permanently in
ABT,y;, ABT, while it has a temporary life in ABT}eyp.

The question that arises is: how many such links can be added by ABT or ABTjyc,,, during
the search for a solution? Or by ABT,; before the search? The actual number will obviously
depend on the instance to be solved, and on the way wipes out occur. However, we can give an
upper-bound to the worst-case behavior.

When a wipe out occurs on an agent ¢, the agent ¢ builds a nogood by resolution of its nogood
store, and sends the obtained nogood to the agent j with the lowest priority in this set. When
agent j receives the nogood, it checks the compatibility of the nogood with its own agent view.
But, since this nogood can contain variables, say zj, unknown for agent j (because there is a
constraint between x; and xj, but not between x; and xy,), agent j will ask the agents k containing
such a variable, to add a link from k to j. In the worst-case, a wipe out occurring at agent i
will generate a nogood involving the whole set I' ™ (i) of the agents linked to i, and preceding i in
the agent ordering. Thus, the receiver of the nogood, say agent j, will have to add a link from
each agent in I'" (i) \ I'"(j) to itself. More generally, when traveling back to all the ascendent
agents, this nogood (or its consequences) can lead to the addition of links between each pair of
agents in I' (i), leading to a total number of links equal to |[I'~(i)| - ([T~ (¢)| + 1)/2 in the set
I' (i) U {i}. Doing that recursively from the last agent to the top agent (I'~(j) has increased
after the reception of a nogood from), we build exactly the induced graph (the same graph as
Adaptive-consistency does in its first phase [2]). This means that given the total ordering o on
the agents used by the algorithm, if W (o) is the width of the ordering o, the number of links
that can finally be added is n - W (o) - (W (0) + 1)/2 — |C|, where n is the number of variables,
and W (o) - (W (o) +1)/2 is the number of possible links inside a set formed by an agent and its
parents at the end of the search. This depends on the induced width of the network and on the
quality of the initial ordering o.

14

Cabe)

Figure 5: A sample network

5.5.2 Resolving several nogoods

When presenting the ABTgerner algorithm, we decided to store only one nogood per removed
value. Hence, when a wipe out occurs on a variable x;, only one nogood can be built by resolution
of the selected nogoods of the values of x;. However, we could take into account several/all the
nogoods explaining the deletion of a value.? In this case, when a wipe out occurs on a variable,
these nogoods could be resolved to produce several new nogoods, which are all valid. The
following example illustrates this fact.

Example 1 Suppose we have a network with four agents Aq, As, As, A4, owning variables
x1,x9,x3, x4 respectively. D(xq) = D(xg) = D(x3) = {a,b}, and D(z4) = {a,b,c}. x4 is
linked to z1 and x9 by the = constraint, while x4 is linked to z3 by the # constraint. This
network appears in Figure 5. Agents are ordered lexicographically. If the variables z1,z2,x3
have all taken value a and sent Info messages to x4, a wipe out occurs in D(z4) after receiving
the Info from x3. The agent view of x4 is {#1 = a, 22 = a,23 = a}. From it we can build® the
following nogoods for values in D(z4):

T1=a0= T4 F#a;To=0= T4 Fa

T3=a=T4 F#Db
T3=a=T4F#cC

A valid resolvent nogood can be built by taking one nogood per value and resolving them.
Since we have two nogoods for the deletion of x4 = a, we have several possible resolutions,

T1=aANTo=aANT3=a= T4 Fa

ri=aAr3=a=x4Fa
Ta=aANTz3=a=2x4F#a
From these resolutions, only the two last are minimal nogoods. We can note that the nogoods

explaining the deletion of a value can be nogoods obtained from Back messages, even if this
case does not appear in our example. a

Let us now characterize the number of resolvents that can be built from a single wipe out
when several nogoods are stored for each value. To simplify the analysis, let us suppose that a
wipe out occurred on an agent that received only In fo messages. The nogoods of its values all

2 Among the different versions of ABT in the literature, some are written to send several nogoods produced
by resolution of the nogoods explaining deletions of values [14, 16], while in others, only one is sent [15].

3Depending on the implementation, nogoods can be built each time an Info message arrives, or only when a
wipe out occurs. Those coming from Back messages are stored anyway.

15

Figure 6: A pathological case for nogood resolution.

have a left hand side of size one. Because an agent has at most n — 1 parents, the total number
of nogoods is at most (n — 1) - d, which is polynomial. We want to know how many resolvents
can be built from these nogoods explaining the value deletions. Let us consider a variable x with

p+ 1 parents x1,...,2p41, and d + 1 values {vy,...,v441} in its domain. Suppose that each of
the p first parents of x sent an Info message with a value removing k values of z among its d
first values. Each v; € {v1,...,v4} has in average k - p/d nogoods explaining its removal. Now,

suppose x receives an Info message from its last parent, x,41, that removes v4y;. Then, we
have a wipe out, and resolution will take place. By assumption, all the nogoods will have z,41
as a left hand side. If the k- p nogoods coming from z1,...,z, are equally distributed among
the d first values of x, each of these d first values of = has at most [k - p/d]| nogoods. Thus, by
making all the possible combinations, we obtain a total number of resolvents bounded above by:

[k p/d]? (1)

This is an upper bound on the number of resolvents. Now, we are interested in the number of
minimal nogoods, and not in the total number of nogoods. Indeed, if t1 = aAxs =a Axg =
a= x4 #aand r1 = aAx3s =a = x4 # a are two possible nogoods (see Example 1), only
the latter needs to be sent since it subsumes the second one. We show in Example 2 that the
upper bound (1) can be reached by the number of minimal nogoods. Hence, if x is x,, (the last
variable in the ordering), if it shares constraints with all the other variables, and if its domain
has a size d, the total number of minimal nogoods obtained after a wipe out, and having x,_1
as a right hand side, is Q((k - n/d)?). This means that if the policy is to store several nogoods
per value, and to send all the minimal resolvents, a single agent can send to the same parent an
exponential number of Back messages, all related to the same wipe out.

Example 2 Suppose we have a network with 11 agents, where x1,...,x19 are all linked to z11
with an inequality constraint. (See Fig. 6.) x1,x2,x3 are assigned value a and send Info
messages, X4, Ts5, Tg are assigned value b and send Info messages, x7,xs,T9 are assigned value
¢ and send Info messages, and finally, z1¢ is assigned value d and sends Info message. The
domain of z1; was {a,b,c,d}. Once x1; has received the Info message sent by x19, we have a
wipe out on x1; with the following stored nogoods:

T1=0a=T1 FAGTL=0=T11 F0;T7=0a=>T11 £a

x2:b=>$11#b;$5:b:>$117éb;$8=b:>$117éb

T3=C=>T11 £ CTE=C=>T11 £ CTg=C=T11 £C

16

procedure Update(myAgentView, newAssig)

1 add(newAssig, myAgentView);

2 for each ng € myNogoodStore do

3 if —Coherent(1lhs(ng), myAgentView) then remove(ng, myN ogoodStore);
4.1 for each v € D(self)

5.1 if —consistent(v, newAssig) then selectNogood(v, newAssig = self # v);

procedure SelectNogood(deletedValue, newNogood)

1 if heuristic(newNogood) > heuristic(myNogoodStore[deletedValue]) then
2 delete(myNogoodStore[deletedV alue], myN ogoodStore);

3 add(newNogood, myN ogoodStore);

function ChooseValue ()
1.1 if Jv € D(self) not eliminated by myNogoodStore then return (v);
4.1 else return (empty);

Figure 7: Info Nogood selection, eager way

rio=d= 111 #e€

In this example, each Info message sent by the p = 9 first parents removes exactly k£ = 1
value among the d = 3 first values in D(x1;). By formula 1, we compute a bound of (1 - (10 —
1)/3)3 = 27 nogoods. In fact, if we resolve all the justifications of deletion, we obtain exactly
27 minimal left hand sides for 27 minimal nogoods having z19 # e as a right hand side. O

6 Selecting Nogoods

In ABT}erner we decided to keep one nogood for removed value. However, if several nogoods are
available for each value, it may be advisable to choose the most appropriate resolvant in order
to speed up search. Unfortunately, in the most general case, selecting the most suitable nogood
with respect to one particular criterion (or set thereof) means generating all possible candidates
in order to extract the best one, which could be prohibitively expensive (as seen above).

Heuristics are usually used to tackle such issues: a polynomial-time process, although unable
to find the best candidate, should help select a worthy candidate in order to make search more
accurate. In this case, when comparing two nogoods we have devised the following heuristic:
select the nogood with the highest possible lowest variable involved. The rationale for this
heuristic is to ensure that each time a wipe-out occurs, the Back message is sent as high as
possible in the agent ordering, thus saving unnecessary search effort. This can be done in linear
time in the number of stored nogoods. Additionally, this nogood is generated by resolving the
best candidate nogood for each value in the domain, so selection can be performed locally on
each value.

In the following, we will discuss two basic ways of implementing this heuristic: the eager way
and the lazy way. In the former, the nogood selection is processed aggressively at two different
points in the algorithm, when updating the agent view and when receiving a nogood from a
Back message. In the latter, nogood selection due to changes in the agent view is postponed
until a wipe out occurs on the agent, but is processed as above when a Back message is received.

6.1 Eager Selection of Nogoods from the Agent View

This protocol, detailed in Figure 7, tries to make sure that each time the agent view is modified,
the nogood store is in its best possible state given the knowledge available.

17

function ChooseValue()

1 for each v € D(self) not eliminated by myNogoodStore do

2 if consistent(v, myAgentView) then return (v);

3 else add(z; = val; = self # v, myNogoodStore); /*v is inconsistent with x;’s value */
4.1 for each v € D(self) do

4.2 for each z; € I'~(self) such that (z;,val;) conflicts with (self,v) do

4.3 selectNogood(v, z; = val; = self # v);

4.4 return (empty);

Figure 8: Info Nogood selection, lazy way

Procedure Update processes Info messages. After updating the agent view (line 1) and
removing nogoods inconsistent with it (lines 2-3), the eager protocol goes through all values of
self domain, checking their consistency with the new assignment (lines 4.1-5.1). If a value is
found inconsistent, the corresponding nogood is built and considered for storage (selectNogood
call, line 5.1). Procedure selectNogood compares two nogoods —a stored nogood and a new
nogood— that justify the removal of the same value, keeping in the store the nogood with the
highest heuristic value (lines 1-3).

Thus, no matter in which order the Info messages were received, all active nogoods refer to
the highest possible culprit. This property, after resolution, ensures that the nogood generated
is, among all possible nogoods, the one containing the highest possible lowest assignment. As a
side effect, the function ChooseValue can now select the first value in the domain not eliminated
by a nogood (line 1.1), since the whole domain is filtered each time the view is updated.

6.2 Lazy Selection of Nogoods from the Agent View

The zeal of the eager protocol may be time consuming in some occasions, since the whole
domain shall be checked again each time a new assignment for a parent is received. Our second
implementation tries to delay the burden of selecting the best upstream nogood for each value as
long as possible: it only kicks in when a wipe-out is detected, that is, when a ChooseValue fails,
instead of rushing into action with each Update. Hence, the regular procedure Update shall be
used. Details are shown in Figure 8. Notice that line 4.1 is only reached if no consistent value is
found in the domain. At this point, the modified function will select the best candidate nogood
by comparing those already stored to all those induced by conflicting parents (line 4.2) for each
value in the domain (line 4.1) before a later call to Backtrack resolves those active nogoods into
a new nogood.

6.3 Selecting nogoods from Back messages

ABTyerner accepts a Back message if the incoming nogood is coherent with its whole view,
including its own assignment. Once this nogood is stored, the local value it refers to is eliminated,
which makes the nogood coherent with the whole agent view except for the local assignment. It
is all-but-sel f relevant. If self receives a Back message with a nogood coherent with its agent
view but not with its own assignment, this nogood is all-but-self relevant. In this case, this
nogood deserves to be considered because it brings valuable information: it gives a valid reason
to discard a value, even though that value may already has been discarded. Thus, the incoming
nogood has to be compared against the current nogood for its target value, and replace it if it
is better from the heuristic point of view.

Figure 9 shows procedure ResolveConflict, the one affected by the selection of nogoods
from Back messages. The scope of the consistency test is reduced to I'(self), for we are

18

willing to process messages that are obsolete with respect to the current value (line 1.1). The
agent view is updated with the assignments in the nogood for variables not directly related with
self (Update call, line 2). The incoming nogood is then compared against the stored one —or
eventually none— (selectNogood call line 3.1) and replaces it if necessary. If the message was
also consistent with the current value, this value is reset (line 4.1) and a new consistent value is
searched for self (line 4.2). The remaining part works as in ABTyerpne; (line 5).

procedure ResolveConflict(msg)

1.1 if Coherent(msg.Nogood,T'~(self)) then

2 for each assig € 1hs(msg.Nogood) \ T~ (sel f) do Update(myAgentView, assig);

3.1 selectNogood(rhs(msg.Nogood).value, msg.Nogood);

3.2 if rhs(msg.Nogood).value = myV alue then

4.1 myValue «— empty;

4.2 CheckAgentView();

5 else if msg.sender € ' (sel f) A Coherent(msg.Nogood, sel f) then SendMsg:In fo(msg.sender, myValue);

Figure 9: Back nogood selection

7 Processing Messages by Packets

In previous Sections, we have assumed that ABT family algorithms process messages one by
one, reacting as soon as a message is received (updating the agent view or storing a nogood,
finding another value if needed, sending further messages, etc.). This strategy of single-message
process may cause to perform some useless work. For instance, consider the reception of an
Info message reporting a change of an agent value, inmediately followed by another Info from
the same agent. Processing the first message causes some work that becomes useless as soon as
the second message arrives. More complex examples (involving Info and Back messages) can
be devised, causing to waste substantial effort.

To prevent this kind of useless work, we consider an alternative strategy. Instead of reacting
after every single message that is received, the algorithm reads all messages that are in the
input buffer and stores them in internal data structures. Then, the algorithm processes all read
messages as a whole, ignoring those messages that become obsolete by the presence of another
message. We call this strategy processing messages by packets, where a packet is the set of
messages that are read from the input buffer until it becomes empty. This idea was somehow
mentioned in [14], although it was not completely developed.

Fortunately, this idea is easy to implemented. Instead of the single-message reading/processing
cycle of ABTerner, the main loop consists of reading a packet and processing it. Reading a packet
requires three lists to store the incoming messages, the Info-List, Back-List and the AddL-
List, where each list stores the messages of the corresponding type, following the reception
order (obviously, ABT,;; and ABT,, do not need AddL — List). Processing a packet involves
the following steps.

1. Info-List. First, the Info-List is processed. For each sender agent, all Info messages
but the last are ignored. The remaining In fo messages update sel f agent view, removing
nogoods if needed (following procedure Update).

2. Back-List. Second, the Back-List is processed. For those messages containing the correct
current value of self, the sender is recorded in RemainderSet. Obsolete Back messages
are ignored. self stores nogoods of no obsolete messages, and it sends AddL messages to
unrelated agents appearing in those nogoods.

19

3. AddL-List. Third, the AddL-List is processed as in the single-message case, updating
['*(sel f) without sending the I'nfo message.

4. Consistent value. Fourth, self current value is checked for consistency with the agent
view, looking for another value if the current is inconsistent. If a wipe-out happens in this
process, the corresponding Back message is sent, and a consistent value is searched.

5. Info sent. Fifth, if self value has changed, Info messages containing sel f current value
are sent to all agents in T'" (sel f). if sel f value has not changed, In fo messages containing
sel f current value are sent to the following agents,

(a) agents in RemainderSet,
(b) senders of AddL messages.

The three lists become empty.

As in the single-message case, the loop ends when receiving a Stop message or an empty nogood
is derived.

8 Experimental Results

We have tested the four ABT algorithms in a simulated environment under the GNU/Linux
operating system. Each agent is a separate process, and the system agent is another process. All
these processes run on the same machine and have the same priority. The simulation environment
is really asynchronous: the standard Linux dispatcher is in charge of the asynchronous activation
of each process, independently of each agent activity. The goal was to simulate the conditions
of a real network under a controlled environment. Agents communicate exchanging messages
via named pipes. The system agent is responsible for detecting quiescence. In order to make
results reproducible, we executed the algorithms one by one on a CPU with no other load.

We provide results on the search effort, counting the number of “concurrent constraint
checks” (#c-ccks), as defined* in [7], following Lamport’s logic clocks [6]. Informally, the num-
ber of concurrent constraint checks approximates the longest sequence of constraint checks not
performed concurrently. We prefer this parameter to the total number of constraint checks,
which does not take into account concurrency among agents. Also, we evaluate the global com-
munication effort as the total number of messages exchanged among agents (#msgs). We do not
report the number of concurrent messages (that were computed following the same technique as
#c-ccks) because it was completely proportional to #c-ccks in all our experiments.

We implemented the ABT family algorithms considering the following improvements,

1. Value in AddL. When a new link with agent k is requested by sel f, instead of sending the
AddL message and wait for answer, ABT and ABT}em, include in the AddL message the
value of zj recorded in the received nogood. After reception of the AddL message, agent
k informs self of its current value only if it is different from the value contained in the
AddL message. In this way, some Info messages can be saved.

2. Awoid resending same values. ABT family algorithms keep track of the last value taken
by self. When selecting a new value, if it happens that the new value is the same as the
last value, it does not resend it to I'*(self), because this information is already known.
Again, this may save some Info messages.

4Except that in our implementation we do not take into account the cost of messages.

20

p1 = 0.20 #c-ccks #msgs. || p1 = 0.50 #c-ccks #msgs.
ABTyy 5,365 8,318 || ABTan 39,148 56,206
ABT 5,496 7,675 || ABT 40,564 54,694
ABTiemp(10) 5,530 7,485 || ABTiemp(5) 40,599 50,455
ABT, ot 35,443 40,223 || ABT 0t 61,668 66,331

Table 1: Plain ABT's

p1 = 0.20 #c-ccks #msgs. || p1 = 0.50 #c-ccks #msgs.
ABTyy 13,144 7,486 || ABTyy 101,898 51,891
ABT 13,939 7,470 || ABT 102,367 50,558
ABTemp(10) 13,659 7,134 || ABTiemp(7) | 106,880 49,347
ABT, ot 75,020 36,454 || ABT}0t 153,320 60,393

Table 2: ABT's with nogood selection heuristic

Regarding the implementation of the nogood selection heuristic, after some preliminary experi-
ments, we decided to take the lazy selection from the agent view.

The ABT family algorithms, including the heuristic of selecting the best nogood and the
processing by packets feature, have been tested on two kind of problems, random DisCSPs and
distributed meeting scheduling. Their results are discussed in the following.

8.1 Random DisCSPs

We have evaluated the performance of the algorithms on uniform binary random CSP. A binary
random CSP class is characterized by (n,d,p1,p2) where n is the number of variables, d the
number of values per variable, p; the network connectivity defined as the ratio of existing
constraints, and po the constraint tightness defined as the ratio of forbidden value pairs. The
constrained variables and the forbidden value pairs are randomly selected [11]. A problem will
be referred to as a (n, d, p1, p2) network. Each agent is assigned one variable, and the constraints
binding is to the neighboring agents.

Using this model, we have tested random instances of 16 agents and 8 values per agent,
considering two connectivity classes, sparse (p1 = 0.2) and medium (p; = 0.5). Experiments
have been performed at the complexity peak, where the differences among algorithms are more
explicit, considering 50 instances. Specifically, we tested the random classes (16,8,0.2,0.7) (20
solvable instances out of 50) and (16,8,0.5,0.42) (27 solvable instances out of 50). Results
appear in Tables 1, 2, 3 and 4, where we report the total number of consistency checks, the
total number of messages exchanged and the average CPU time per agent. These parameters
are averaged over 50 executions.

Table 1 contains the results for the plain ABT algorithms, where messages are processed
one by one. The parameter k for ABTj,,, was adjusted manually after some trials. Only
the results for the best value of k are given. Considering the three algorithms adding links,
ABT,y, ABT, and ABT}emyp, we observe that the better informed the algorithm is, the less
concurrent constraint checks it requires to solve the problem. This is at the cost of exchanging
more messages. ABTjey, is the algorithm exchanging less messages, followed by ABT and
ABT,;. ABT, requires the highest number of concurrent constraint checks. Because it is the
worst informed algorithm, it is more likely to make wrong decisions, requiring more effort than
previous algorithms to solve the same problem. This also implies a higher number of messages
exchanged.

21

p1 = 0.20 #c-ccks #msgs. || p1 = 0.50 #c-ccks #msgs.
ABTu 6,002 7,387 || ABT. 47,290 43,513
ABT 5,946 7,110 || ABT 52,554 42,925
ABTiemp(10) 5,598 7,001 || ABTiemp(5) 51,305 41,667
ABT, 0 26,321 24,673 || ABThot 73,701 50,112
Table 3: ABT's processing by packets
p1 = 0.20 #c-ccks #msgs. || p1 = 0.50 #c-ccks #msgs.
ABTyy 13,475 6,098 || ABT . 101,608 37,329
ABT 12,959 5,744 || ABT 123,574 37,851
ABTemp(10) 12,889 5,607 || ABTyemp(7) | 120,621 36,135
ABTyo 61,622 23,509 || ABTpor 174,476 42,784

Table 4: ABT's with nogood selection heuristic and processing by packets

The effect of using the nogood selection heuristic (lazy selection for Info messages) appears
in Table 2. We observe that the number of concurrent constraint checks increases because
agents have to do more checks in order to compare nogoods from the store with potentially
better nogoods from the constraints. However, the number of messages decreases consistently
for all the algorithms, showing the benefits of the heuristic. The relative performance of the
algorithms in #msgs remains unchanged with respect to the plain versions.

Processing messages by packets causes significant benefits with respect to the plain versions.
Results appear in Table 3. In our implementation, each agent sleeps for 1 second before reading
all the messages that are in the buffer. Then, they are treated as explained in Section 7. Every
algorithm decreases in the number of exchanged messages. Relative algorithmic performance is
maintained with respect to messages exchanged, ABT}ey,, remains the algorithm requiring less
messages.

The combination of the nogood selection heuristic and processing messages by packets is
beneficial, causing further savings in search effort and network usage. Results appear in Table
4. Relative performance is maintained with respect to the number of exchanged messages.

These experiments confirm the benefits of the proposed nogood selection heuristic and the
advantadges of processing messages by packets. Consistently for all algorithms and all problems
tested, their inclusion caused to decrease the number of exchanged messages. When combined,
their benefits are reinforced, causing savings up to 40% in exchanged messages. Regarding
algorithms, consistently for all problems tested ABT}ep,, offers the best performance in number
of exchanged messages, followed closely by ABT and ABT,;. Therefore, these results suggest
that ABTiem, is the algorithm of choice for random problems at the complexity peak.

8.2 Distributed Meeting Scheduling

To compare our algorithms on structured problems, we solved distributed meeting scheduling
problems: a number of people with an already partially filled planning, are looking for a place
where they can meet at the same time [3]. In our experiment, attendees are divided into three
thematic groups. A group, formed by four attendees, has its own meeting to schedule in one of
three cities. Two meetings cannot be held at the same time in the same city. Cities are separated
by a given travel time. One of the members of the group is in charge of communicating with
the other groups.

Each attendee is represented by an agent, with its starting domain matching the attendee’s

22

p=3_8 p=10 p=12
#c-ccks #msgs || #c-ccks #Hmsgs || #c-ccks #Hmsgs
ABT,y 2,482 352 35,937 3,511 2,312 328
ABT 2,513 336 38,439 3,503 2,517 310
ABTiemp(1) 2,606 220 38,888 3,018 2,873 308
ABT o 3,607 319 47,257 3,793 3,403 375

Table 5: Plain ABTs

p=2_8 p=10 p=12
#c-ccks #msgs || #c-ccks #Hmsgs || #c-ccks FHmsgs
ABT,y 3,046 346 55,944 3,451 2,812 322
ABT 3,053 335 59,723 3,438 3,024 303
ABTiemp(1) 3,119 218 59,892 2,962 3,198 301
ABT o 3,993 317 72,350 3,744 4,013 369

Table 6: ABTs with nogood selection heuristic

current planning: the predefined appointments (time/place pairs), as well as the time/places
which are unreachable because of said appointments, are removed from the domain before the
search starts. Our experiment is composed of 5 days, with 6 time slots per day and 3 meeting
places. This gives 56 -3 = 90 possible values in the domain of each agent. Meetings and time
slots are both one hour long. The ’travel times’ between the three cities are 1 hour, 1 hour, and
2 hours. The actual instances are generated by randomly posting p predefined appointments in
each agent’s planning. We have tested three different classes of problems, with p = 8, p = 10,
and p = 12 that correspond respectively to under-constrained, critically constrained, and over-
constrained problems. Results appear in Tables 5 and 6, where we report #c-ccks and #msgs
averaged over 100 instances.

Table 5 contains the results for plain ABTs. With p = 8 (left part of the table), we are
at the beginning of the phase transition, where 92% of the instances were satisfiable. On
these instances, the best informed algorithms, ABT,; and ABT, show the worst performance
in number of messages exchanged. The temporary link policy of ABTje,, significantly pays
off. This can be explained by the fact that these problems are structured as cliques with few
constraints outside them. A single nogood between two agents belonging to different cliques
leads ABT to the addition of a link that will remain active during the whole search, even if
they no longer share nogoods. ABT}em, takes advantage of this by activating the link just for
solving the current conflict. A confirmation of this is that we observed that ABTyem, (k) decays
performance as soon as k > 2. Even ABT,,, with its poorly informed agents, requires less
messages than the two best informed algorithms, ABT,; and ABT, while on random problems
it was always the greatest consumer of messages.

The number of concurrent constraint checks presents the same steady increase from better
informed to worse informed algorithms as on random problems, even if the differences are smaller.

Finally, it is worth noting that if we limit the analysis to the 8 inconsistent instances, ABT
and ABT obtain results much closer to ABT}em, (232 messages in average for ABTy; and 225
for ABT versus 217 for ABTiemp). On these inconsistent problems, ABT), is the worst (250
messages for both versions).

Increasing the number of predefined appointments per agent changes the proportion of solv-
able instances. With p = 10 (middle of Table 5), the problems are at the complexity peak (49%
of satisfiable instances), and when p = 12 (right of Table 5), they are slightly over-constrained
(only 12% of satisfiable instances). We observe that as inconsistent instances become more
frequent, the average behavior changes. Regarding the number of messages, at the complexity

23

peak, the benefit of ABTc,, with respect to ABTy;; and ABT decreases, and ABT,, becomes
worse than ABT'. At the right of the complexity peak, differences between ABT and ABTyep)
are quite small, while differences between ABT},,; and ABT increase. In this case, the relative
results of the different algorithms are very similar to those observed on the 8 inconsistent in-
stances with p = 8. The number of concurrent constraint checks reflects again the same trend:
the more the problems are constrained, the better informed algorithms behave.

Table 6 shows the effect of the nogood selection heuristic. Regarding the number of messages,
it appears that the heuristic is almost useless. One of the reasons is probably that in our
implementation, the agents are ordered according to the 4-cliques. Hence, the causes of a
conflict are most of the time circumscribed to a clique, which does not give the opportunity to
select a nogood jumping much higher than another one chosen arbitrarily. As a consequence, the
number of concurrent constraint checks can only increase since the heuristic has a tiny benefit
on the search performance while it requires extra constraint checks.

8.3 Discussion

We have tested the ABT family algorithms on unstructured (random) problems as well as
structured ones (meeting scheduling). From the results, we observe the following facts.

Regarding the search effort, consistently for all problems, the more informed an algorithm
is, the smaller the number of concurrent constraint checks it requires. Regarding the number
of messages exchanged, the dynamic links of ABT improve over the static approach of ABT ;.
Temporary links of ABT}¢p,, dominate the permanent link approach of ABT', and this dominance
depends on the kind of problems. On unstructured problems, ABT}.,,, improves over ABT by a
narrow margin, which becomes larger on structured problems, especially consistent ones. When
considering unsatisfiable instances only, both algorithms exhibit a similar performance. ABT .,
the algorithm not adding links, is competitive only for structured problems at the left of the
complexity peak. This leads us to conclude that when problems do not show some structure,
or are not under-constrained, ABT,,; has to be selected only if some privacy policy justifies its
use.

Regarding the nogood selection heuristic, we observe clear benefits on unstructured prob-
lems but only minor advantages on structured ones. Apparently, the structure of the meeting
scheduling problems prevents the heuristic to find large jumps over the network.

While ABTjep,, appears as a good algorithm for asynchronous backtracking, the following
question remains: how many In fo messages to allow through a temporary link? In the reported
experiments this parameter was adjusted manually after some trials. We believe that it has not
to be a fixed parameter of the algorithm, but it could be adjusted automatic and dynamically,
customized for each agent. The automatic selection of this parameter is a direction for further
research.

9 Conclusion

We have proposed a simple basic procedure for asynchronous backtracking search. This pro-
cedure is sound but does not guarantee termination. We have shown some extensions of this
basic procedure that handle nogoods and links in a way such that termination is ensured. Some
of these procedures were already known, such as Yokoo’s well-known ABT. Others are orig-
inal. They differ only in their extensions with respect to the basic kernel. We believe that
this characterization of asynchronous backtracking will help better understand these non triv-
ial mechanisms. On this well-specified basis, we discussed the choices that can be made, and
their consequences (such as the addition of links or the nogood storage). We proposed some

24

improvements that fit well the behavior of really distributed networks (such as the possibility
of processing messages by packets). Finally, we compared experimentally some of the algo-
rithms and heuristics presented in the paper, and drawn some conclusions on what are the good
techniques depending on the type of problem to solve.

References

[1]

C. Bessiere, A. Maestre, and P. Meseguer. Distributed dynamic backtracking. In M.C.
Silaghi, editor, Proceedings of the IJCAI’01 workshop on Distributed Constraint Reasoning,
pages 9-16, Seattle WA, 2001.

R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.
Artificial Intelligence, 34:1-38, 1988.

E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency trade-offs in distributed
meeting scheduling by constraint-based agents. In M.C. Silaghi, editor, Proceedings of the
workshop on Distributed reasoning, pages 63-71, Seattle WA, 2001.

Y. Hamadi, C. Bessiere, and J. Quinqueton. Backtracking in distributed constraint net-
works. In Proceedings ECAI’98, pages 219-223, Brighton, UK, 1998.

Hamadi Y. Traitement des problemes de satisfaction de contraintes distribués. PhD thesis,
Universite Montpellier II, July 1999. In French.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558-565, 1978.

A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of distributed
constraints processing algorithms. In M. Yokoo, editor, Proceedings AAMAS’08 workshop
on Distributed Constraint Reasoning, pages 86-93, Bologna, Italy, 2002.

M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggregations. In
Proceedings AAAI’00, pages 917-922, Austin TX, 2000.

M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Consistency maintenance for ABT. In
Proceedings CP’01, pages 271-285, Paphos, Cyprus, 2001.

M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Hybridizing ABT and AWC into a polyno-
mial space, complete protocol with reordering. Technical report, EPFL, Lausanne, 2001.

B. Smith. Phase transition and the mushy region in constraint satisfaction problems. In
Proceedings ECAI’94, pages 100-104, Amsterdam, The Netherlands, 1994.

M. Yokoo. Personal communication, 2000.

M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for
formalizing distributed problem solving. In Proceedings ICDCS’92, pages 614—621, 1992.

M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac-
tion problem: formalization and algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10(5):673-685, 1998.

Yokoo M., Ishida T. Search Algorithms for Agents. In Multiagent Systems, G. Weiss editor,
Springer, 1999.

25

[16] Yokoo M. Distributed Constraint Satisfaction, Springer, 2001.

[17] Yokoo M. , Suzuki, Hirayama K. Secure Distributed Constraint Satisfaction: Reaching
Agreement without Revealing Private Information. In Proc. of the 8th CP, 387—401, 2002.

26

