
Auton Agent Multi-Agent Syst (2007) 15:91–108
DOI 10.1007/s10458-007-0020-8

Reaching pareto-optimality in prisoner’s dilemma using
conditional joint action learning

Dipyaman Banerjee · Sandip Sen

Published online: 30 April 2007
Springer Science+Business Media, LLC 2007

Abstract We consider the learning problem faced by two self-interested agents
repeatedly playing a general-sum stage game. We assume that the players can observe
each other’s actions but not the payoffs received by the other player. The concept
of Nash Equilibrium in repeated games provides an individually rational solution for
playing such games and can be achieved by playing the Nash Equilibrium strategy for
the single-shot game in every iteration. Such a strategy, however can sometimes lead
to a Pareto-Dominated outcome for games like Prisoner’s Dilemma. So we prefer
learning strategies that converge to a Pareto-Optimal outcome that also produces a
Nash Equilibrium payoff for repeated two-player, n-action general-sum games. The
Folk Theorem enable us to identify such outcomes. In this paper, we introduce the
Conditional Joint Action Learner (CJAL) which learns the conditional probability of
an action taken by the opponent given its own actions and uses it to decide its next
course of action. We empirically show that under self-play and if the payoff structure
of the Prisoner’s Dilemma game satisfies certain conditions, a CJAL learner, using a
random exploration strategy followed by a completely greedy exploitation technique,
will learn to converge to a Pareto-Optimal solution. We also show that such learning
will generate Pareto-Optimal payoffs in a large majority of other two-player general
sum games. We compare the performance of CJAL with that of existing algorithms
such as WOLF-PHC and JAL on all structurally distinct two-player conflict games
with ordinal payoffs.
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1 Introduction

It has been argued that a learning algorithm playing a repeated game should at least
converge in self-play and ensure the safety or minimax value for both the players
[1]. To achieve this, researchers have tried to develop algorithms that converge to
the Nash Equilibrium of the single-stage game that is being played repeatedly. We
refer to such an equilibrium as Nash Equilibrium for Single-Stage Game (NESSG).
NESSG is a strategy profile such that no player has any incentive to unilaterally
deviate from its own strategy. Also an NESSG for the single-stage game is a Nash
Equilibrium strategy profile for the repeated game and it always guarantees safety
value for all the players. Due to these reasons, a number of learning mechanisms
have been developed which have been proved to converge to NESSG under certain
conditions [1;2;6;12;16]. However, there are two problems with choosing NESSG as
a solution. First, for a given game, there can be multiple NESSGs and to reach a
mutual agreement among the players about choosing one of them can be a non-trivial
task. Second, for games such as the Prisoner’s Dilemma, the only NESSG outcome
is Pareto-Dominated and playing that repeatedly will result in a Pareto-Dominated
outcome for the iterated version of the game as well1. Hence, instead of trying to
converge to an NESSG, we set our learning goal to converge to a solution that is
Pareto-Optimal and produces a Nash Equilibrium payoff for the repeated game. We
refer to these outcomes as Pareto-Optimal Outcomes sustained by Nash Equilibrium
(POSNE). We show in Sect. 3 how the Folk Theorem [9] can help us identify such
POSNE outcomes of a repeated game.

Most of the previous learning mechanisms developed for game playing assume
complete transparency of the payoffs [6;10;12], i.e., players can observe the payoffs
received by all the players after they make their action choices. This may not be pos-
sible in a large number of real environments. A more realistic assumption would be
to allow the players to observe the actions of all other players but not their payoffs. A
game in which players cannot observe opponent’s payoffs is known as an incomplete
information game. In this paper we consider only incomplete information games. In
such games, a player cannot compute the opponent’s best response to its own strat-
egy, as that will depend on the opponent’s payoff structure. This in turn prevents the
players from directly computing the Nash Equilibria of the game where every player’s
strategy is a best response to other players’ strategy. We believe, however, that it is still
possible to reach mutually preferred outcomes against a class of agents by observing
the opponent’s action choices over time.

Claus and Boutilier have shown the dynamics of reinforcement learning in a coop-
erative game [5]. They described two kind of learners: Independent Learners and Joint
Action Learners. An Independent Learner (IL) assumes the world to be stationary
and ignores the presence of other players. A Joint Action Learner (JAL), however,
acknowledges the impact of the other player and computes the joint probabilities of
different actions taken by all the players and uses them to calculate the expected utility
of its own actions. Unfortunately, JALs do not necessarily perform significantly better
than ILs as the Q-values associated with the actions of a JAL learner can degenerate
to that learned by an IL learner [5;20]. We believe that the primary impediment to
JALs performance improvement is their assumption that actions of different agents

1 An outcome is Pareto-Dominated by another outcome if at least one player prefers the latter and
no player prefers the former. An outcome that is not Pareto-dominated is Pareto-Optimal.
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are uncorrelated, which is not true in general. In this paper, we present a new learner
which understands and uses the fact that its own actions influence the action choices of
other agents. Instead of marginal probabilities, it uses conditional probabilities of the
actions taken by the opponent given its own actions, to compute the expected utility
of its actions. We refer to this class of learners as Conditional Joint Action Learners
(CJALs).

In self-play, CJALs do not converge to Nash Equilibrium every time. On the other
hand, they converge to a Pareto-Optimal outcome under certain restrictions over the
payoff structure. In this paper, we primarily focus on repeated play of the game of
Prisoner’s Dilemma between two players and derive the conditions for which two
CJAL players will converge to a Pareto-Optimal outcome. We also describe the effect
of different exploration strategies on these conditions. We show that under these
restrictions a combination of purely explorative and purely exploitative exploration
will lead to Pareto-Optimal outcomes. We support our claim with experimental results.

The rest of the paper is organized as follows: we discuss relevant game theory
concepts and related work in this domain in Sect. 2. In this section, we also show how
to identify the POSNE outcomes using the Folk Theorem [9]. Section 3 describes the
Prisoner’s Dilemma game and the CJAL learning algorithm. In Section 4, we derive
the conditions for converging, in self-play, to the mutually cooperative outcome in the
Prisoners Dilemma game for CJAL learners. In Section 5 we provide experimental
results and finally, in Sect.6, we conclude the paper and suggest directions for future
work.

2 Background

In this section we review relevant concepts from game theory and discuss the related
work from this field. We also show how the Folk Theorem can be used to identify
POSNE outcomes.

2.1 Relevant game theory concepts

Stage Game: A stage game can be defined by a tuple (S,A1 . . . A|S|,U1 . . . U|S|), where
S is the set of players. A player i ∈ S can choose an action ai from its action set
Ai. Choosing an action deterministically corresponds to a pure strategy. A pure
strategy profile q is a set of pure strategies chosen by all the players. We denote
the set of all possible pure strategy profiles as Q, which is the Cartesian product
×i∈S Ai. Q also corresponds to the set of pure strategy outcomes. A strategy for
a player i is defined as a probability distribution πi over Ai according to which
i chooses its actions. Note that a pure strategy is a strategy where one action is
chosen with probability 1. A strategy profile p is defined as the set of strategies
used by all players: {π1, . . . , π|S|}. We define X as the set of all possible probability
distributions over Q. The set of all possible strategy profiles is a subset of X that can
be factored into independent probability distributions for the players. The payoff
function for a player i is defined as a function Ui : X → R that decides the payoff
a player would receive for a particular strategy profile. In general, for a strategy
profile {π1, . . . , π|S|} the payoff to agent i will be denoted as Ui(π1, . . . , π|S|).
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Nash Equilibrium: A strategy profile is said to be in Nash Equilibrium if no player
has an incentive to unilaterally change its strategy when every player plays its part
of that strategy profile. Formally, for a game played by n players if πi denotes
the strategy for player i, then the strategy profile πi . . . πn is said to be in Nash
Equilibrium iff

∀i, Ui(π1, . . . , πi, . . . πn) ≥ Ui(π1, . . . , π̂i, . . . , πn)

where π̂i denotes any strategy for player i other than πi. There exists at least one
Nash Equilibrium for any stage game. At any Nash Equilibrium, every player’s
strategy is a best response to the others’ strategies.

Minimax Strategy and Safety Value: A minimax strategy for a player is a strategy
which ensures the largest payoff it can receive regardless of the strategy adopted
by the other player. For a player i, we denote the set of all possible probability
distributions over Ai as σi. In a two-player game, the minimax value for player i
playing against a player j is then given by

Uminimax
i = max

πi∈σi
min
πj∈σj

Ui(πi, πj).

This value is also known as the safety value of a player and can be computed using
linear programming techniques without the knowledge of opponent’s payoffs.

Pareto-Optimality: An outcome or a payoff assignment is said to be Pareto-Optimal
in a game if there exists no other possible payoff assignment where at least one
player is better off and the others are at least as well off. A probability distribution
x∗ ∈ X is said to produce a Pareto-Optimal (PO) outcome iff there exists no x ∈ X
s.t.

∀i ∈ S, Ui(x) ≥ Ui(x∗)

and ∃j ∈ S s.t.
Uj(x) > Uj(x∗).

In that case the payoff vector U∗ = {U1(x∗), . . . , U|S|(x∗)} is called a Pareto-Opti-
mal outcome.

Pareto-Dominance: A payoff assignment corresponding to some x1 ∈ X is said to
Pareto-Dominate another payoff assignment corresponding to some x2 ∈ X iff

∀i ∈ S, Ui(x1) ≥ Ui(x2)

and ∃j ∈ S s.t
Uj(x1) > Uj(x2).

Note that a payoff assignment is Pareto-Optimal if it is not Pareto-Dominated by
any other outcome.

Finitely and Infinitely Repeated games: When the same stage game is played repeat-
edly, it is called a repeated game. A repeated game can be finite or infinite. How-
ever, an infinitely repeated game does not mean that it is played an infinite number
of times. Infinitely repeated games can eventually terminate but the players are
uncertain about the exact point of time when the game will terminate. In a finitely
repeated game, however, the players know a priori exactly how many times the
game will be played. It can be proved using backward induction that playing the
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Nash Equilibrium strategy of the stage game is the only Nash Equilibrium for a
finitely repeated version of the game. For infinitely repeated games, however, the
set of Nash Equilibria can be much larger. In this paper, we consider only infinitely
repeated games.

Average Payoff Criterion: The total payoff received by the players for an infinitely
repeated game can be infinite and hence incomparable. To alleviate this problem,
game theorists use averaging mechanisms such as the δ-discounted average payoff
criterion or the limit of average payoff criterion. In this paper, we only consider
the latter criterion to model and compare payoff values received by the players.
If Uj

i is the payoff received by player i at the jth iteration, then according to this
criterion one sequence of payoffs Ui = (U1

i , U2
i , . . .) is better for player i than

another sequence Ûi = (Û1
i , Û2

i , . . .) iff,

lim
M→∞

M∑

k=1

Uk
i

M
≥ lim

M→∞

M∑

k=1

Ûk
i

M
.

We do not discuss the merits and demerits of such a payoff criterion but point out
that any payoff that can be achieved as an expected payoff corresponding to some
strategy-profile of the stage game can also be achieved as an average payoff of the
repeated version of that game [19].

2.2 Multiagent learning algorithms

A number of multiagent learning algorithms have been developed by both game the-
orists and multiagent system researchers in the past few years for playing repeated
games. It has been argued that a learning algorithm should at least converge under
self-play and guarantee the safety value for all the players. The second objective is
easily justified as the players can simply switch to their minimax strategy to guarantee
the safety value instead of receiving a lower payoff. The first constraint is compara-
tively more strict and is harder to achieve. Some researchers also include rationality as
a desired criterion which requires playing a best response against an opponent using a
stationary strategy [1;22]. A player following a stationary strategy always chooses its
action from a fixed probability distribution. We now discuss some multiagent learning
techniques from current literature.

Best Response Learners: In any iteration of a repeated game, a Best Response
learner plays that action which is a best response to the action chosen by the
opponent in the last iteration. Unfortunately, BR learners perform poorly against
an opponent who changes its strategy frequently enough. For example, in the game
of matching pennies shown in Table 1, a BR learner would always receive a payoff
of−1 against a player who chooses its two actions alternately. Also, under self-play,
BR learners are not guaranteed to converge and can produce payoffs less than the
safety value.

Table 1 Payoff matrix for
Matching Pennies

H T

H 1,−1 −1,1
T −1,1 1,−1
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Fictitious Play Learners: An improvement over the Best Response learner is the fic-
titious play (FP) learner [4;9]. Instead of playing best response to the last action,
FP would play the best response to the average of the strategies played in the past
by the opponent. FP performs better than the Best Response learner but fails to
overcome the problems of Best Response learning in general. Both BR and FP
players choose their strategy without knowledge of opponents’ payoff structure.

Infinitesimal Gradient Ascent Learner: Singh, et al. [26] introduced and analyzed the
concept of an Infinitesimal Gradient Ascent Learner (IGA) which changes its
strategy in the direction of positive payoff gradient, but with an infinitesimal step
size. They have shown that under self-play IGA will either converge to a Nash
Equilibrium or will generate the expected payoff of a Nash Equilibrium. Bowling
and Veloso introduced the WOLF-PHC algorithm which provably converges to a
Nash Equilibrium for any two-action, two-player general sum game [1]. This is one
of the strongest known convergence property for a multi-agent learning algorithm.
In Sect. 5 we empirically compare the performances of WOLF-PHC and CJAL.

No-regret Learners: Researchers have also developed algorithms with the goal of
minimizing regret for not playing an action at a particular iteration. There are two
types of regrets: Internal regret and External regret. It has been proven that no-
external regret for all the players is a necessary and sufficient condition for ensur-
ing convergence to the Nash Equilibrium. On the other hand, no-internal regret
ensures convergence to correlated equilibrium. A number of algorithms such as
FPL [13], Weighted Majority [15], and Regret Matching [25] have been developed
that attempts to minimize the external regret. Jafari and Greenwald [11], on the
other hand, have developed an algorithm which is targeted to minimize internal
regrets.

Apart from these classes of learners, researchers have also used single-agent rein-
forcement learning techniques such as Q-Learning and extended it for multi-agent
domains with some success [7;10;12;16–18;23;31]. These algorithms have been shown
to be effective for particular types of games. Most of these algorithms, however, assume
complete information games and compute their strategies using the opponent’s payoff
structure.

Other multiagent systems literature that make the incomplete information assump-
tion used in this paper include work that requires no communication between agents,
e.g., use of aspiration levels [27], and approaches that use some form of inter-agent
communication external to the learning algorithms to facilitate concurrent learning,
e.g., use of commitment sequences to enforce stationary environments [14], action
revelation [24], trigger transition between different phases of learning [29], use of
expert’s advice [8], etc. Though Vidal and Durfee explicitly models the influence of a
player’s action on others their calculations require more information than we assume is
available [30]. For a more complete list of multiagent reinforcement learning research,
refer to recent surveys of the literature[21;28].

2.3 Identifying POSNE outcomes

We now describe how to identify the POSNE outcomes for any infinitely repeated
2-player game using the Folk Theorem [9]. Let us consider the game of Prisoner’s
Dilemma. In the two-player Prisoner’s Dilemma (PD) game, each agent has a choice
of two actions: cooperate (C) or defect (D).
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Table 2 The Prisoner’s
Dilemma Game

C D

C R,R S,T
D T,S P,P

Table 2 provides the payoff vectors for each of the pure strategy profiles in Q for
the PD game. The following inequalities hold for the PD payoff of matrix:

T > R > P > S (1)

and
2R > T + S. (2)

Using the values R = 3, S = 0, T = 4, and P = 2, we can plot the payoffs in Fig. 1.
The points A, B, C and D represent these payoff vectors in a 2-dimensional plane,
where the x and y axes represent the row and column players payoffs, respectively.
According to the average payoff criterion, any payoff corresponding to points A, B,
C and D can be achieved in the repeated version of the game by simply repeating
the action-pair that produces that payoff for the stage game. Let P denote this set of
points. The convex hull for the points in P is the smallest convex polygon C such that
∀p ∈ P, p is either on the boundary or inside C. The convex hull for the Prisoner’s
Dilemma game is shown as the quadrilateral ABCD in Fig. 1. The region bounded by
the convex hull for a set of points P contains all the points that can be generated using
a convex combination of the points in P. In Fig. 1, the quadrilateral ABCD includes
all the payoff vectors that are feasible as expected payoffs for some probability dis-
tributions over the pure strategy profiles in Q and can also be realized as an average
payoff of the corresponding repeated game.

The minimax point is the point corresponding to the minimax payoffs for both the
players. Such a point will always be either inside or on the boundary of the convex
hull. In Fig. 1 the point A(1,1) is the minimax point. The Folk Theorem tells us that

Fig. 1 Payoff space for the prisoner’s dilemma game
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Fig. 2 Payoff space for matching pennies

any point inside the convex hull of feasible payoffs and which Pareto-Dominates the
minimax point corresponds to some Nash Equilibrium payoff for the repeated game
according to the average payoff criterion [9]. We observe that a point in the payoff
space is Pareto-Dominated by all other points which are to the right and above it
(including the points that are either on the vertical or on the horizontal line passing
through it). Hence, in Fig. 1, any point in the shaded region will coincide with the aver-
age payoff that can be obtained by playing some Nash Equilibrium strategy-profile
of the repeated game. We refer to this shaded region as Area Dominating Minimax
(ADM). If such an ADM exists, then we can define POSNE outcomes as the points
in the ADM that are Pareto-Optimal. In Fig. 1, any point on the boundary PCQ is
a POSNE outcome. We call PCQ the Pareto-Frontier for this game. In general, we
define the Pareto-Frontier as the set of Pareto-Optimal points in the ADM. Note that
if there exists an ADM for a game, an outcome for the game is POSNE if and only if
it resides on the Pareto-Frontier. In the particular case when no point dominates the
minimax point, the ADM does not exist. In this case, the minimax-point will be both
a Nash Equilibrium and a POSNE outcome. For example, in Fig. 2, which shows the
payoffs for the game of Matching Pennies (see Table1), no point Pareto-Dominates
the minimax point B. Hence, B is both a POSNE outcome and a Nash Equilibrium
for this game.

2.4 POSNE outcomes in the prisoner’s dilemma game

From Table 2 and inequalities 1 and 2 we can observe that the dominant strategy for a
player in the Prisoner’s Dilemma game is to defect and the defect-defect action com-
bination is a dominant strategy equilibrium and the only Nash equilibrium, NESSG,
for this stage game. Though this solution guarantees minimax payoff for both the
players, it is Pareto-Dominated by the outcome (C,C) and hence is not a POSNE
outcome. In fact, all pure strategy outcomes, except the Nash Equilibrium outcome
are Pareto-Optimal. Note that, (C,C) not only maximizes social welfare (sum of pay-
offs), but is the only POSNE outcome from the set of pure strategy combinations and
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resides on the Pareto-Frontier PCQ (see Fig. 1). The outcomes (D,C) and (C,D) are
not POSNE as they reside outside the ADM represented by the shaded region APCQ.
So the paradox is that even though there exists an action-combination which Pareto-
Dominates the NESSG outcome, the players still converge to the Pareto-Dominated
Nash Equilibrium outcome using individual rationality. We claim that a CJAL learner,
under self-play and without the knowledge of opponent’s payoff, can find this coop-
erate-cooperate solution which maximizes the social welfare and can converge to it
given certain payoff structures (still satisfying the inequalities 1 and 2) and suitable
exploration techniques. We provide an intuitive analysis and show empirical results
to justify our claim.

3 Conditional joint action learner

We now present the details of the CJAL learning mechanism. We assume a set S of
2 agents where each agent i ∈ S has a set of actions Ai and repeatedly plays a stage
game. In every iteration each agent chooses an action ai ∈ Ai. We denote the expected
utility of an agent i at iteration t for an action ai as Ei

t(ai). In case of the Prisoner’s
Dilemma game, Ai = {C, D} for both the agents.

We now introduce some notations and definitions to build the framework for CJAL
learning. We denote the probability that agent i plays action ai at iteration t as Pri

t(ai)

and the conditional probability that the other agent, j, will play aj given that the ith
agent plays ai at iteration t as Pri

t(aj|ai). The joint probability of an action pair (ai, aj)

at iteration t is given by Prt(ai, aj). Each agent maintains a history of interactions at
any iteration t as

Hi
t =

⋃

ai∈Ai
aj∈Aj

ni
t(ai, aj)

where ni
t(ai, aj) denotes the number of times the joint action (ai, aj) has been played

till iteration t from the beginning. We define the number of times agent i has played
action ai until iteration t as

ni
t(ai) =

∑

aj∈Aj

ni
t(ai, aj).

Definition 1 A CJAL learner is an agent i who at any iteration t chooses an action
ai ∈ Ai with a probability proportional to Ei

t(ai) where

Ei
t(ai) =

∑

aj∈Aj

Ui(ai, aj)Pri
t(aj|ai)

where aj is the action taken by the other agent.

Using results from probability theory we can rewrite the expression for expected
utility as

Ei
t(ai) =

∑

aj∈Aj

Ui(ai, aj)
Prt(ai, aj)

Pri
t(ai)

. (3)
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If we approximate the probability of an event as the fraction of times the event
occurred in the past then Eq. 3 takes the form

Ei
t(ai) =

∑

aj∈Aj

Ui(ai, aj) ∗
ni

t−1(ai, aj)

ni
t−1(ai)

. (4)

Unlike JAL [5], a CJAL learner does not assume that the probability of the other
player’s taking an action is independent of its own action. A CJAL player learns the
correlation between its actions and the other agent’s action and uses the conditional
probabilities instead of marginal probabilities to calculate the expected utility of an
action. Therefore, a CJAL learner splits the marginal probability of an action aj taken
by the other player into conditional probabilities: Pri

t(aj|ai) ∀ai ∈ Ai and considers
them as the probability distribution associated with the joint action event (ai, aj).

An intuitive reasoning behind this choice of probability distribution can be obtained
by considering each agent’s viewpoint. Imagine that each agent views this simulta-
neous move game as a sequential move game where it is the first one to move. To
calculate the expected utility of its action, it must then try to find the probability
of the other player’s action given its own action, which is basically the conditional
probability we described above.

3.1 Learning utility estimates

We now discuss the learning mechanism used to update the expected utility values
when utilities for outcomes are either not known a priori or can be non-deterministic.
We note that it would be unreasonable to use a single-agent Q-learning scheme for
CJAL to update the expected utility of its individual actions. Instead, we use a joint
action Q-learning for CJAL to learn the expected utilities associated with every action
combination (joint actions) and weight them by their probability of occurrence. So
we rewrite the equation 4 as:

Ei
t(ai) =

∑

aj∈Aj

Qi
t(ai, aj) ∗

ni
t−1(ai, aj)

ni
t−1(ai)

, (5)

where Qi
t(ai, aj), the estimated payoff from joint action (ai, aj) is updated after the

(t − 1)th interaction as

Qi
t(ai, aj)← Qi

t−1(ai, aj)+ α(Ui(ai, aj)−Qi
t−1(ai, aj)), (6)

where 0 < α ≤ 1 is the learning rate. Note that if the reward associated with a particu-
lar joint action is deterministic (which is the case for the Prisoner’s Dilemma game we
consider) Eq. 5 simplifies to Eq. 4. Henceforth, we will use Eq. 4 to calculate expected
utility.

3.2 Exploration techniques

We use two distinct exploration phases in CJAL. We assume that the agents explore
actions randomly for N initial interactions and thereafter use an ε-greedy exploration.
In the ε-greedy exploration phase, an agent chooses the action that produces maxi-
mum expected utility with a probability 1 − ε and explores other actions randomly
with probability ε. Therefore, the probability that at iteration t, agent i will choose
action ai, Pri

t(ai), ∀i ∈ 1, 2 and ∀ai ∈ Ai, is given by
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Pri
t(ai) =

⎧
⎪⎨

⎪⎩

1
|Ai| , if t < N
1− ε, if t > N and a = a∗

ε
|Ai|−1 , if t > N and a 
= a∗

where a∗, the highest expected utility action, is defined as

a∗ = arg max
ai∈Ai

(Ei
t−1(ai)).

4 Dynamics of CJAL learning

We now intuitively analyze the dynamics of the CJAL learning mechanism in self-play.
We consider two CJAL learners playing the Prisoner’s Dilemma game and analytically
predict the sequence of actions they would take with time.

For the Prisoner’s Dilemma game, we have Ai = {C, D}, i = 1, 2. We denote
Ui(C, C) = R, Ui(C, D) = S, Ui(D, D) = P and Ui(D, C) = T. In the exploration
phase, as both agents choose their actions from a uniform distribution, the expected
number of occurrences of each outcome will be N/4 after N iterations. Also the
expected number of times an agent would play each of its two actions is N/2. So, if N
is sufficiently large, the expected values of the conditional probabilities will be:

Pri
N(D|C) = Pri

N(C|C) = Pri
N(D|D) = Pri

N(C|D) = 1/2

for both the players. Therefore, it can be expected that the expected utility of the two
actions after N iterations will converge to

Ei
N(C) = Ui(C, C)Pri

N(C|C)+Ui(C, D)Pri
N(D|C) = R+ S

2
(7)

and

Ei
N(D) = Ui(D, C)Pri

N(C|D)+Ui(D, D)Pri
N(D|D) = T + P

2
. (8)

Based on the constraints on the payoffs in the Prisoner’s Dilemma game (see
inequalities 1 and 2) we then have Ei

N(D) > Ei
N(C), i.e., the defect action is prefer-

able to the cooperate action. Therefore, if both agents choose their actions greedily
(ε = 0), they will play action D. They will continue playing action D t interactions
after N as long as Ei

N+t(D) > Ei
N+t(C). Now as they continue playing action D,

Pri
t(C|D) will tend to 0 and Pri

t(D|D) will tend to 1. However, Pri
t(D|C) and Pri

t(C|C)

will still remain at 1
2 . Eventually the expected utilities will be Ei(C) = (S + R)/2

and Ei(D) = P. Now if at some iteration t after N, S+R
2 > EN+t(D) ≥ P, then both

players will switch to C and receive a payoff R. As R > S, EN+t(C) will monotonically
increase and will always be greater than EN+t(D). So they would continue playing
C in subsequent iterations and hence will converge to the (C, C) outcome. We make
this claim based on the assumption that after N iterations each outcome will occur
approximately N/4 times. Using the weak law of large numbers, we can say that it will
indeed be true if N→∞. However, if R+S < 2P then EN+t(C) will never supersede
EN+t(D) as EN+t(D) can never be less than Ui(D, D) and the learners will converge
to the (D, D) outcome.

The scenario, unfortunately, is not so simple if ε > 0. We will experimentally show
that for ε greater than some threshold ε0, convergence to (C, C) may not be achieved.
From the above discussion we can however make the following conjecture:
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Conjecture 1 In the Prisoner’s Dilemma game, if (R + S) > 2P and if the agents
randomly explore for a finite number of iterations N and then adopt a greedy explora-
tion technique (ε = 0) then the probability of CJAL players converging to the (C, C)

outcome tends to 1 as N approaches infinity.

5 Experimental results for CJAL

We experiment with two CJAL learners repeatedly playing the Prisoner’s Dilemma
game. Agents keep a count of all the actions played to compute the conditional proba-
bilities and update their beliefs after every iteration. We vary the R, S, T and P values
and use two different exploration techniques:

1. Choosing actions randomly for the first N iterations and then always choose actions
with highest estimated payoff.

2. Choosing actions randomly for first N iterations and ε-greedy exploration thereaf-
ter, i.e, explore randomly with probability ε > 0, otherwise choose action with the
highest estimated payoff.

5.1 CJAL in self-play in prisoner’s dilemma

We used N as 400 in all the experiments. In the first experiment we use payoff values
such that R+ S > 2P: R = 3, S = 0, T = 5, P = 1. We plot the expected utilities of
two actions against the number of iterations in Fig. 3. We also compare in Fig. 4 the
values of four different conditional probabilities mentioned in Sect. 3. We observe
from Fig. 4 that as the players continue to play defect after the first N interactions, the
probability Pr(D|D) increases, but this reduces the expected utility of taking action D
whereas Pr(C|C) and Pr(D|C) remain unchanged. This phenomena is evident from
Figs. 4 and 3. A little after iteration number 1,000, expected utility of D falls below that
of C and so the agents starts cooperating. As they cooperate, Pr(C|C) increases and
Pr(D|C) decreases. Consequently, the expected value for cooperating also increases,
and hence the agents continue to cooperate.

In the next experiment, we continue using ε = 0 but choose the payoff values such
that R + S < 2P: R = 3, S = 0, T = 5, P = 2. We plot the expected utilities of two
actions against the number of iterations. The results are shown in Fig. 5. We observe
that as R + S < 2P, though the expected utility of defect reduces to P, the payoff
of the defect-defect outcome, it still supersedes the expected utility for cooperation
R+ S/2. Hence the agents continue to defect and the system converges to the NESSG
of the PD game.

In our next experiment we use ε = 0.1 and the same payoff configuration as in the
first experiment. The results are plotted in Fig. 6. We observe that though the expected
value of defecting reaches below the value of R+S

2 , due to exploration, Pr(D|C) is also
more than the ε = 0 case, which effectively reduces the expected utility of coopera-
tion. As a result, players find it more attractive to play defect, and hence converge to
the defect-defect outcome.

5.2 Comparison with other learners in general-sum games

In the next set of experiments, we compare the performance of CJAL with WOLF-
PHC and JAL for arbitrary 2-player general sum games. We used all possible
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Fig. 4 Conditional probabilities when R+ S > 2P and ε = 0

structurally distinct two-player, two-action conflict games as a testbed for CJAL.
In each game, each player rank orders the four possible outcomes from 1 to 4. We use
the rank of an outcome as the payoff to that player for any outcome. In a conflict game,
there exists no outcome that is most preferred by both the players. Steven Brams lists
57 such game matrices with ordinal payoffs [3]. We used these game matrices as a
testbed to empirically verify convergence behavior of CJAL.

We played two CJAL players against each other in all of these 57 games repeat-
edly and observed their convergence behavior. In these experiments we used the first
exploration technique i.e., ε = 0. To evaluate the performance of CJAL we used the
following criteria:

Average Social Welfare: Sum of the payoffs obtained by the two players in their
converged state, averaged over 57 games.
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Average Product of Payoffs:Product of the payoffs obtained by two players in their
converged state, averaged over 57 games.

Success Rate:Percentage of games, out of the 57 games, in which the players converge
to a POSNE outcome.

We compared our results with that of WOLF-PHC and JAL, in self-play, on these
57 games using these evaluation criteria. We used 10,000 interactions for each run and
averaged the results over 20 runs for each game. We only took the average of the pay-
offs obtained in the last 1000 iterations to approximate the final converged value. The
results are then averaged over all the 57 games and are shown in Table 3. The first two
columns represent the average social welfare and product of the payoffs, respectively.
The third column represents the proportion of games in which the algorithms have
converged to a POSNE outcome. We also compared our results with the average Nash
Equilibrium payoffs for all these stage games. We observe that CJAL outperforms
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Table 3 Comparison of JAL,
WOLF-PHC and CJAL on
2× 2 Conflict Games

Social welfare Product of Success rate
payoffs

JAL 6.1 9.13 0.81
CJAL 6.14 9.25 0.86
WOLF-PHC 6.03 9.01 0.75
Nash 6.05 9.04 0.75

Table 4 Payoff matrix for
chicken game

C D

C 3,3 2,4
D 4,2 1,1

Table 5 Payoff matrix for
battle of sexes

F O

F 4,3 0,0
O 0,0 3,4

Table 6 Social welfare
generated by JAL,
WOLF-PHC and CJAL on
standard games

PD1 PD2 Chicken BS MP

JAL 2 4 6 7 0
CJAL 6 4 6 7 0
WOLF-PHC 2 4 6 7 0
Nash 2 4 6 7 0

WOLF-PHC and JAL on all these metrics. For example, CJAL converges to a POSNE
outcome in 86% of the games, whereas WOLF-PHC and JAL converges to a POSNE
outcome in 75% and 81% cases, respectively. Also note that, in 75% of the games the
single-stage Nash Equilibrium, NESSG, solutions are also POSNE. This is the success
rate of WOLF-PHC which is proved to converge to the NESSG.

We also used some standard games such as Prisoner’s Dilemma, Chicken games
(Table 4), Battle of Sexes (BS) (Table 5) and Matching Pennies (MP) (Table 1) to
analyze CJAL performance in more detail. Although most of these games are already
included in these 57 conflict games, we explicitly show the Social Welfare generated
for these games in Table 6. For this experiment, we used two versions of the Prisoner’s
Dilemma game: PD1 (Table 7) and PD2 (Table 8). For PD1, where R + S > 2P,
CJAL converges to the cooperate-cooperate solution producing a Social Welfare of 6,
whereas both JAL and WOLF-PHC converges to the NESSG and produces a Social
Welfare of only 2. For PD2, where R+S < 2P, CJAL, as well as JAL and WOLF-PHC,
converges to the NESSG and produces a Social Welfare of 4. For games like Chicken,
Battle of Sexes and Matching Pennies, all the algorithms produce the same Social
Welfare. The Social Welfare for these games also coincides with the Social Welfare
produced by the NESSG.
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Table 7 Payoff matrix for The
Prisoner’s Dilemma Game,
R+ S > 2P (PD1)

C D

C 3,3 0,4
D 4,0 1,1

Table 8 Payoff matrix for The
Prisoner’s Dilemma game,
R+ S < 2P (PD2)

C D

C 3,3 0,4
D 4,0 2,2

6 Conclusion and future work

We described a Conditional Joint Action Learning (CJAL) scheme and analyzed its
performance for the two-player Prisoner’s Dilemma game and all possible structurally
distinct 2×2 conflict games with ordinal payoffs. The motivation behind CJAL was to
provide the agents with the opportunity to converge to a mutually beneficial outcome
against like-minded agents in incomplete information games. We propose that the
goal of concurrent multiagent learning should be to reach a Pareto-Optimal outcome
with Nash Equilibrium payoffs of the repeated game. We developed CJAL as a learn-
ing algorithm that can actually find such an outcome if one exists and converges to
that against similar players. Our design principle underlying CJAL was motivated by
the fact that in a multiagent setting a learner must consider that its action choices
influence the action choice of other learners. We analyzed the convergence of CJAL
in self-play in the Prisoner’s Dilemma game under different payoff constraints. We
showed that under certain restrictions on the payoff structures, CJAL can learn to
converge to the POSNE outcome in self-play. On the other hand IL or JAL always
converges to the stage game Nash Equilibrium which is a Pareto-Dominated outcome.

We also experimentally demonstrated the convergence of CJAL using limited
exploration in self-play to POSNE outcomes on a representative testbed. Though
CJAL was not explicitly designed to optimize measures like social welfare, fairness
(measured by the product of player payoffs) and success in converging to POSNE
outcomes, it outperforms JAL and WOLF-PHC on these metrics.

The results presented in this paper are for two-player, two-action games. We would
like to evaluate CJAL’s performance in more general n-player m-action settings.

The goal of our research is to find a generic multi-agent learning strategy that will
always produce a POSNE outcome in self-play in incomplete information settings.
Though CJAL is a significant step toward this goal, we would like to improve our
algorithm so that it can always guarantee such a convergence. We would also like
to understand and observe CJAL’s behavior in a heterogeneous population where
players use different learning strategies.
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