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ABSTRACT
In the scope of distributed constraint reasoning, the main algo-

rithms presented so far have a feature in common: the addition of
links between previously unrelated agents, before or during search.
This paper presents a new search procedure for finding a solution in
a distributed constraint satisfaction problem. This algorithm makes
use of some of the good properties of centralised dynamic back-
tracking. It ensures the completeness of search, and allows a high
level of asynchronism by sidestepping the unnecessary addition of
links.

1. INTRODUCTION

In the last years, the AI community has shown an increas-
ing interest for distributed problem solving using the agents
paradigm. Different parts of the problem are held by dif-
ferent agents, which behave autonomously and collaborate
among themselves in order to achieve a global solution. The
World Wide Web offers many opportunities to actually solve
real problems through agents.

Several works consider constraint satisfaction in a dis-
tributed form (see [Yokoo and Ishida, 1999] for an introduc-
tion). These works are motivated by the existence of natu-
rally distributed constraint problems, for which it is impos-
sible or undesirable to gather the whole problem knowledge
into a single agent, to solve it using centralised algorithms.1

There are several reasons for that. The cost of collecting
all information into a single agent could be taxing. This in-
cludes not only communication costs, but also the cost of
translating the problem knowledge into a common format,
which could be prohibitive for some applications. Further-
more, gathering all information into a single agent implies
that this agent knows every detail about the problem, which
could be undesirable for security or privacy reasons.

Considering complete algorithms for distributed con-
straint satisfaction, we have to mention the pioneer
work of Yokoo and colleagues, who proposed the asyn-
chronous backtracking (ABT) and the asynchronous weak-
commitment search (WCS) algorithms [Yokoo et al., 1992,
Yokoo, 1995, Yokoo et al., 1998]. These algorithms require
a total ordering among agents, static for ABT and dy-
namic for WCS (alternative dynamic orderings are inves-

1By centralised we mean single processor, as opposite to distributed.

tigated in [Armstrong and Durfee, 1997]). When a dead-
end is detected, nogoods are exchanged among agents
and stored, which may require a substantial amount of
extra message passing and extra memory. A differ-
ent approach is the distributed backtracking algorithm
(DIBT) [Hamadi et al., 1998, Hamadi, 1999], which per-
forms graph-based backjumping without nogood exchange.
Agents are ordered according to an agent hierarchy and
agent identifiers. Unfortunately, this algorithm has been
shown incomplete [Yokoo, 2000]. We give a few details in
appendix A. More recently, a new algorithm, called Asyn-
chronous Aggregation Search (AAS) has been proposed in
[Silaghi et al., 2000]. It is based on exchange of sets of par-
tial solutions in a constraint-based distributed model, while
the other algorithms were proposed to deal with a variable-
based distributed model.

In this paper, we propose a new algorithm for the variable-
based distributed model. In designing this algorithm our
goal was twofold: first, we tried to remain as general as pos-
sible in the communication protocol to allow some flexibil-
ity regarding the type of messages exchanged (if some level
of privacy is required for example [Meseguer, 2000]). Sec-
ond, we tried to keep the best of ABT and DIBT to obtain an
algorithm as asynchronous as possible, minimising the mes-
sage passing while remaining complete. From ABT, we take
its use of nogoods. From DIBT, we keep the early will to
avoid linking unrelated agents. Our algorithm has also some
clear relations to Dynamic Backtracking [Ginsberg, 1993].

The paper is organised as follows. In Section 2, we pro-
vide some preliminaries for distributed constraint satisfac-
tion. Section 3 presents our new algorithm with its proof
of correctness and completeness. In Section 4, we discuss
briefly the main features of the existing distributed search
algorithms, with their weaknesses. Finally, Section 5 con-
tains the conclusion.

2. PRELIMINARIES

Classically, constraint satisfaction problems (CSPs) have
been defined for a centralised architecture. A finite CSP is
defined by a triple
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A solution of the CSP is an assignment of values to variables
which satisfies every constraint. Typically, CSPs are solved
by a single, tree-search procedure with backtracking.

A distributed CSP (DisCSP) is a CSP where variables,
domains and constraints are distributed among automated
agents. Formally, a finite variable-based distributed CSP is
defined by a 5-tuple
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is a function that maps each variable to its
agent.

Each variable belongs to one agent. The distribution
of variables divides

�
in two disjoint subsets,
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, called intra-agent

and inter-agent constraint sets, respectively. An intra-agent
constraint � � is known by the agent owner of 	C
�� � � � 
 , and
it is unknown by the other agents. Usually, it is consid-
ered that an inter-agent constraint � 3 is known by every
agent that owns a variable of 	C
$� � � 3 
 [Yokoo et al., 1998,
Hamadi et al., 1998].

As in the centralised case, a solution of a distributed CSP
is an assignment of values to variables satisfying every con-
straint (although distributed CSP literature focuses mainly
on solving inter-agent constraints). Distributed CSPs are
solved by the collective and coordinated action of agents�

, each holding a process of constraint satisfaction. Agents
communicate by sending messages, with the following as-
sumptions [Yokoo et al., 1998],

1. An agent can send a message to other agents iff it
knows the addresses of the receivers.

2. The delay in delivering a message is finite but random;
for a given pair of agents, messages are delivered in the
order they were sent.

Without loss of generality and for simplicity purposes, in
the rest of the paper we assume that,

1. Each agent owns exactly one variable; we identify
the agent number with its variable index (
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). From this assumption, all constraints
are inter-agent constraints, so
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2. All constraints are binary. A constraint is written I �J3
to indicate that it binds variables

�B�
and

�83
. From this

assumption, we will speak about the network of agents
when referring to the graph having agents as nodes and
inter-agent constraints as edges.

We have to point out here that this definition of distributed
CSPs fits the one used in ABT and DIBT, but not the one
used in AAS. In this last case, there are no inter-agent con-
straints. The way consistency of values is ensured for a vari-
able shared by two constraints not in the same agent is dupli-
cation of the variable on these agents. The communication
protocol guarantees consistency of the values taken by this
variable on each agent (simulating an equality constraint be-
tween the two copies of the variable).

3. DISTRIBUTED DYNAMIC BACKTRACKING
(DISDB)

3.1. CENTRALISED DB
Dynamic backtracking (DB) [Ginsberg, 1993] is a tree

search procedure that keeps for each removed value � of
variable

� 5
a justification of the form,
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 � , as long as values 
 � M ������� are assigned
to variables
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. This justification is called a directed

nogood where its left-hand and right-hand sides are defined
from the position of

N
. Nogoods are maintained in a no-

good store. DB selects an unassigned variable as current,
and tries to assign its values. If a value is inconsistent with a
previously assigned variable, that value is discarded and the
corresponding nogood is added to the store. When all values
of the current variable

�B5
are ruled out by some nogood, they

are resolved computing a new nogood as follows. Let be� 3
the chronologically most recent variable in the left-hand

side of the nogoods, with value
M
. The left-hand side of the

new nogood is the conjunction of the left-hand sides of all
nogoods for values of

� 5
removing variable

� 3
. The right-

hand side of the new nogood is
�,3P?
 M

. The new nogood
is added to the store, removing those nogoods with variable�43

in their left-hand side. Variable
�83

is unassigned, and the
procedure iterates selecting a new variable for assignment. It
is proved that DB is complete, and terminates with a correct
answer.

3.2. DISTRIBUTED DB
Distributed Dynamic Backtracking (DisDB) performs dy-

namic jumps over the set of conflicting agents. In the con-
straint graph, constraints are oriented forming a directed
acyclic graph, from which an agent hierarchy may be built
using heuristic criteria (max-degree, for instance) follow-
ing the DisAO ordering scheme [Hamadi et al., 1998]. If
no heuristic is used, this hierarchy defaults to lexicographic
ordering among agents. Considering a generic agent QR���TS
in the hierarchy, UWV � QR�R�XS 
 , it the set of agents constrained
with QR���TS and appearing at higher levels in the hierarchy.
Conversely, UZY � QR���TS 
 is the set of agents constrained withQR�R�XS appearing at lower levels in the hierarchy. This hier-
archy induces a partial order among agents, which should



be completed to form the total order ��� (using for instance
agents identifiers) to ensure completeness.

The DisDB algorithm is executed on each agent, keeping
its own agent view and nogood store. The agent view of QR���TS
is the set of values that it believes to be assigned to agents
before QR�R�XS in the total order. The agent view is always con-
sistent with the nogoods in the store. Agents exchange as-
signments and nogoods. DisDB always accepts new assign-
ments, updating the agent view accordingly. When receiv-
ing a nogood, it is accepted if it is consistent with the agent
view in UWV � Q ���XS 
�� � QR���TS � , otherwise it is discarded due
to obsolescence. An accepted nogood is used to update the
agent view of agents not in U V � QR���TS 
 , and the set of stored
nogoods. When all values of an agent are discarded by some
nogood, the set of stored nogoods is resolved as in the cen-
tralised case, generating a new nogood which is sent to the
variable in its right-hand side. This variable plus all vari-
ables in the left-hand side of the new nogood that are not inU V � QR���TS 
 are unassigned in the agent view, and nogoods are
updated accordingly. The process terminates when achiev-
ing quiescence, meaning that a solution has been found, or
when the empty nogood is generated, meaning that the prob-
lem is unsolvable. DisDB uses three types of messages,

1. Stop( Q��8Q����
	 ). No solution exists and the receiver
agent stops. It involves an extra agent called Q��4Q����
	 ,
which in turn is in charge of stopping the whole net-
work.

2. Info( ��� F �
� � 	C
C���B� ). It informs ��� F �
� that QR���TS has taken	C
C���B� as value. It is sent to U Y � QR���TS 
 agents.

3. Back( ���
������� ). Backtracking message, containing
���
������� and addressed to the agent in its right-hand
side.

The DisDB algorithm appears in Fig. 1. Messages are ex-
changed by getMsg and sendMsg primitives. The main
procedure DisDB is a receiving loop that switches depend-
ing on the type of message received. After receiving the
Stop message from the Q��8Q����
	 agent, the procedure termi-
nates.

After an Info message, the procedure GoAhead is exe-
cuted. It updates the agent view, referred as 	��4I�� ����� � �
(line 1), and if the new information disables the current value
	���� 
��
��� (line 2), a new value is tried (line 3). If such value
exists, U Y � QR���TS 
 is informed of the new value of QR�R�XS (lines
5, 6). Otherwise (i.e., all values of QR�R�XS are discarded), the
procedureResolveNogoods is called (line 7). GoAhead
is also called with a null argument to assign QR���TS a value
consistent with its agent view (line 2 of DisDB and line 10
of ResolveNogoods).

A Back message is accepted (line 1 of Resolve-
Conflict) if it is consistent with the value of QR���TS and
the agent view for those agents for which QR���TS has a direct
link to know their values through Info messages. Otherwise,
the Back message is discarded by obsolescence. After ac-
cepting a Back message, the agent view is updated on those

agents not in U V � QR���TS 
 (line 2), it is stored in the nogood
store (line 3) and a new value for QR���TS is tried (line 4). If
such value exists, U Y � QR�R�XS 
 is informed of the new value ofQR�R�XS (lines 6, 7). Otherwise (i.e., all values of Q ���XS are dis-
carded), the procedure ResolveNogoods is called (line
8).

Procedure ResolveNogoods resolves all nogoods
in the store 	������
��������Q , generating a new nogood
� �
�����
������� (line 1). The variable appearing in the right-
hand side of � �
�����
������� is the variable in 	������
�������CQ
closer to Q ���XS in the total order � � among agents. If
the empty nogood is generated, the problem has no solu-
tion and the Stop message is sent (lines 3, 4). Otherwise,
� �
�����
������� is sent (line 6). Then, the variable in the right-
hand side of � �
�����
������� is unassigned in the agent view
(line 7). All variables in the left-hand side of � �
�����
�������
not in UWV � QR���TS 
 are unassigned, and the nogoods supported
for them are forgotten (lines 8, 9).

Finally, procedure ChooseValue selects a value con-
sistent with the agent view, updating the nogood store if
needed, and procedure Update updates the agent view and
keeps the coherence between the agent view and the set of
stored nogoods. Procedures lhs and rhs compute the left-
hand and right-hand sides of a nogood, respectively.

3.3. AN EXAMPLE
A simple problem to illustrate DisDB appears in Fig. 2. It
contains four variables

� � ���! ���!" ���!#
ordered lexicograph-

ically, their corresponding domains and three constraints?

connecting the first three variables with

�$#
. Each vari-

able belongs to a different agent. One possible execution
of DisDB appears in Fig. 3 (time increasing downwards),
showing for each agent (or equivalently, for its owned vari-
able) and time, its context (as a vertical vector), the set of
nogoods stored and the exchanged messages.

Initially, the four variables take the first value in their do-
mains, and the first three inform

�%#
of their values. Variable�&#
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and
�% 

, computes two no-
goods
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 M
,
�  
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 , it resolves

them and sends a backtracking message to
�  

. Variable
� #

forgets nogoods including
�  

and takes value 
 .
Next, it receives a message from

�$"
which causes a new

nogood
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 N �&# ?
 
 , which is resolved with��� 
 M N � # ?
 M

, producing a backtracking message to
� "

.
Variable

� #
forgets nogoods including

� "
and takes value 
 .

Variable
�% 

receives its nogood but it has no other value
available. It computes the new nogood

N � � ?
 M
, which

is sent to
� �

. Variable
�% 

forgets nogoods including
� �

and
takes value 
 , informing

�%#
. Variable

�%"
receives its no-

good and changes its value to
M
, informing

� #
. Variable

� �
receives its nogood and changes its value to 
 , informing

� #
.

Variable
�!#

receives messages from
� � ���% ����!"

(in that or-
der) with their new values. After receiving the new value 

of
� �

,
�!#

forgets its previous nogood
� � 
 M N �!# ?
 M

, and
the new nogood
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 N �!#(?
 
 is generated.
�!#

takes
value

M
. No nogood is generated from the message of

�  
.

The message of
� "

generates the nogood
� " 
 M N � # ?
 M

,



procedure DisDB()
1 compute � �������	��

��� ��� �����	��

�

;
2 GoAhead(null);
3

�������
false;

4 while ( � �	���
) do

5 � �����
getMsg();

6 switch( � ���
� � �"!#�
)

7 Stop :
�����$�

true;
8 Info : GoAhead( � ���

);
9 Back : ResolveConflict( � ���

);
procedure GoAhead( � ���

)
1 if ( � ���

) then Update( � �&%('"���)��*+��� � ���
� %(',�
�)�	*&�
));

2 if ( �-� ���
or � consistent( � �&.0/1�32
�4� � �+%('"�
�5��*+�

) then
3 � �&.6/1�32
�0�

ChooseValue();
4 if ( � �+.6/1�32
�

) then
5 for each 7�8+9 �3�;: � � �����"�<

�

do
6 sendMsg:Info( 7�8&9 �=�#� � �&.6/1�32
�

);
7 else ResolveNogoods();
procedure ResolveConflict( � ���

)
1 if consistent( � �&%('"�
�5��*+���

� ���
� %(',�
�5��*+�
in �>� �����	��

�@?BA,���	��
�C

) then
2 Update( � �&%('"�
�5��*+��� � ���
� %('"�
�5��*+�

);
3 add( � ���
� %('"���)��*+�ED �-� �&.6/&�=2
�4� � �1FG'	�H','"�1�

);
4 � �&.6/1�32
�0�

ChooseValue();
5 if ( � �+.6/1�32
�

) then
6 for each 7�8+9 �3�;: � � �����"�<

�

do
7 sendMsg:Info( 7�8&9 �=�#� � �&.6/1�32
�

);
8 else ResolveNogoods();
9 else if � obsolete( � ���
� %('"�
�5��*+�

on
���	��


, � �&.6/1�32
�
) then

10 SendMsg:Info( � ���
� �������H��I,� � �&.6/1�32
�
);

procedure ResolveNogoods()
1

�J��K0FG'"�H'"'"�L�
solve( � �1FG'"�H'"'"�1�

);
2 if (

�J�	K0FG'	�H','"��M
empty)

3
���J���

true;
4 sendMsg:Stop(system);
5 else
6 sendMsg:Back(

�J��K0FG'"�H'"'"�
);

7 Update( � �&%('"�
�5��*+���
rhs(

�J��K0FG'"�H'"'"�
)
�

unknown);
8 for each N /HI�:

lhs(
�J��K(FO'"�H'"',�

) P,�>� �����"�<

�
9 Update( � �&%(',�
�5��*+��� N /HI(�

unknown);
10 GoAhead(null);
function ChooseValue()
1 for each N :BQLR4�����"�<

�

not eliminated by � �1FG'	�H'"',�1�
do

2 if consistent( N � � �&%('"���)��*+�
) then

3 return ( N );
4 else /* S : var inconsistent with N */
5 add( S M N /1�=TUD �-N � � �1FG'	�H','"�1�

);
6 return (empty);
procedure Update( � �&%('"���)��*+�����J��K6%('"�
�5��*+�

)
1 include(

�@��K(%(',�
�)�	*&��� � �&%(',�
�)�	*&�
);

2 for each
�
�V: � �1FG'	�H','"�1�

3 if ( � consistent(lhs
���
�&�����J��K6%('"�
�5��*+�

)) then
4 � �&FO'"�H'"',�1�W� � �1FG'"�H'"'"�1� P A����+C

;

Figure 1: The Distributed Dynamic Backtracking algorithm.

which is solved with the previous one, causing a backtrack-
ing message to

�%"
. Variable

�!#
forgets nogoods including�!"

and takes again value
M
.

Variable
� "

receives its message and discards previous
nogood

� � 
 M N � " ?
 
 because it is obsolete:
� �

is

not in U V � � " 
 and in the received nogood
� �

has a different
value. Variable

�%"
takes value 
 and informs

�!#
, which does

nothing because the new value is consistent with its context
and stored nogoods. The execution ends and a solution has
been found.
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Figure 2: A simple problem.

3.4. CORRECTNESS AND COMPLETENESS
We need to demonstrate that DisDB is sound, complete

and that it terminates. Additionally, we will show that its
spatial complexity is polynomially bounded.
Theorem 1 (Spatial complexity) Each agent performing
distributed dynamic backtracking requires a polynomially
bounded storage space.
Proof. The space needed in each agent is dominated by
the storage requirements of the nogoods. There can be no
more than � of these, each one referring in the worst case
to � variables. So, the storage requirement in each agent is
bounded by [ � ��� 
 . \
Theorem 2 (Soundness) DisDB is sound, in that it only
claims a solution if one exists.
Proof. Whenever DisDB detects a solution, all agents are
in a stable state, waiting for a message. Such a state is in-
compatible with constraint violation, which would entail at
least one message. \

The following lemma will be used below, because we
need some data about which variables can be part of a no-
good.
Lemma 1 Given � � the total order imposed by DisAO, in
every nogood �$� of the form

� � � 
 	 � K �! 
 	  K ������� � 

	 � N �43@?
 	 3�
 , we have the following property:2 �B5

such that
�B5

appears in the right side of �$� ,
�D5 � � �83 .

Proof. This is true when a nogood is recorded after an Info
message, because our distributed agent ordering ensures that
for all

���
in U V �3] 
 , ��� � � �83 . Then, if a nogood is generated

due to a domain wipe-out, it will be sent to the conflicting
agent

���
which number in the ordering is closest to QR�R�XS ,

thus ensuring that every variable in left side precedes
�D�

in
the sense of � � . \

To demonstrate that DisDB is complete and terminates,
we will consider

� F Q �_^ 0�`a`
, an alternate implementation of

DisDB with full nogood recording, making sure to enforce
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Figure 3: Execution trace of DisDB on the problem of Fig. 2. Time increases downwards.

only those nogoods relevant in the current context by mark-
ing those DisDB would drop as obsolete. We will prove
that it is correct and complete, then we will show that the
way DisDB discards obsolete nogoods is safe with respect
to those properties.
Theorem 3

� F Q � ^ 0�`a`
is complete and terminates.

Proof. Soundness is immediately inherited from DisDB:
the mechanism ensuring termination detection is the same
for both algorithms.

Our argument for completeness is close to the one given in
[Silaghi et al., 2000]. Every nogood resulting from an Info
message is a redundant constraint with regard to the DisCSP
to solve. Since all additional nogoods are generated by logi-
cal inference when a domain wipe-out occurs, an empty no-
good cannot be inferred when a solution exists.

Furthermore, since the extensive storage of nogoods
prunes a monotonically increasing amount of the search
space, our algorithm will eventually reach, in a finite amount
of time, a state � where every inconsistent assignment is for-
bidden. If no solution exists, the empty nogood will eventu-
ally be inferred, and the algorithm will terminate.

If a solution exists, however, an obsolete nogood �$��� may
prevent one agent in our system to actually take a consistent
value. In such case, we can prove that �$� � may only be
deemed viable2 for a finite amount of time after � is reached.

Let
���

be the variable storing �$� � , and
�83

the variable in-
volved in �$� � that made it obsolete by changing its value.
We know by lemma 1 that

�,3
precedes

���
in the � � order-

ing. If
� 3

belongs to UWV � � � 
 , an inform message is on its
way to make �$� � officially obsolete. If not, then provided
the value 	 � that �$� � forbids is the only assignment for

� �
belonging to a solution,

� �
will eventually reach a dead-end,

send a Back message to the nearest preceding culprit, and
mark as obsolete the nogoods involving a conflicting vari-

2as opposed to obsolete.

able not belonging to U V � � � 
 , which include �$� � . Hence
the theorem. \

So far we have shown that our algorithm is sound, com-
plete, and terminates if all nogoods are stored (

� F Q �_^ 0�`a`
).

We shall now prove that forgetting some nogoods is safe
with respect to those desirable properties. Namely, the way
nogoods are discarded shall not cause our algorithm to fall
into an infinite loop, nor shall it subtract completeness.

In DisDB, a generic agent QR���TS discards an obsolete no-
good �$� � when receiving Info or Back messages with in-
compatible values for some of the variables appearing in
the left side of �$� � , and also drops potentially obsolete no-
goods when sending a Back message whose left side con-
tains agents not belonging to U V � QR�R�XS 
 , rather than merely
marking those nogoods as obsolete.

Hence, from lemma 1, the safety of these operations with
respect to termination can be induced in a way not unlike
that of Yokoo in [Yokoo et al., 1998].
Lemma 2 Let

���
be the variable of the agent with lowest

index in the distributed agent ordering.
� �

can never fall
into an infinite loop, despite the way DisDB discards obso-
lete nogoods.
Proof. From lemma 1, we derive that whenever agent QR���TS
receives newer information about an agent

� �
inside a back-

track message (which will forcibly discard all those nogoods
in QR���TS inconsistent with the new value for

�B�
),
���

precedesQR�R�XS in DisAO. In particular, whenever
� �

receives a nogood
�$� , it has an empty left side, so �$� won’t make any existing
nogood obsolete, nor will it ever be removed by any later
one. \
Lemma 3 If the first ��� #

agents with regard to DisAO are
not trapped in an infinite loop,

�D5
cannot fall into an infinite

loop because of the way nogoods are discarded.
Proof. Let us suppose

�D5
is actually looping. That means

that it keeps forgetting nogoods about its predecessors be-
cause they keep changing value. But since we assume that



no agent among
� ����������� 5

V
�

is in an infinite loop, they will
either stabilise, in which case

�B5
will exit its so-called infi-

nite loop, or generate an empty nogood, which will also stop
the entire system. So,

�B5
is not in an infinite loop. \

Theorem 4 DisDB is sound, complete, and terminates.

Proof. By recurrence, lemma 2 and lemma 3 show that
none of our agents can fall into an infinite loop, despite the
way DisDB discards obsolete nogoods.

Furthermore, discarding potentially obsolete nogoods (or
marking them as obsolete) when generating a Back message
is not only safe, but it has been shown to be a necessary
condition to ensure termination. (See proof of theorem 3.)

Lastly, discarding nogoods is safe with respect to com-
pleteness, since if inconsistency cannot be induced from a
set of nogoods � , it cannot be induced from any subset of
� . This, along with theorem 2 and theorem 3 concludes our
demonstration. \

4. RELATED WORK

When trying to find a solution in a variable-based DisCSP,
until now we had the choice between three main algorithms,
namely, ABT, AWC, and DIBT.

The main feature of ABT is the way it processes dead-
ends to ensure completeness of search. When a dead-end
occurs on an agent

F
(i.e.,

F
cannot take any consistent value

for its variable
���

), the agent
F

builds the set of instantia-
tions that lead to the wipe out of its domain, and sends the
“nogood” to the agent

]
with the lowest priority in this set.

When agent
]

receives the nogood, it checks the compatibil-
ity of the nogood with its own view of the other variables.
The reason is that the nogood can be based on obsolete in-
formation, and then should be discarded. But, since this no-
good can contain variables, say

� 5
, unknown for agent

]
(be-

cause there was a link between
� �

and
� 5

but not between� 3
and

� 5
), agent

]
will ask to the agents � containing such

a variable, to add a link from � to
]
. This link was not part

of the initial network since there were no constraint between��5
and

�43
.

The question that arises is: how many such links will be
added during the search of a solution? If the actual number
will obviously depend on the instance and the way dead-
ends occur, we can give an upper-bound to the worst-case
behaviour. In fact, the number of links ABT can add dur-
ing the search for solution can be characterised the same
way as the complexity is computed in Adaptative Consis-
tency [Dechter and Pearl, 1998]. Given the total ordering
� used by ABT on the agents, if � � � 
 is the width of the
network associated with � , the number of links that can fi-
nally be added is ����� � � 
 � � � � � 
�� #�
��
	 � 1 � 1

, where
� � � 
 � � � � � 
�� #�
��
	

is the number of possible links inside
a set formed by an agent and its parents at the end of the
search. This depends on the induced width of the network
and on the quality of the initial ordering � .

Regarding AWC, the ordering of the agents is dynamic,
having the possibility to change during search. However, to
ensure completeness, nogoods cannot be discarded as it is

the case in ABT, and thus AWC has an exponential space
complexity.

Finally, DIBT tries to preserve as much as possible the
distributed structure of the network. It builds a hierarchy
of the agents thanks to the Distributed Agents Ordering
(DisAO) procedure, without adding any new link (neither
before nor during search). Any heuristics (max-degree for
instance) can be used to guide DisAO in building the hierar-
chy. DIBT does not store nogoods. Unfortunately, it appears
that it misses completeness [Yokoo, 2000].

5. CONCLUSION
We have proposed a new search procedure, DisDB, for

finding solutions in a distributed constraint satisfaction
problem. It is complete (does not lose solutions). It uses the
network topology as much as possible, avoiding the defini-
tive addition of communication links between agents not
sharing inter-agent constraints. This property is important
to ensure as much asynchronism as possible, and to avoid
messages sent to agents which may not need to be informed
(no common knowledge).
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A. THE FALSE PROMISES OF DIBT

1.1. COMPLETENESS IN QUESTION
The claim in [Hamadi et al., 1998], apart from describ-

ing a distributed agent ordering method, was to propose a
complete, fully distributed asynchronous backtrack scheme,
in which communications always occur between connected
variables (no links added) and no learning scheme is in-
volved.

Unfortunately, while this is memory-wise very cost effec-
tive, this can lead the algorithm to overlook some possibly
valid instantiations. Figure 4 shows a network of five agents,
with one variable per agent, running DiBT. Links represent
inequality constraints, and all variables have the two values� 
 � M � in their initial domain, except

�$"
, whose initial do-

main is
� 
 � .

X1 X2

X3 X4 X5

{a,b} {b,a}

{a} {a,b} {a,b}

Figure 4: A sample distributed constraints network

DiBT could possibly run that way:

1.
� �

and
�  

respectively select 
 and
M
, and inform their

children.

2. Since
�%"

has no other choice than 
 , it backtracks to
� �

,
while

�!#
backtracks to

�% 
due to its parents conflicting

values.

3.
� �

and
�% 

now respectively select
M

and 
 , and inform
their children.

4.
�!#

backtracks to
�% 

, whose domain is empty, the back-
track follows up to

� �
, which infers inconsistency.

In this case, DiBT fails to find a consistent assignment
to the network (namely, {b,b,a,a,a}). One reason for this
is that

�% 
, being unaware of

� �
’s behaviour, does not reset

its domain when
� �

changes from 
 to
M
, and enforces the

suppression of its own value 
 .
In order to alleviate these difficulties and ensure com-

pleteness, [Hamadi, 1999] extends � 
�������� Q and I � F �
�$�����
sets to make sure that � � S$��	C
C� ��
 messages will reset all rel-
evant domains and that

M ��� �
� � 
 messages will be able to
backtrack all the way up to the potential culprits, adding be-
forehand the same links ABT ([Yokoo et al., 1992]) would
add during search.

1.2. A FLAW IN DIBT’99
But [Yokoo, 2000] pointed out that DiBT still isn’t com-

plete after those extensions. This is because when checking
a nogood for obsolescence, DiBT only takes into account its
own value, disregarding its � 
$������� Q ’ values. This can lead
to erroneous deductions, as the algorithm merges nogoods
from different contexts. An example of such behaviour is
illustrated by figure 5, where links represent inequality con-
straints.

X1

X2

X3

{c,b}

{a,b}

{a,c}

Figure 5: Another sample network

Given a sufficiently ill-favoured timing, DiBT could run
that way:

1.
� �

selects 
 , and informs its ��� F �
�$����� .
�$ 

selects � ,
and informs its ��� F �
� .

�%"
has an empty domain, and

backtracks to
�  

with the nogood
� � � 
 
 K �  
 � 
 .

2. Meanwhile,
� �

is forced to change value, due to a mes-
sage from a

% 
�������� pruning value 
 .
� �

selects
M

and
informs its ��� F �
�$����� . This message prunes value

M
in�! 

’s domain.

3. The backtrack message sent by
�$"

at step 1 now reaches�! 
. This nogood is obsolete in this agent’s context (

� �
is

M
, not 
 ), but since it is only checked against the local

value, it is processed.
�  

is forced to backtrack with the
nogood

� � � 
 M 

.

4.
� �

’s domain is empty,
� �

backtracks. Solutions have
been overlooked. The algorithm is not complete.

1.3. PATCHING THE HOLE
This bug could obviously be fixed by checking incoming

nogoods against the whole context: each agent should make
sure that incoming and outgoing information is consistent
with its local view of the system’s global state. That way,
the nogood sent by

�$"
at step 1 would be deemed obsolete

and discarded by
�% 

at step 3. Upon receiving pending mes-
sages,

�%"
would select value 
 , and the subproblem would

stabilise on this partial solution.
While this is by no way a proof for completeness, the

faulty behaviour illustrated above is thus fixed, and the rest
of the arguments in [Hamadi, 1999] guaranteeing DiBT’s
completeness should hold.



1.4. CONCLUSION
When presenting DiBT, the authors wanted to offer a

complete asynchronous search scheme while avoiding two
pitfalls common to the main distributed search algorithms:
the addition of links during search, which destroys the initial
structure of the problem, and the extensive storage of no-
goods generated upon failure, which demands a potentially
exponential storage space.

But, as already mentioned, DiBT in its later version
actually adds before search the same links ABT or AAS
([Silaghi et al., 2000]) would add during search. This, along
with a more careful control of obsolete nogoods, is neces-
sary to ensure completeness.

On the other hand, some of the learning schemes involved
in AAS and later versions of ABT yield a polynomial-space
nogood store.

The idea of building a complete asynchronous search al-
gorithm with polynomial space learning but without addi-
tional links was, from that point on, a natural one. This is
the aim of Distributed Dynamic Backtracking.


