
Convergence to Pareto Optimality in General Sum Games
via Learning Opponent’s Preference

Dipyaman Banerjee
Department of Math & CS

University of Tulsa
Tulsa, OK, USA

dipyaman@gmail.com

Sandip Sen
Department of Math & CS

University of Tulsa
Tulsa, OK, USA

sandip@utulsa.edu

ABSTRACT
We consider the learning problem faced by two self-interested agents
playing any general-sum game repeatedly where the opponent pay-
off is unknown. The concept of Nash Equilibrium in repeated
games provides us an individually rational solution for playing such
games and can be achieved by playing the Nash Equilibrium strat-
egy for the single-shot game in every iteration. However, such a
strategy can sometimes lead to a Pareto-dominated outcome for the
repeated game. Our goal is to design learning strategies that con-
verge to a Pareto-efficient outcome that also produces a Nash Equi-
librium payoff for repeated two player n-action general-sum games.
We present a learning algorithm, POSNEL, which learns oppo-
nent’s preference structure and produces, under self-play, Nash equi-
librium payoffs in the limit in all such games. We also show that
such learning will generate Pareto-optimal payoffs in a large ma-
jority of games. We derive a probability bound for convergence
to Nash Equilibrium payoff and experimentally demonstrate con-
vergence to Pareto optimality for all structurally distinct 2-player
2-action conflict games. We also compare our algorithm with ex-
isting algorithms such as WOLF-IGA and JAL and showed that
POSNEL on average, outperforms both the algorithms.

1. INTRODUCTION
It has been pointed out by researchers that a learning algorithm
playing a repeated game should at least converge in self-play and
ensure the safety or minimax value to both the players [2]. To
achieve this, researchers have tried to develop algorithms that con-
verges to the Nash Equilibrium of the single-stage version of the
game that is being played repeatedly. We refer to such an equilib-
rium as Nash Equilibrium for Single Stage Game (NESSG). NESSG
is a strategy profile such that no player has the incentive to unilat-
erally deviate from its own strategy and hence, playing one’s part
of NESSG is considered to be individually rational. Also playing
the Nash Equilibrium strategy for the single stage game in each
iteration of the repeated game is a Nash Equilibrium for the re-
peated game and it always guarantees safety value for a player.
Due to these reasons, a number of learning mechanisms have been
proposed which were proven to converge to NESSG under certain

conditions [3, 2, 5, 8, 10]. There are two problems, however, with
choosing NESSG as a solution concept for repeated games. First,
there can exist multiple Nash Equilibria for a single-shot game and
to reach an agreement among the players for choosing one of them
is a non-trivial task. Secondly, for games such as the Prisoner’s
Dilemma, the only NESSG outcome is Pareto-dominated and play-
ing that repeatedly will result in a Pareto-dominated outcome for
the iterated version of the game as well1. To avoid these prob-
lems, instead of trying to converge to an NESSG, we set our learn-
ing goal to converge to a solution that is Pareto-efficient and pro-
duces Nash-Equilibrium payoffs for the repeated game. We refer
to these outcomes as Pareto Outcomes Sustained by Nash Equilib-
rium (POSNE). As a first step towards this goal, we developed an
algorithm called POSNEL (POSNE Learner) which is guaranteed
to converge to an outcome that is not Pareto-dominated by any other
pure strategy outcomes and produces Nash-equilibrium payoff for
the repeated game. In section 2 we show how the Folk Theorem [6]
can help us identify the POSNE outcomes of a repeated game.

Most previous learning mechanisms developed for game playing
assume complete transparency of the payoffs [5, 7, 8, 11], i.e,
players can observe the payoffs received by all the players after
they make their action choices. This may not be always possible
in real environments. A more realistic scenario is that of incom-
plete information games where players cannot observe opponent’s
payoffs2. In this paper we consider only incomplete information
games. However, we assume that the players can observe the ac-
tions of all other players. Note that in such games a player can-
not compute the opponent’s best response to its own strategy as
the best response will depend on the opponent’s payoff structure.
The lack of opponent’s payoff information also precludes the play-
ers from computing the Nash Equilibria of a game where every
player’s strategy is a best response to their opponents’ strategy. We
believe however, that it is still possible to predict opponents prefer-
ence rankings over different outcomes of the game by observing its
history of action choices. POSNEL players attempt to learn these
preference orderings and uses that knowledge to converge to an

1An outcome is Pareto-dominated by another if at least one player
prefers the latter and no player prefers the former. An outcome An
out come that is not Pareto-dominated is Pareto-efficient.
2Other multiagent systems literature that make the incomplete in-
formation assumption include work that requires no communica-
tion between agents, e.g., use of aspiration levels [14], and ap-
proaches that use some form of interagent communication external
to the learning algorithms to facilitate concurrent learning, e.g., use
of commitment sequences to enforce stationary environments [9],
action revealation [13], trigger transition between different phases
of learning [15], etc.

outcome that is not Pareto-dominated by any other pure strategy
outcome and produces Nash Equilibrium payoff on average under
self play for these incomplete information games.

This paper has been greatly motivated by the polynomial time algo-
rithm developed by Littman and Stone [12]. In their work, Littman
and Stone showed that for any general sum game, it is possible to
find a POSNE outcome (in particular, the Nash bargaining solution)
in polynomial time if the payoff structures of both the players are
known. They used a centralized search through the payoff space to
identify such an outcome. In this paper, we go one step forward
and show that it is also possible to find such an outcome in a dis-
tributed manner even without the knowledge of opponent’s payoff
structure for most of the general sum games. We prove that, ex-
cept for one case, two POSNEL agents when played against each
other are able to find and converge to a POSNE outcome by learn-
ing opponent’s preferences over the outcomes. In our previous
work [1] we developed a new class of learner called a Conditional
Joint Action Learner (CJAL) who tries to learn the correlation be-
tween actions taken by the players by computing the conditional
probability of the opponent’s actions given its own actions. It then
uses these conditional probabilities to calculate the expected utili-
ties of its different actions and plays that action which maximizes
it. CJAL has been observed to converge to the mutual coopera-
tion state in Prisoner’s Dilemma under certain conditions but fails
to reach Pareto-optimality in other general sum games. It contin-
uously adopts its strategy depending on the opponent’s expected
behavior which makes it impossible for the opponent to learn its
preference. We show that POSNEL follows a strategy that not only
helps a player to learn opponent’s preferences but also reveals its
own preference structure to the opponent. However unlike CJAL
and JAL, POSNEL does not immediately apply its learned knowl-
edge to modify its strategy. Instead, it continues to follow this strat-
egy throughout the learning phase to facilitate opponent’s learning
process. This in turn enables two POSNEL players to correctly
learn each others preferences and converge to an outcome that is
mutually preferred.

2. IDENTIFYING POSNE OUTCOMES
In this section we will describe how we can identify the POSNE
outcomes for any infinitely repeated 2-player games using the Folk
Theorem.

Let us consider the game of Battle of Sexes shown in Table 1. If
we plot these payoff vectors in a 2-dimensional plane where the x
and y axes represent the row and column players payoffs respec-
tively we get the plot shown in figure 1. The points A, B, C and D
represent the payoffs corresponding to all the pure strategy profiles
of the single shot game. Note that points A and D are coincident
at the origin (0,0) as the strategy profiles (F,O) and (O,F) produce
zero payoff for both the players. According to the average payoff
criterion for repeated games, any payoff corresponding to points A,
B, C and D can be achieved in the repeated version of the game
by simply repeating the action-pair that produces that payoff. Let
us call this set of points P . We can now construct the convex hull
for all such points in P as the smallest convex polygon C such that
∀p ∈ P , p is either on the boundary or inside C. The convex hull
for the Battle of Sexes game is shown as the polygon ABC in fig-
ure 1. The convex hull for a set of points P includes all the points
that can be generated using a convex combination of the points in
P . In this case it means, ABC includes all the payoff vectors that
are feasible as an expected payoff for some probability distributions
over the pure strategy profiles in Q. Littman and Stone showed in

Figure 1: Possible payoffs for mixed strategies for the Battle of
Sexes game.

F O
F 4,3 0,0
O 0,0 3,4

Table 1: Payoffs in the Battle of Sexes game.

their work [12] that any payoff vector inside the convex hull can
also be realized as an average payoff of the corresponding repeated
game.

Borrowing from their analysis, we can define the minimax point as
the point corresponding to the minimax payoffs for both the play-
ers. Such a point will always be either inside or on the convex hull.
In figure 1 point M(12/7,12/7) is the minimax point. Folk Theo-
rem tells us that any point inside the convex hull of feasible pay-
offs which Pareto-dominates the minimax point also produces Nash
Equilibrium payoff for the repeated game according to the average
payoff criterion [6]. Using the definition of Pareto-dominance we
observe that a point is Pareto-dominated by all other points which
are right and above of it (including the points that are either on the
vertical or on the horizontal line passing through it). So, accord-
ing to figure 1, any point in the shaded region will coincide with
the average payoff that can be obtained by playing some Nash-
Equilibrium strategy-profile of the repeated game. We name this
shaded region as ADM (Area Dominating Minimax). We now de-
fine POSNE outcomes as the points inside ADM that are Pareto-
optimal. Observe that, in figure 1 any point on the line segment BC
is a POSNE outcome. BC is called the Pareto-frontier for the game,
which is the portion of the convex hull that is inside ADM with all
the points over it being Pareto-optimal. Using this definition, an
outcome is POSNE if and only if it resides on the Pareto-frontier.
Note that if there exists an ADM an outcome for a game is al-
ways POSNE if and only if it resides on the Pareto-frontier. In the
particular case when no point dominates the minimax point, there
exists no ADM. In this case the minimax-point will be a Nash-
Equilibrium and also a POSNE outcome.

3. POSNEL ALGORITHM
In this section we will first describe the different phases of POS-
NEL algorithm and how it searches for a POSNE outcome. We
will then provide the actual algorithm and highlight its features.

A POSNEL agent models the repeated game as a finite state au-
tomata without any terminal state. The states of this automata are
the pure strategy outcomes Q of the stage game being played in ev-

ery iteration and are represented by the action-pair corresponding
to that outcome. Agents choose their actions in successive itera-
tions to trigger state transitions. Formally, we assume a set S =
{i, j} of 2 agents, where each agent i ∈ S has a set of actions Ai.
The agents repeatedly play a stage game. In every iteration they si-
multaneously choose an action from their respective action sets and
receive a payoff. We say that after t iterations agents are in state
st = {ai, aj} if the agents play the actions ai and aj respectively
at the tth iteration of the game. Let Q = Ai × Aj be the set of all
such possible states in the world which is same as the set of out-
comes of the stage game being played. We denote si

t as the action
taken by ith agent in tth iteration. So, in the above case, si

t = ai.
si

t is also known as the action played from state est−1. We also de-
fine the payoff function of agent i as Ui(st) : Q→ R, which gives
the reward obtained by agent i in state st. We denote the minimax
value that an agent i can achieve as mmi. In the POSNEL algo-
rithm, each agent maintains a history H t of all the states visited up
to tth iteration. We denote ŝt ∈ Ht as the last state visited before
coming to st which is different from st. We refer to this state as
the predecessor state of st.

Given these notations, we will now discuss the different phases of
operations for a POSNEL agent. A POSNEL player operates in two
phases, namely the Learning Phase and the Application Phase.

3.1 Learning Phase
In the learning phase POSNEL follows a simple strategy in order to
learn opponent’s preferences. Essentially, this strategy prescribes
that after coming to a state POSNEL should change its action with
a high probability only if the current state produces payoff less than
its predecessor state or less than its safety (minimax) value, other-
wise it repeats its last action with a high probability. To start the
process, a player chooses its actions randomly for the first two iter-
ations and then follows this strategy throughout the learning phase.
Formally, this strategy πi : Q×Q→ Ai followed by the ith agent
that decides its action from a state st after coming from a state ŝt

in the learning phase is given as below:

if Ui(st) ≥ max(Ui(ŝt), mmi)

πi(st, ŝt) =

play si
twith 1− ε1 probability

play any other action with probability ε1
|Ai|−1

Otherwise,

πi(st, ŝt) =

play si
twith ε2 probability

play any other action with probability 1−ε2
|Ai|−1

where 0 < ε1 = ε2 << 0.5 are two constants which have the same
value but have different connotations. ε1 denotes the probability
with the agent moves out from a state even when it yields better
payoff than its predecessor. Let us call it as the entropy of the
agent. On the other hand, ε2 denotes the probability with which
an agent wants to stay in a state even if it yields worse payoff than
its predecessor. We call it as the inertia of the agent. We also
name the action that is chosen with high probability as the strategic
choice and any other action as the exploratory choice. Note that,
any state can be reached from another state with at least ε2

1

|Ai|×|Aj |

probability.

3.1.1 Learning Opponent’s Preference Ordering from
Observation

While playing its own strategy πi, after every iteration t+1, a POS-
NEL agent i simultaneously estimates and updates the conditional
probability of its opponent j playing the action sj

t+1 from the last
state st given the predecessor state ŝt. The probability is denoted
as Pri(sj

t+1|st, ŝt) and can be computed as below:

Pri(aj |st, ŝt) =

No. of times j plays sj
t+1after transition ŝt → st

No. of ŝt → st transition (1)

Now if a player observes its opponent to repeat the last action sj
t

with a high probability after coming to a state st from state ŝt, it
learns that its opponent prefers st over ŝt. However note that, we
can not conclude that a player prefers ŝt over st if it frequently
moves out from st after coming from ŝt. This is because a player
can also move out from a state if it produces lower payoff than its
safety value. In our algorithm, we say a state st attracts another
state ŝt only if both the player prefers st over ŝt and if st is not
attracted by some other states. We put the second criteria to avoid
labeling a Pareto-dominated state as an attractor state.

Formally we can define an attractor state as below:

Definition 1: To an agent i, a state st attracts a state ŝt if Ui(st) ≥
max(Ui(ŝt), mmi) and Pri(sj

t |st, ŝt) > (1 − δ) and there is no
other state sk ∈ S, such that sk attracts st. State st is called an
attractor state and state ŝt is called a distractor state of st. ε1 <
δ < 0.5 is a constant.

Definition 2: To an agent i, a state st is called a minimax-attractor
if Ui(st) ≥ mmi and Pri(sj

t |st, ŝt) > (1 − δ) and there is no
other state sk ∈ S, such that sk attracts st.

Given the definitions, observe that an attractor state is always a
minimax attractor. However, the reverse is not true. Minimax at-
tractor states can exist even when there is no attractor states in the
environment, We later show that a state is minimax attractor iff it
resides inside ADM and is not Pareto-dominated by any pure strat-
egy outcomes. We show that a POSNEL agent always converges to
a minimax attractor state, if one exists.

We already said that in the learning phase after every state tran-
sition from st to st+1, a POSNEL player updates the probability
Pri(sj

t+1|st, ŝt)
3. This learning phase terminates after P such

transitions between all possible state-pairs. It then uses the above
definitions to find the attractor and the minimax attractor states in
the environment and converges to them in the application phase.
The criteria for classifying a state as attractor or distractor involves
the parameter δ, a probability threshold which signifies the oppo-
nents desire to stay in a state after transition from another state.
If the opponent repeats its last action with probability more than
(1−δ) our agent concludes that the opponent intends to stay in that
state and it prefers the current state more than its predecessor state.
On the other hand, the observed probability of playing the last ac-
tion being less than δ signals its inclination to move out from that
state after this transition. If the observed probability lies between δ
and 1− δ our agent fails to make any conclusion.

3.2 Application Phase
3Alternatively, the probabilities can be updated, based on the total
state transition counts, only at the end of the learning phase, and
before the application phase begins.

After P transitions between all possible state pairs POSNEL iden-
tifies the attractor and minimax-attractor states and moves to the
Application phase. We have proved that if P is sufficiently large,
under self-play POSNEL will correctly identify the attractor and
minimax-attractor states. Also, it is not necessary that different
learners use the same value for this parameter. We now describe
the strategy followed in the Application phase once these attractor
states are identified. Let us assume a POSNEL player i is in state st

at the beginning of the Application Phase. Depending on the nature
of st we can have six following cases. We prescribe a rule for each
of these cases that determines the subsequent action taken by the
player.

Case 1: If st attracts its predecessor ŝt then i continues to repeat
the last action si

t as long as it stays in st.

Case 2: If st does not attract ŝt and there exists a state s̄t that
attracts st, i plays the action s̄i

t. If st has multiple attractors, i
chooses that attractor which has maximum distractors. If multiple
attractors have the same maximum number of distractors, i chooses
randomly among them.

Case 3: If st does not attract ŝt and there exists no state s̄t that at-
tracts st, but there exists some other attractor states in the environ-
ment, the player continues to follow the strategy πi of the learning
phase.

Case 4: If there exists no attractor states and st is a minimax-
attractor then i plays si

t.

Case 5: If there exists minimax-attractors in the environment but
no attractor states and st is not a minimax-attractor then i chooses
a minimax-attractor state s randomly and plays si.

Case 6: If there exists no attractor states or minimax-attractor
states in the environment i follows the minimax strategy.

In the Application phase, POSNEL uses these rules in every itera-
tion to choose its action.

PROPOSITION 1. If there exists a non-null set of minimax-attractor
states Smm and if both POSNEL players correctly find all these
minimax-attractor states of the game during the learning phase,
they will converge to a state s ∈ SMM in the Application phase.

The proof of this and the remaining propositions have been omitted
due to space constraints.

We can now present our algorithm more precisely. Algorithm 1 out-
lines the POSNEL algorithm skeleton which, given the current state
st, previous state st−1 and the predecessor of the previous state
ŝt−1 returns an action for agent i and simultaneously learns its op-
ponents preferences. The two functions choose-action and update-
probability performs these functions respectively. The choose-Action
function given in Algorithm 2 decides which action to be taken
from the current state whereas the function update-Probability in
Algorithm 3 observes the current action taken by the opponent and
updates its conditional probability of taking different actions. It
also locates the attractor and minimax-attractor states in the envi-
ronment using the criteria given in Definitions 1 and 2.

From algorithm we can make the following observations:

Algorithm 1 POSNEL Algorithm
Input: history: list containing st, ŝt, st−1, ŝt−1

Input: LA, List of attractor state
Input: LD, List of distractor state
Input: LM , List of minimax-attractor state
Input: round, iteration No.
Input: count, 3 dimensional Array
Output: chosen action
count[sj

t][st−1][ŝt−1]++;
if round < 2 then

return a randomly chosen action
end if
if count of all possible transitions > P then

/* Application Phase */
if LA is empty then

if LM is empty then
return action according to the minimax strategy

else
if st ∈ LM then

return si
t

else
choose a state s randomly from LM
return si

end if
end if

else if st ∈ attractor(ŝt)) then
return si

t

else if attractor(st) is not empty then
s = arg maxs∈attractor(st)

(size of distractor(s))
return si

else
choose-action()

end if
else

/* Learning Phase */
update-probability()
choose-action()

end if

Algorithm 2 choose-action
Function: choose-action
Input: history, List containing st, ŝt, st−1, ŝt−1

if Ui(st) ≥ max(Ui(ŝt), mmi) then
choose si

t with probability 1− ε1
choose any action other than si

t with probability ε1
|Ai|−1

else
choose si

t with probability ε2
choose any action other than si

t with probability 1−ε2
|Ai|−1

end if

• Our agent maintains three global lists LA, LD and LM
which contains all the discovered attractor, distractor and
minimax attractor states respectively.

• A POSNEL agent i also maintain a list of states which after
every tth iteration contains the current state st, the last state
st−1 and the predecessor of the last state ŝt−1. Observe that,
if st 6= st−1, ŝt = st−1 otherwise, ŝt = ˆst−1.

• After every iteration t the variable count[sj
t][st−1][ŝt−1] is

incremented which denotes the number of times j played ac-
tion sj

t from state st−1 with the predecessor state as ŝt−1.
The probability Pri(sj

t |st−1, ŝt−1) is also updated using equa-
tion 1.

• Each state s ∈ Q is associated with an attractor list attractor(s)
and a distractor list distractor(s) that contains the states
which attracts s and the states that are attracted by s respec-
tively.

• A state can never be both an attractor and a distractor. We
put a state in LA only if it is not in LD. On the other hand, if
a state is already in LA and later found to be a distractor, we
remove it from LA and clear the contents of its distractor list.
We also remove this state from the attractor lists of its dis-
tractors. So, if there are 4 states with payoffs as (1,1), (2,2),
(3,3) and (4,4) then only (4,4) is recognized as the attractor
and all other states as its distractors.

• An agent terminates its learning phase if the number of tran-
sitions between all possible state-pairs occurs P times. As
the number of transitions between any two states si and sj is
same for both the agents, their learning phase terminates at
the same point.

4. CONVERGENCE OF POSNEL
We now discuss the convergence property of POSNEL. We claim
that under self-play POSNEL will eventually converge to an out-
come that produces Nash-Equilibrium payoff on average and will
not be Pareto-dominated by any other pure strategy outcome.

The proof of convergence is presented in three steps. First, we
prove that a state is minimax-attractor if and only if it resides in
ADM and is not Pareto-dominated by any other pure strategy out-
comes. We then point out the different cases that can arise and use
Proposition 1 to prove that if POSNEL discovers all the minimax-
attractor states in the learning phase POSNEL will always con-
verge to a minimax-attractor state. We also show that, when there
exists no minimax-attractor, the minimax point is a Nash Equilib-
rium outcome and POSNEL converges to it. Finally we prove that
with sufficient explorations all the minimax-attractor states will be
discovered. In this proof we would be only interested in the val-
ues of ε1 and ε2, which we assume to be identical to avoid no-
tational complications and henceforth, we will refer to them as ε.
We present only the propositions here as space constraints preclude
including their proofs.

PROPOSITION 2. A state s is a minimax-attractor for both the
players iff s resides inside ADM and is not Pareto-dominated by
any other pure strategy outcomes (states) in the game.

PROPOSITION 3. If all the attractor and the minimax-attractor
states are correctly discovered by both the players, then under self-
play POSNEL will converge to a state that resides inside the ADM

Algorithm 3 update-probability
Function: update-probability
Input: history, list containing st, ŝt, st−1, ŝt−1

Input: LA, Global List of attractor states
Input: LD, Global List of distractor states
Input: LM , List of minimax-attractor state
Input: count, 3 dimensional Array
transitions =

P

aj∈Aj
count[aj][st−1][ŝt−1]

Pri(sj
t |st−1, ŝt−1) = count[sj

t][st−1][ŝt−1]/transitions
if transitions = P then

if Ui(st−1) ≥ mmi and Pri(sj
t−1|st−1, ŝt) > (1− δ) then

if st−1 /∈ LD then
LM ← LM ∪ st−1

end if
end if
if Ui(st−1) ≥ max(Ui(ŝt−1), mmi) and
Pri(sj

t−1|st−1, ŝt) > (1− δ) then
if st−1 /∈ LD then

LA← LA ∪ st−1

attractor(ŝt−1)← attractor(ŝt−1) ∪ st−1

distractor(st−1)← distractor(st−1) ∪ ŝt−1

LD ← LD ∪ ŝt−1

if ŝt−1 ∈ LM then
remove ŝt−1 from LM

end if
if ŝt−1 ∈ LA then

remove ŝt−1 from LA
for s ∈ distractor(ŝt−1) do

remove ŝt−1 from attractor(s)
end for
remove all elements of distractor(ŝt−1)

end if
end if

end if
end if

and is not Pareto-dominated by any other pure strategy outcomes
(states) in the game.

PROPOSITION 4. In the limit, POSNEL will correctly find all
the attractor states if the exploration probability ε > 0.

Corollary: The probability that POSNEL will find all the attractor
states increases inversely with ε, if ε and P is greater than zero.

Observe that for a given P and ε, n also increases with the number
of actions available to an agent. So, given the number of actions,
one needs to choose the value of ε judiciously to trade-off learning
accuracy with convergence speed.

5. EXPERIMENTAL RESULTS
We analytically proved that POSNEL is guaranteed to converge to
an outcome that is not Pareto-dominated by any other pure strategy
outcome and generates Nash-equilibrium payoff on average for any
two-player general sum games. To show this experimentally, we
used all possible structurally distinct two-player two-action conflict
games as a testbed for POSNEL. In a conflict game, there exists no
outcome that produces the maximum possible payoff for both the
players. Steven Brams showed that there can be 57 of such game
matrices with ordinal payoffs [4]. We used these set of games as a
testbed to empirically verify convergence behavior of POSNEL.

Two POSNEL players repeatedly played against each other in all
57 games and we observed their convergence behavior. We used
the following criteria to evaluate the performance of POSNEL:

Average Social Welfare: Sum of the payoffs obtained by the two
players in their converged state, averaged over 57 games.

Average Product of Payoffs: Product of the payoffs obtained by
two players in their converged state, averaged over 57 games.

Success Rate: Percentage of games, out of the 57 games in which
the players converge to a POSNE outcome.

We compared our results with CJAL, WOLF-PHC and JAL using
these evaluation criteria, who were also tested on these 57 games
under self-play. The results are tabulated in Table 2. We used the
following experimental parameters: max # of iterations in learning
phase = 3000, P = 20, ε = 0.1, δ = 0.5, # of runs = 20. The
results are then averaged over all the 57 games and are presented in
Table 2. The first two columns represent the average social welfare
and the product of the payoffs respectively. The third column rep-
resents the proportion of games in which the algorithms have con-
verged to a POSNE outcome. We also compared our results with
the average Nash Equilibrium payoffs for all of these single shot
games. We can observe that POSNEL outperforms the other strate-
gies on all these metrics. We also observe that POSNEL converges
to a POSNE outcome in 95% of the games, whereas WOLF-PHC
converges in only 75% of the games and CJAL and JAL converges
in 86% and 81% of the games respectively. Also note that, in 75%
of time the single stage Nash Equilibrium solutions are POSNE
which is same as the success rate of WOLF-PHC which has been
proved to converge to an NESSG.

Social Welfare Product of Payoffs Success Rate
JAL 6.1 9.13 81%

CJAL 6.14 9.25 86%
WOLF-PHC 6.03 9.01 75%

POSNEL 6.4 10.11 95%
Nash 6.05 9.04 75%

Table 2: Comparison of JAL, WOLF-PHC, CJAL and POS-
NEL on Conflict Games

6. CONCLUSION AND FUTURE WORK
In this paper we developed a multi-agent algorithm called POS-
NEL that converges to an outcome that is not Pareto-dominated by
any other pure strategy outcome and produces Nash Equilibrium
payoff for 2-player n-action general sum games under self-play.
In case there exists no such outcome it converges to the minimax
equilibrium of the game. Our agents follows a strategy that re-
veals its preference structure to the opponent. At the same time
it tries to learn opponent’s preference by observing its action se-
quence. We showed that under self-play with sufficient exploration
two POSNEL players accurately learns each other preferences and
converges to an outcome that is mutually beneficial and guarantees
safety value. We have proved our claim both empirically and ana-
lytically.

The goal of this research is to find a generic multi-agent learning
strategy that will always produce and output on the Pareto-frontier.
POSNEL is a first step towards it. In future we would like to im-
prove our algorithm so that it can always guarantee such a con-
vergence. Also, we believe that our algorithm can be modified to
operate in an environment where opponent’s actions are also unob-
servable. We would like to work on that aspect in future. We would
also like to understand and observe POSNEL’s behavior among a
heterogeneous population of more than one agents who use differ-
ent learning strategies.

Acknowledgments: This work has been supported in part by an
NSF award IIS-0209208.

7. REFERENCES
[1] Dipyaman Banerjee and Sandip Sen. Reaching pareto

optimality in prisoner’s dilemma using conditional joint
action learning. Journal of Autonomous Agents and
Multiagent Systems, 2006. (to appear).

[2] Michael Bowling and Manuela Veloso. Multiagent learning
using a variable learning rate. Artificial Intelligence,
136:215–250, 2002.

[3] Michael H. Bowling and Manuela M. Veloso. Existence of
multiagent equilibria with limited agents. Journal of
Artificial Intelligence Research (JAIR), 22:353–384, 2004.

[4] Steven J. Brams. Theory of Moves. Cambridge University
Press, Cambridge: UK, 1994.

[5] Vince Conitzer and Tuomas Sandholm. AWESOME: A
general multiagent learning algorithm that converges in
self-play. In Twentieth International Conference on Machine
Learning, pages 83–90, San Francisco, CA, 2003. Morgan
Kaufmann.

[6] D. Fudenberg and K. Levine. The Theory of Learning in
Games. MIT Press, Cambridge, MA, 1998.

[7] Amy Greenwald and Keith Hall. Correlated-Q Learning. In
Proceedings of the Twentieth International Conference on
Machine Learning, pages 242–249. Morgan Kaufmann,
2003.

[8] Junling Hu and Michael P. Wellman. Nash q-learning for
general-sum stochastic games. Journal of Machine Learning
Research, 4:1039–1069, 2003.

[9] S. Kapetanakis, D. Kudenko, and M. Strens. Learning of
coordination in cooperative multi-agent systems using
commitment sequences. Artificial Intelligence and the
Simulation of Behavior, 1(5), 2004.

[10] Michael L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of the
Eleventh International Conference on Machine Learning,
pages 157–163, San Mateo, CA, 1994. Morgan Kaufmann.

[11] Michael L. Littman. Friend-or-foe q-learning in general-sum
games. In Proceedings of the Eighteenth International
Conference on Machine Learning, pages 322–328, San
Francisco: CA, 2001. Morgan Kaufmann.

[12] M.L. Littman and P. Stone. A Polynomial-time Nash
Equilibrium algorithm for repeated games. Decision Support
Systems, 39:55–66, 2005.

[13] Sandip Sen, Rajatish Mukherjee, and Stephane Airiau.
Towards a pareto-optimal solution in general-sum games. In
Proceedings of the Second Intenational Joint Conference on
Autonomous Agents and Multiagent Systems, pages 153–160,
New York, NY, 2003. ACM Pres.

[14] Jeff L. Stimpson, Michael A. Goodrich, and Lawrence C.
Walters. Satisficing and learning cooperation in the
prisoner’s dilemma. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence,
pages 535–540, 2001.

[15] K. Verbeeck, A. Nowé, T. Lenaerts, and J. Parent. Learning
to reach the pareto optimal nash equilibrium as a team. In
LNAI vo.2557: Proceedings of the 15th Australian Joint
Conference on Artificial Intelligence, pages 407–418.
Springer-Verlag, 2002.

