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Abstract

Sociologists have begun to explore the gains for theory and research that might
be achieved by artificial intelligence technology: symbolic processors, expert
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systems, neural networks, genetic algorithms, and classifier systems. The first
major accomplishments of artificial social intelligence (ASI) have been in the
realm of theory, where these techniques have inspired new theories as well as
helping to render existing theories more rigorous. Two application areas for
which ASI holds great promise are the sociological analysis of written texts
and data retrieval from the forthcoming Global Information Infrastructure. ASI
has already been applied to some kinds of statistical analysis, but how com-
petitive it will be with more conventional techniques remains unclear. To take
advantage of the opportunities offered by ASI, sociologists will have to become
more computer literate and will have to reconsider the place of programming
and computer science in the sociological curriculum. ASI may be a revolu-
tionary approach with the potential to rescue sociology from the doldrums into
which some observers believe it has fallen.

INTRODUCTION

Broadly defined, Artificial Social Intelligence (ASI) is the application of ma-
chine intelligence techniques to social phenomena. ASI includes both theory
building and data analysis. At the theory building level, ASI includes the
computer simulations of societies or groups of organizations in which the
individuals are modelled as intelligent actors. At the analysis level, ASI in-
cludes the use of Al techniques for intelligently searching and analyzing data.

A decade has passed since the first conference on sociology and artificial
intelligence was held (Gilbert & Heath 1985), yet sociologists have made
relatively less use of Al than have practitioners of other behavioral sciences
(Anderson 1989). Certainly, there is a faddish quality to much AI work, and
much publicity has been given to computer programs that achieve only the
pretence of intelligence, not its substance. Another factor may be that sociology
has placed less emphasis on cognition in recent decades than on social struc-
ture, outside of areas like symbolic interactionism and the sociology of knowl-
edge where use of computers is relatively undeveloped. The new interdisci-
plinary field of Cognitive Science is rooted in Al and draws upon five more
traditional fields: psychology, philosophy, linguistics, anthropology, and neu-
roscience (Heckathorn 1989). For whatever reason, sociology is notably absent
from this list.

Traditionally, computer scientists working on Al have ignored the social
roots of human intelligence. In the past five years, however, there has been an
upsurge of interest among these researchers in the social side in intelligence.
Areas such as distributed artificial intelligence (Gasser 1991), coordination
- theory, and collaboration technology (all with strong roots in engineering or
computer science) have begun to look at social issues. To be sure, many of
the early programs allowed computers to engage in natural-language conver-
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sations with humans, but the programming challenge was always to simulate
the behavior of a single human actor. Although AI workers paid some attention
to selected schools of thought within psychology, they ignored sociology.
Randall Collins (1992) argues, howevet, that artificial intelligence cannot
really be achieved without help from sociologists, and Allen Newell (1990)
makes a similar point in his ground-breaking book, Unified Theories of Cog-
nition.

We begin with a review of the chief technical approaches that have been
developed in artificial intelligence, providing just enough description so the
reader can see the possible relevance for sociology; we cite a very few recent
references that can provide a deeper introduction. Then we consider the chief
areas of theory and empirical research in which AI has relevance for the social
sciences, citing sociological work when possible but also identifying accom-
plishments in neighboring social sciences that may foreshadow future socio-
logical developments.

TECHNIQUES OF ARTIFICIAL INTELLIGENCE

At a first approximation, research in computer intelligence has taken one of
two diametrically opposed approaches, which may, somewhat crudely, be
called the “top-down” and “bottom-up” strategies. Until recently, most prom-
inent Al researchers have focused on high-level symbolic processes that reflect
the complex thought processes of which humans are capable. In contrast, others
have attempted to model the basic functioning of nets of biological nerves,
like those in relatively dumb simple organisms, with the hope that eventually
they could work their way up to the level of human consciousness.

A major difference between the two approaches is in the use of words.
Symbolic process models conceptualize the world using a predominantly ver-
bal framework. Procedures (if-then rules) and words are used to describe all
behavior and to take all actions. In contrast, “neural models” (and those of
similar ilk) conceptualize the world in a predominantly numeric framework.
Equations and numbers are used to describe all behavior and to take all actions.

Although some work on these “neural nets” goes back to the 1950s, this
approach was eclipsed by the symbolic approach for almost 30 years (Crevier
1993). In part, this was due to work by Minsky & Papert (1969) that demon-
strated the limitations of one type of numeric-networked system. Misinterpre-
tation of their results, changes in scientific paradigms, and changes in funding
sources all played a role in reducing interest in such systems. Starting around
1986, however, the neural network approach has achieved numerous successes
and has grown in popularity as a scientific approach. It is sometimes referred
to as “Connectionism” because it asserts that intelligence arises not in the
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manipulation of symbols but in the connections between nerves, or between
computer components.

We begin consideration of the chief AI techniques with symbolic process-
ing—the top-down approach—then discuss its marriage with knowledge bases
in what are often called expert systems. Neural networks—the bottom-up
approach—comes next. We end this section with a discussion of genetic
algorithms and classifier systems which are particular methods of great current
interest, combining elements of the main approaches and drawing ideas from
biology. Naturally, this very brief overview cannot do full justice to the
complexity of this topic, and our aim is merely to provide a reasonably accurate
picture of representative methods in each approach.

Symbolic Processors

Since the first conference on artificial intelligence, held at Dartmouth College
in 1956, most AI workers have tended to define intelligence in terms of the
manipulation of symbols and to write computer programs that could be called
symbolic processors (Crevier 1993). While this approach may have limitations,
it seemed the best way to study human language and problem-solving. In
sociology, not only symbolic interactionists but also practically every re-
searcher and theorist interested in norms, values, beliefs, institutions, and
organizations gives great significance to shared meanings encoded and com-
municated through symbols. Thus, symbolic processors seem the ideal Al
technique for analyzing these phenomena, whether by means of abstract com-
puter simulations or the empirical computerized analysis of language and
meaningful behavior.

At one level, all computer programs operate symbolically. That is, both
numbers and words are symbols. Thus all input, output and the computer
program itself are expressed in terms of symbols. For example, a symbolic
processor cannot actually look at a set of child’s blocks and physically arrange
them to form a tower. However, the Al researcher can tell the program where
the blocks are, define the concept tower for it, and then ask the program to
say how to move the blocks into a tower. At another level, a key attribute of
symbolic processors is that they do not reason numerically, by counting and
analyzing equations, but symbolically. They might measure an emotion in
terms of high or low, for instance, rather than measuring it as a ratio variable.
In this sense, these Al researchers are intellectual cousins of symbolic inter-
actionists.

One way symbolic processors conceptualize intelligent behavior is in terms
of problem spaces and production systems (Newell 1990). A problem space
is a finite collection of states (situations, arrangements, etc) and operators
(actions) that can be represented in the computer. These include the initial state
and the desired state that is the goal. Operators can be used to move between
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states, to create new states, or to eliminate old states. Intelligent activity is
characterized as the search through the problem space for the goal-state, much
as one might wend one’s way through a maze. There are many different search
procedures, some of which are exhaustive, and some of which create interme-
diate states on the fly. Problem spaces do not require that problems be well
defined, but there must exist a goal state.

In a symbolic processing system, everything is done in terms of verbal
productions (if-then rules), including description of states and search through
the problem space. The set of productions in a system—or production sys-
tem—is often referred to as its long-term memory. As it searches, the computer
creates new productions which represent steps toward the goal. This search
can occur in either a forward chaining fashion (from the initial state to the
goal state) or a backward chaining fashion (from the goal state to the initial
state). Symbolic processors vary in the conditions under which productions
are applied, how extensive the match on the left-hand side of the if-then rule
needs to be, whether these matches are allowed to be probabilistic, whether
the rules can be applied in parallel, and so on.

In some symbolic processors, if there is not sufficient information to reach
the goal state, or if some problem occurs during the search procedures, chunk-
ing can be used to overcome these “impasses.” Chunking is a procedure that
creates a new rule of the form, “if you are ever in situation X do Y.” This rule
is a reduced encapsulation of a chain of reasoning (following a path of many
rules across many states and often through many problem spaces) that was
done in order to figure out what to do in situation X. Imagine going through
a maze, making many wrong turns, and keeping a map. Conceivably the map
of a particular maze might be reduced to a single rule, “if you ever encounter
this maze again turn left at every juncture.” This is a chunk. The chunk itself
does not contain all of the rules that were followed, all the missteps that were
made, in the original search.

Search is one key element of symbolic systems. The other key component
is knowledge representation. In symbolic systems knowledge is often repre-
sented using some type of network of linked concepts (Carley 1986). Minsky
(1975) refers to the smallest connected unit, two concepts and the relation
between them as a fact. A knowledge base can be thought of as a collection
of facts or, equivalently, of rules. Sets of facts that are interrelated and serve
to define a particular object or situation are often referred to as schemas or
frames. State descriptions and problem space descriptions are often done by
setting up and searching through particular schemas or frames. Symbolic
processing systems vary widely in what search procedures and what knowledge
representation schemes they use.

A crucial test for the symbolic processing approach to artificial intelligence
is its capacity to handle human language, and one test of a computer pro-
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grammer’s skill is the ability to write parsers. A parser is a set of rules tied to
a dictionary, perhaps explicitly framed as a production system, that is designed
to extract meaning from samples of language. It is relatively easy to write a
computer program that will respond correctly to keyboard-typed commands
like “GO UP,” “GO DOWN,” “PRINT “YES,’” or “ADD 2 PLUS 2.” Every
high-level computing language (BASIC, Pascal, C, FORTRAN, etc) incorpo-
rates a parser that translates human language into machine language com-
mands. But the verbiage handled by most parsers is highly stylized, and the
human must learn to stay within a fairly small set of linguistic conventions if
the computer is to respond correctly.

In the 1960s, computer workers expressed great optimism that they would
soon create automatic systems for translating between ianguages, for example,
taking Russian input and producing grammatically correct English output with
the same meaning. Manifest failure came in the form of rapidly proliferating
sets of rules and the recognition that words may have fluid and multifaceted
meanings (Kelley & Stone 1975). Despite these problems, natural language
processing by computers has steadily improved, stimulated both by advances
in programming and by vastly more powerful computer hardware.

A second challenge for symbolic processors was that if they were to be
models of human cognition then they should solve problems as humans do
and make the kinds of mistakes humans make. Research on language, as well
as research on expert-knowledge, led to the conclusion that human reasoning
often employed vast quantities of task specific information. This led some Al
researchers to focus on the role of task knowledge in symbolic processing
systems. This research grew into the area of expert systems and knowledge
engineering. Many expert system programs have been written in LISP or
PROLOG, languages developed for symbolic processing, and the rule struc-
tures are quite comparable (Clark 1982, Cameron & Dixon 1992).

Expert Systems

Within sociology, expert systems may potentially revolutionize qualitative
sociology the way computerized statistical packages have revolutionized quan-
titative sociology (Brent 1986, Benfer et al 1991, Ohly 1993). Expert systems,
for example, can be used to facilitate the coding of texts (Carley 1988), which
may be as diverse as the words exchanged by members of a committee, the
writings of a sociological theorist, or the public actions of international nego-
tiators. Expert systems have found several applications in social welfare and
human services (Schuerman et a! 1989, Gingerich 1990, Mutschler 1990),
assisting the professional in giving help, and the creation of their knowledge
bases is practically equivalent to Al-assisted research on aspects of the pro-
fession and the social problem it addresses.

In the editor’s statement at the back of every recent issue, the International
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Journal of Expert Systems says its topic is “knowledge-based approaches to
the construction of intelligent artifacts... A system is ‘knowledge-based’ when
its behavior depends largely on information encoded in it or to which it has
access, and is a[n] ‘expert-system’ when this knowledge would be considered
expertise in a human.” By these criteria, the spell-checker of a word processor
could be an expert system. It has information that allows it to duplicate the
expertise of a good human speller. However, one might want to reserve the
term “expert system” for something a little smarter, that was able to respond
in a complex way to different situations. While there is no clear line of
demarcation, many would consider a good income tax package to be an expert
system.

An expert system can be thought of as a symbolic processor designed to
solve some particular problem in a fashion similar to that of a human expert
in that area. Current expert systems typically have three parts: an inference
engine, a knowledge base, and a user-interface (Gonzalez & Dankel 1993).

The inference engine is a symbolic processor that controls which rules are
applied when and how. It contains general knowledge about how to conduct
searches given the knowledge representation scheme being used within the
expert system. The inference engine is often referred to as the shell. To create
an expert system, researchers may purchase a shell and then add their task-
specific knowledge base.

The knowledge base is a collection of task-specific (or domain) knowledge.
In most current expert systems, it contains some parts of this knowledge in
the form of rules and others in the form of auxiliary relational or object-oriented
data.

Most current expert systems also have a separate user interface, the part of
the package the user interacts with, which facilitates entering rules, generating
reports, and managing a variety of ancillary tools. Producers of expert system
shells have continually added enhancements in the user-interface area, includ-
ing graphic ways of visualizing the structure of the knowledge, statistical
analysis packages, and even the capacity for the system to learn the habits and
priorities of the particular user. Greater use is being made of hypertext, the
organization of textual material in a nonlinear manner, allowing the user to
call up all kinds of information at any point in the process and to roam the
knowledge base at will.

Creation of an expert system by means of a pre-existing shell involves the
work of both a knowledge engineer and one or more domain experts. The
knowledge engineer is trained in the use of the shell, has experience in eliciting
information from other people (usually through interviews), and has experience
in converting this information to a set of rules. The domain expert is a person
who is thoroughly familiar with the field of knowledge the expert system is
being developed for and may know nothing about computers. For example, a
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knowledge engineer may be a computer scientist and a domain expert may be
a neurosurgeon.

For example, to create an expert system intended to facilitate medical
diagnosis in a particular category of diseases, the knowledge engineer will
locate and interview a number of senior diagnosticians in that field, perhaps
supplementing their interview responses with information from technical pub-
lications and other sources. After such a system has been created, it will be
distributed to medical personnel who lack expert knowledge of the particular
diseases. When they encounter cases they have difficulty diagnosing, they will
turn to the expert system, which typically will ask a number of questions about
the case, then suggest a diagnosis. Thus, the expert system acts as an expert
consultant.

A chief challenge for expert systems is uncertainty. First, the domain of
knowledge may be incomplete, probabilistic, problematic, or poorly organized.
Second, the questions the user poses to the system may be sketchy and based
on insufficient information about the case. These factors make it difficult to
locate a deterministic solution. A well-designed system that lacks crucial
information about a case will ask the user for it, but there are limits to how
well additional information might resolve such ambiguities. Therefore, many
expert system shells employ a variety of mathematical techniques to weight
different information and provide estimates of its confidence in its conclusions,
perhaps listing several possible conclusions with associated confidence scores.
These weights can affect which rules are applied to the data in coming to a
conclusion. Among these techniques are Bayesian probability measures, cer-
tainty factors, and fuzzy logic (Gonzalez & Dankel 1993:232-62).

In practice, commercial expert systems have run into a number of difficul-
ties, chief among them the problem of finding competent human experts, the
great cost of all the human labor required to create a worthwhile system, the
difficulty in articulating and systematizing knowledge in many domains, and
the high cost of updating expert systems as their domains of knowledge
develop. In addition, there are social, organizational, and legal constraints on
the acceptance and use of expert systems. Entrenched professionals can feel
threatened by them. Weaver (1986) predicted that medical expert systems
might have the effect of regulating physicians’ behavior, undermining their
authority and prestige, and leading to a new division of labor among medical
professions. This has not yet happened. The public, who might benefit from
the presence of expert systems, often feel distrustful of machines and would
rather talk to human experts. Finally, there is the issue of who bears legal and
moral responsibility when the computerized system makes a costly mistake.
For these and other reasons, the term “expert system” is often avoided in
commercial applications, in favor of intelligent decision support systems, in-
telligent advisory systems, consultant systems, and knowledge-based systems.
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Shangraw (1987) has identified a number of ways in which the approaches
of social scientists and knowledge engineers differ. Sociologists are often
concerned with the bases for judgments, and they know that people’s views
are powerfully shaped by social, cultural, and economic factors. Consequently,
sociologists see experts as having “biased” knowledge. Social scientists seek
to maximize the validity of judgment. In contrast, knowledge engineers are
concerned with duplicating the judgments of the experts rather than criticizing
or explaining them. For knowledge engineers, any bias in judgments is im-
portant only if it results in too much inter-expert disagreement, and if this is
the case, an expert system will not be built. If there is only a limited amount
of disagreement, probabilistic weights on the various information will be used
to reflect the level of inter-expert agreement. Knowledge engineers seek to
replicate and systematize expert judgment. For the social scientist, the knowl-
edge base itself is a source of data for further analysis.

Neural Networks

Artificial neural networks are computer systems involving software (and some-
times hardware) that in some sense emulates the behavior of biological nervous
systems (Rumelhart & McClelland 1987, Wasserman 1989, 1993, Karayiannis
& Venetsanopoulos 1993). After a very short period of recent development,
neural nets have accomplished many useful tasks. For example, it has been
demonstrated that a sufficiently large and well-trained neural net can accurately
model any continuous mathematical function whatsoever (Smith 1993). Al-
ready, neural nets have been used to model economic data, competing suc-
cessfully with more traditional techniques such as multiple regression, and the
same approach can be applied directly to quantitative data collected by soci-
ologists. As is true of symbolic processors, neural nets can model the behavior
of intelligent actors in theory-based simulations, thus greatly expanding the
tools available to sociological theorists.

Neural nets are radically different from other approaches to artificial
intelligence and quite unlike the statistical software familiar to sociologists.
Information is stored in the connections between nerve-like structures, in a
distributed fashion, so that a particular datum is spread across a number of
memory registers that it shares with other data, rather than assigning each
datum to a distinct address in the computer’s memory. Conventional statis-
tical software reads its data in from a disk in essentially the same form it
stores that information in a memory array. Neural networks, in contrast, learn
information in training sessions, much as a human might learn, and they
store information in forms that bear no resemblance to the raw data that were
presented to them. Symbolic processors can also learn during training ses-
sions; the form of the information stored in them may or may not resemble
the form of the raw data.
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A simple neural net might consist of fewer than a dozen nerve-like units,
sometimes called neurons, nodes, or neurodes. There might be three layers of
units. The first, or input layer, receives data. The third, or output layer, sends
out the net’s reactions to the data. Between them lies a layer of “hidden units”
that are not directly connected to the outside world. Typically, every input unit
is connected to every hidden unit, and every hidden unit is connected to every
output unit. Associated with each connection is a connection strength or
weight, a particular number that changes as the network learns to respond
properly to a set of input data.

The net is trained by presenting it with a series of cases, each of which
consists of an input vector and an output vector. The input vector is a set of
numbers applied one each to the input units. Then the net produces an output,
by using the connection weights to transform the input. The training algorithm
compares the net’s actual output with the desired output vector, and it follows
a complex set of procedures to propagate the error back through the network
(back propagation), adjusting all appropriate connection weights so that in
future the net should respond with less error. In fact, computer scientists have
experimented with many different network structures and training algorithms,
but the basic idea is constant. A network of nerve-like units learns to respond
in a desired way to a training set of data and then is ready to analyze fresh
data of the same kind.

Neural nets are ideally suited for parallel processing, which is a significant
revolution in computer technology. Traditional electronic computers consisted
essentially of a bank of memory registers and a single central processing unit
(CPU). The CPU would be in charge of everything, and all data and program-
ming commands would pass through it. Thus, the speed of a computer was
determined by the speed of this CPU, and everything depended upon the
efficiency and reliability of a single electronic component. Parallel processing,
as the name implies, employs a number of processors, perhaps many thousands
of them, operating simultaneously. If problems of coordinating the actions of
these processors can be solved, the result is much faster operation, perhaps by
several orders of magnitude. Parallel techniques are also important to symbolic
processors. In symbolic processors, being able to apply multiple rules in
parallel also reduces operation time.

One justification for parallel distributed processing and neural nets is that
the human brain must use something very similar. However, severe doubts
have been raised whether existing neural nets properly simulate biological
nervous systems, in particular whether biological nets make use of anything
like back propagation (Hinton 1992). Another justification is simply speed.
Doing things in parallel allows far more complex problems to be solved in
reasonable time.
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Genetic Algorithms and Classifier Systems

Genetic algorithms are an evolutionary approach to the solution of problems
with a focus on a population of entities that become progressively better
adapted to the problem space. Each entity is a string of symbols that can be
read by a classifier system as a set of rules. As time goes by, strings that handle
the problems better than others become more numerous in the population, share
features of the solution with each other, and develop new features, in processes
analogous to biological selection, reproduction, and mutation. While it is clear
that this approach can perform some kinds of statistical analysis on empirical
data, it has been imported so recently into the social sciences that technical
and theoretical issues have been given the greatest attention.

Of special interest for ASI is that the inherent parallelism in the genetic
based search procedure puts the intelligence of the procedure at the level of
the population. In these systems, it is as though individuals independently and
in parallel examine regions of the search space and can never “know” but a
small piece of the overall solution, yet the system itself achieves effective
search and so makes intelligent decisions. Real human societies possess greater
information and capacity to process data than does any given individual mem-
ber. The population of strings manipulated by a genetic algorithm is analogous
to the gene pool of a human population, except that it is possibly cultural rather
than biological in nature. Despite the nonsociological origin of its metaphors,
thus, the genetic algorithm approach reinforces the sociological principle that
real intelligence is in essence social.

The concept of a genetic algorithm arises in Holland’s (1975, 1992) general
treatise on adaptation in natural and artificial systems. As formulated by
Holiand (1975:20), a general adaptive problem has three components: (i) a
system with an adaptive plan that determines successive changes in structure
in response to an environment, (ii) the environment of this system, and (iii) a
measure of the performance of different structures in the environment. In each
application, the structures that undergo adaptation must be identified and
represented, the mechanisms by which structures change must be specified,
and the performance criterion affecting a structure’s chances of persisting over
time must be identified. The language of biology is useful to describe and label
these three components. Structures are sets of chromosomes. The mechanisms
that change structures are analogous to biological mechanisms of crossover,
inversion (reproduction), and mutation, and the performance evaluation rep-
resents the fitness of the structure in the environment.

For convenience the process is viewed as a discrete time process, with the
system following a trajectory described by the changing probability distribu-
tion over attainable structures. At each point in time, the existing structures
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are evaluated against the environment in relation to performance criteria. The
system’s adaptive plan then takes these evaluations and the existing population
of structures and produces the next generation’s population of structures. Good
adaptive plans increase the average performance of structures in the environ-
ment. Viewed as a search procedure, the genetic algorithm produces, over
time, a concentration of structures in regions of the problem space that have
relatively high fitness values.

The second fundamental idea, a classifier system, receives exposition in
some recent work by Holland et al (1986), and is similar to a production system.
Recall that a production is an if-then rule. In symbolic systems a production
is spelled out using words. For Holland and his associates, a classifier is
represented as two strings of numbers. Conditions and actions are abstractly
represented by strings of symbols from the three letter alphabet “0", 1", and
“#”. In conditions, “#” is the called the “don’t care,” meaning that either a “0"
or a ”’1" can occur in a message satisfying the condition; for instance, “O#”
interpreted as a condition is satisfied by either of two messages “00" and ”01".
In actions “#” is interpreted as a place holder passing along to the output
message the corresponding “0" or ”1" in the input message, for instance, if
“11" satisfies the (first) condition of a classifier having ”0#" as its action part,
then the classifier will post the output message “01".

A classifier K then has the form C1,C2,...,Cr/A where C1,...,Cr designate
its r conditions and A designates its action. A classifier system consists of n
classifiers denoted K1,K2,...,Kn, a message list, an input interface and an
output interface. Execution proceeds by first placing all messages from the
input interface on the message list. The message list is then processed by the
classifiers for matches to their conditions. Classifiers whose conditions are
matched then post their messages to a new message list which replaces the old
list. The list is then processed through the output interface to produce the
system’s overall activity. Control then returns to the first step and execution
continues.

Associated to each classifier in the system is a quantity called its strength.
This quantity has three functions. First, among the classifiers whose conditions
sets are matched and therefore offer competing alternative responses to the
current situation, relative strength determines which ones win the competition
to post their messages. Second, the strength of a classifier serves as a measure
of its usefulness to the system because strength is adjusted based on system
performance. The specific mechanism that adjusts strength is called the bucket
brigade algorithm. Third, the application of the genetic algorithm to the gen-
eration of new classifiers uses classifier strength to choose “parent” rules for
the next generation.

Because of the formal simplicity of their construction, classifier systems are
natural candidates for evolution by means of a genetic algorithm. Strings
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specifying conditions and/or actions can be split and recombined in the cross-
over process to produce new and perhaps better classifiers. There are several
possible specifications of the conditions under which the genetic algorithm is
invoked. It could be invoked at the end of some well-defined performance
cycle as in Goldberg’s (1983) system to induce expert knowledge with respect
to the regulation of gas-pipeline transmission. Holland et al (1986) suggest as
general triggering conditions the failure of predictions and the occurrence of
unusual events.

APPLICATIONS OF ASI TO THEORY

The growing number of theoretical essays grounded in computer simulations
is one indication that social theorists are seeking ways to render their work
more rigorous (Hanneman 1988). We suggest that the development of com-
puter-based artificial social intelligence can have as great a positive impact on
theory as did computerized statistical analysis on quantitative empirical re-
search. Properly designed ASI programs can assess the logical consistency and
completeness of theories, help discover new implications of old ideas, and
connect scattered hypotheses into coherent theoretical systems. ASI may in-
spire altogether new theories, increase our appreciation of classical theories,
and help improve and evaluate still-developing theories of social interaction
and social structure.

ASI-Inspired Social Theories

Fararo & Skvoretz (1984, Skvoretz & Fararo 1989) have argued that the Al
concept of production system can form the basis of a general theory of social
institutions and action structures. Since a production is a rule in which a set
of conditions demands a particular action, social norms are productions. Insti-
tutions and roles (distinctive sets of norms linked into cultural structures) are
therefore production systems. Fararo & Skvoretz show how a social interaction
is organized by the system of productions that defines the interrelationships
of the roles being played, what they call the rolegram. Their work draws ideas
from traditional writers, such as Talcott Parsons, and incorporates many con-
ventional sociological concepts, but it places them in dynamic systems that
owe much to ASI, even if they need not be realized on a computer.

In similar fashion, Carley (1989, 1991b) has developed the constructural
theory of social change predicated on individual adaptation at the cognitive
level. Each individual has a knowledge base, and culture is the distribution of
knowledge across individuals. Carley shows how social change, and processes
such as diffusion, are controlled by the distribution of knowledge and by
actions taken by individuals on the basis of this knowledge. Her work draws
on traditional writers such as Homans and Durkheim and on the area of social



420 BAINBRIDGE ET AL

network analysis, but it places this work in a dynamic evolving system. Kaufer
& Carley (1993) use the constructural theory to examine the social repercus-
sions of print technology, arguing that communication technologies generate
artifacts (such as books) that can be effectively modeled as artificial social
agents with either more or less cognitive capabilities relative to humans. Using
this approach they show the potential of print to change the nature of both the
professions and academe.

Some have drawn lessons for theory from the apparent successes of com-
puter intelligence, notably Slezak (1989) who argues that the “strong pro-
gramme” in the sociology of science must be wrong because symbolic pro-
cessor Al programs have successfully derived scientific and mathematical laws
apparently without being influenced by sociocultural factors. Writing in the
American Journal of Sociology, Wolfe (1991) draws the opposite lesson from
his readings about Al, deciding that humans have a distinctive form of mind
that cannot be duplicated by either symbolic processors or neural networks,
a conclusion that would support interpretive rather than formal systematic
schools of sociological analysis. Kontopoulos (1993) suggests that neural
networks offer an appropriate metaphor for understanding social structure, thus
incorporating insights from ASI into a general theory that need not be ex-
pressed in computational terms.

Expert System Models of Human Theorists

Rule-based expert systems are a very promising tool for theory formalization,
and they may be used to analyze the thought of particular theorists. Some
traditional sociologists, notably George Homans and Peter Blau, intended their
theories to be what today we might call production systems, with each axiom
or theorem represented by a production with linkages to others. But one way
to study the thought of any social theorist would be to attempt to state his or
her arguments in terms of productions. This difficult task might be facilitated
by use of a flexible and full-featured expert system shell, taking the role of
the knowledge engineer interrogating the writings of the theorist as if they
were domain experts.

The Erving programs (Brent et al 1989) are an expert system that simulates
Erving Goffman’s dramaturgical perspective. Designed as a teaching tool,
Erving takes the software’s user into a “front-stage” bar, with associated
“back-stage” party room and pool room, watching men and women interact
and predicting their “impression management” behavior according to Goff-
man’s principles. The user assembles various questions, piece by piece, such
as: “How would Diane feel if Dave were to lie about age in the bar.” “Would
it be disruptive for Dave to make eye contact with members of opposite sex
in the pool room?” The computer can test the user’s understanding of Goff-
man’s theory and offer explanations to the answers it gives for any question.
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Banerjee (1986) wrote production systems in the PROLOG language to
simulate sociopolitical theories of Skocpol and O’Donnell. The actors in each
system are self-aware social groups with well-developed theories of the inter-
ests and possible coalitions in the worlds they inhabit. Skocpol’s analysis of
China in the decade following 1927, for example, posits the following seven
actors: settled peasants, displaced peasants, Communist Party, Kuomingtang
Party, gentry, coopted warlords, and independent warlords. In both cases,
Banerjee found the predicted result, indicating that the two theories are logi-
cally constructed, and if any key assumption was removed, very different
results emerged.

Simulations of Markets and the Iterated Prisoner’s Dilemma

Computer simulation has a long history in the social sciences (Federico &
Figliozzi 1981, Garson 1987), and mathematical models of human learning
suitable for use in ASI programs were available decades ago (Bush & Mosteller
1955). However, most sociological computer simulations lacked explicit rep-
resentations of human intelligence until recently. Today, many studies reported
in central sociological journals employ computer models of human learning,
decision-making, and social exchange, but they seldom mention any connec-
tion to artificial intelligence, even though retrospectively we can identify them
as ASI. At their borders, math models and artificial intelligence blend into
each other, and neural networks are an especially convenient way of embod-
ying math models in computer programs (Wasserman 1993).

The complexity of social interaction has prompted the increasing use of
computer simulation in place of formal mathematical models. The now-classic
“prisoner’s dilemma’ computer tournament organized by Robert Axelrod may
have been the turning point (Axelrod 1984). The prisoner’s dilemma is a
game-theoretic problem that explores the conditions under which cooperation
may arise between self-interested economic actors who might gain in the short
run if they violated agreements to cooperate (Rapoport & Chammah 1965).
Axelrod invited people to submit computer programs that followed various
strategies for playing repeated rounds of this game (the iterated prisoner’s
dilemma or IPD), and his tournament showed that simulation can produce
robust yet unexpected results. The winner was one of the simplest contestants,
a strategy of “tit-for-tat” that merely cooperated in the first move and thereafter
imitated the previous action of its interactant. The simulation results showed
how a simple norm of reciprocity could gain a toehold even in a harshly asocial
environment and then go on to flourish. This strategy was able to displace
much more cognitively sophisticated contestants. In short, the intelligence
needed to find a way out of the social trap is not always isomorphic with the
cognitive and analytic faculties of the organisms. A key contribution of ASI
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is the recognition that problem solving can sometimes depend more on what
goes on between organisms than on what goes on within them.

Subsequently, other researchers have held quite complex tournaments, such
as one staged by Rust et al (1993) that was a double-auction market, like the
one actually conducted in commodities and options by the Chicago Board of
Trade. Its winning entries tended to be simple production systems with rela-
tively little intelligence, but one competitor was a mammoth neural net with
fully 1262 connection strength and bias parameters, that learned by means of
genetic algorithms. For several years, the IPD strategy that drew the most
attention from researchers and theorists was tit-for-tat, but a rival called
“Pavlov” has recently seized center stage (Nowak & Sigmund 1993). This
strategy has the individual actor continue to behave in a given way (keeping
bargains or violating them) so long as it wins, and to shift behavior as soon
as it loses. Because both tit-for-tat and Pavlov have the simulated person pay
attention to what happened in the previous exchange, they connect directly to
sociological theories of social learning.

In a series of theoretical papers based on ASI simulations, Macy (1990,
1991a,b) has developed stochastic learning models for the IPD that show how
it is possible to “walk” out of social traps. The prisoner’s dilemma is a trap,
because the contingencies encourage people to act in ways that are not in
accord with their own long-term interests. Real human life may be filled with
social traps, in which decisions that make sense to each individual aggregate
into outcomes that make no sense for all. In a typical run of this series, each
individual’s probability of cooperating depends upon past experience. The
interacting population may be able to escape from a noncooperative equilib-
rium if a sequence of random events (the proverbial “drunkard’s walk’) brings
them near enough to a cooperative equilibrium for them to settle on it. This
research is a critique of rational choice theory, showing how learning theory
can solve some of its problems. And like Axelrod’s work it demonstrates that
social actors may be able to escape the Hobbesian state of nature without the
help of a king, a shared set of altruistic values, or even the degree of intelligence
required to understand their situation fully.

An amazing variety of excellent work has been based in computer simula-
tions of similar exchange systems, or on experiments with humans that might
be further elucidated via simulations. Kollock (1993) has examined the effect
of random errors and mistaken perceptions on the relative effectiveness of
strategies like tit-for-tat. Orbell & Dawes (1991) explored the evolution of a
cooperator’s advantage when actors were allowed to withdraw from interac-
tion. Frank (1988, 1993) also allowed exit from the game in his theoretical
explorations of rational processes that led to the evolution of displays of
emotion, thereby unleashing much simulation work by other researchers. Vila
& Cohen (1993) modelled exchanges among individuals who could adopt
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either of two strategies, producing wealth or expropriating it, thus exploring
a theory of theft based upon earlier work in behavioral population biology.
This last study suggests that ASI may have a considerable impact on crimi-
nology and the sociology of deviance.

Simulations of Networks, Groups, and Organizations

Many studies have examined social structures by means of ASI simulations,
usually without explicitly acknowledging that artificial intelligence was in-
volved. A good example for those who want to learn about ASI in connection
with social networks is an article by Markovsky (1987, cf Markovsky 1995),
because it focuses on the elemental social structure, the triad, and because it
includes the actual source code of the program that was used. This study
explored the power associated with position in a three-person social network
where person A could interact with persons B and C, who however could not
interact with each other. In a round of a typical experiment in the series, each
person makes an offer of how 24 points could be divided between himself and
another person. Person A compares the offers of B and C, selects one of them,
and then the points are divided according to the average of the two persons’
offers. After the first round (when the offers are randomly determined), each
person adjusts his offer on the basis of what happened last time: if the previous
offer was accepted, the new offer will be more demanding; if the previous
offer was rejected, the new offer will be less demanding. On this simple basis,
Markovsky was able to build a series of nineteen experiments that varied the
strategies employed by individuals bargaining with each other. While rudi-
mentary, the decision-making by actors, and their memories of the result of
previous exchanges, constitute ASI. Similar work exploring the implications
of structure in slightly larger networks has been undertaken by several re-
searchers (Yamagishi et al 1988, Markovsky et al 1993).

Other examples cover a wide sociological territory. Feinberg & Johnson
(1988, 1990) simulated the effect of an outside agitator on crowds, moving
individuals physically toward the center of a mob and moving them mentally
toward the agitator’s preferred action. The individuals differed initially in terms
of suggestibility and the propensity to move as well as in physical location
and action choice. McPhail et al (1992, McPhail & Tucker 1990) modelled
the physical movements of individuals as they threaded their way through
crowds to reach a destination while remaining with each other in collective
locomotion. Hummon (1990) simulated bureaucrats accepting, rejecting, and
referring tasks on the basis of their growing experience with different kinds
of work, thus creating the division of labor in a network. Anderson (1991)
modelled social influence on voting behavior in small groups of union mem-
bers. Bainbridge (1987, 1995) employed neural networks to simulate actors
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with the intelligence to develop schemes for categorizing exchange partners
and capable of learning which categories are most rewarding.

There is a long tradition in the use of simulation in organizational theory
(Cyert & March 1963, Cohen et al 1972, Harrison & Carrol 1991). Recently,
however, these simulations have included the use of ASI concepts (Masuch &
LaPotin 1989, Carley et al 1992). As a field, organization theory has begun to
recognize that theories of organizations need to take into account the complex
interdependencies among people, machines, tasks, and society, the adaptability
of both people and organizations, and the processes through which organiza-
tional behavior emerges (Masuch & Warglien 1992, Carley & Prietula 1994).

Traditional techniques for theory development are not sufficient for dealing
with the difficulties inherent in theorizing about organizations as complex
adaptive phenomena. Expert systems that can embody the theories and help
the research to apply the theories systematically are making it possible to test
cogently the full extent of complex theories (Baligh, Burton & Obel 1990,
1992). Computational models, particularly those in which the agents in the
organization are modeled as complex, adaptive, and intelligent, are being used
to examine emergent organizational behavior and to develop theory. Illustra-
tive models include Masuch & LaPotin (1989), Cohen (1986), Carley (1991a,
1992), Harrison & Carrol (1991), Lin & Carley, (forthcoming). An area of
related interest is distributed artificial intelligence Bond & Gasser (1988).

Recently, organizational models have been built out of collections of Soar
agents. Soar is a production system language with built-in procedures for
chunking (Laird et al 1987). It has been viewed as a unified theory of cognition
(Newell 1990, Carley & Wendt 1991), because it embodies many of the
findings on human cognition that have appeared in cognitive science. On
numerous tasks it exhibits behavior similar to that of individual humans, and
the recent organizational work asks whether in fact Soar can also act like
humans in a social context. The first such study examined an organization of
agents engaged in a warehouse task (Carley et al 1992). In this case, each Soar
agent was run on a different machine, and the organization was formed out of
a network of computers. If this vivid metaphor is not considered important,
such simulations can be run on a supercomputer, simply allocating different
sectors of memory to separate individuals.

Some traditional sociologists might complain that computer simulations
inappropriately reduce social interaction to predictable, mechanistic cartoons
that fail to capture the complexity and indeterminacy of human affairs. There
are two refutations to this uninformed stereotype. First, even simple models
often have great predictive power, and simulation results can and do often
match empirical data both qualitatively (Carley 1991, Kaufer & Carley 1993)
and quantitatively (Carley 1990, Carley & Lin, forthcoming).

Second, computational modeling can often generate surprising results.
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Markovsky (1992) found that even very simple models of interaction across
networks took the researcher beyond the limits of predictability. Recently,
there has been great interest in the role of chance in several of the sciences,
and the concept of deterministic chaos has been the subject of many publica-
tions of both scholarly and popular kinds (Mandelbrot 1983, Hao 1984, Gleick
1987). Kephart et al (1992) have noted that social behavior can become chaotic,
and they ran simulations that showed how some intelligent strategies can
reduce chaos, in particular giving actors the capacity to base their actions both
on beliefs about the strategies of others and on the observed behavior of the
system of agents.

Simulation work employing genetic algorithms has only just begun. Free-
man (1993) used one to solve an old problem in social network analysis,
namely, the partitioning of members of a group into cliques or subgroups based
on members’ proximities to one another. The algorithm processes assignments
of individuals to subgroups searching for an assignment that maximizes a
fitness function that is sensitive to misclassification of individuals and to
average proximities. Axelrod (1987) has switched to genetic algorithms to
evolve strategies in the Iterated Prisoner’s Dilemma. Skvoretz & Fararo (1994)
conceptualize social exchange in a game-theoretic context and apply a genetic
algorithm to the evolution of mutual aid strategies. The game is similar to the
prisoner’s dilemma and the analysis is similar to Axelrod’s. However, they
introduce rudimentary role-differentiation into the problem, as strategies can
function either as assistance requesters or providers of help, and they contrast
the genetic-algorithm findings with those from a learning model implementa-
tion of the problem.

Data-Based Simulations

Conceptually intermediate between theory-driven simulations and quantitative
analysis of data are simulations that might be described as data-based. The
notable example, with a 20-year history, is the work on affect control theory
begun by Heise (1986, 1987, Smith-Lovin 1987). Based on the EPA model of
affective meaning developed by Charles Osgood, who employed semantic
differential techniques to identify three dimensions of word meaning (Evalu-
ation, Potency, Activity), affect control theory asserts that social events are
constructed so as to confirm the meanings of social classifications. Research
subjects have provided mean EPA ratings of thousands of words describing
social identities, attributes, behaviors, and settings in five nations. Heise and
his co-workers have derived a number of mathematical functions to predict
how people would rate various combinations of words, and embodied both the
formulas and the data in computer programs. Their theoretical agenda partic-
ularly stresses differences between social events that confirm or disconfirm
sentiments attached to key nouns such as those describing standard social roles,
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but their general method could be applied quite widely. Simulations based on
data do not qualify as ASI unless they also incorporate a dynamic model of
human thought, but because Heise’s programs meet this test they give powerful
testimony to the great potential of ASI to bring theory and data together in
important new ways.

ASI APPLICATIONS TO RESEARCH

Al-assisted empirical sociological research is still in its infancy, so it is difficult
not only to predict the range of applications it will have in future, but also to
identify the current work that deserves closest attention. However, considerable
progress has been achieved in two areas that clearly have great potential and
nicely bracket the diversity of techniques we have described: qualitative anal-
ysis of verbal or written texts using expert systems or other varieties of
symbolic processor, and enhancements to conventional statistical analysis such
as substituting neural networks for multiple regression.

Qualitative Research with Symbolic Processors

In the 1960s, researchers found that very convincing interviewing programs
could be created with surprisingly limited computing machinery and software.
Especially controversial were programs that simulated a psychotherapist con-
versing with a patient (Colby et al 1966, Weizenbaum 1976). More recent
work has suggested that fully computerized interviewing may have distinct
advantages for some kinds of research, for example, sensitive topics like sexual
behavior where respondents might be embarrassed to answer questions posed
by another human being (Binik et al 1989).

Interview programs constructed along the lines of expert systems give so-
ciologists an entirely fresh way of looking at data. Decades of quantitative
research have been based on the concept of rectangular data matrices consisting
of a large number of cases times a large number of variables, with the assump-
tion that each case has a value (perhaps known or perhaps missing) for each
variable. Relational data bases, such as incorporated in many expert systems,
are very different in structure, as we have noted. Their topology may be very
complex but generally consists of a network of nodes and relationships, with
no matrix of cases by variables existing in the computer’s memory. Carley has
shown that such systems can be used to discover an individual’s structure of
meanings and then to compare that structure with the cognitive maps of other
individuals (1986).

Possibly the greatest research potential for ASI in the coming decade is in
computer-assisted analysis of written text. The federal government is increas-
ing its already significant support for development of the National Information
Infrastructure (Information Infrastructure Task Force 1993). Whatever the
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exact form it takes, the “NII” will involve a tremendous expansion of computer
communication networks and on-line databases, with rapid growth of the
libraries of text available in electronic form. This includes everything from
newspapers, to congressional debates, to (eventually) the entire contents of the
Library of Congress. The question then becomes: What software tools will
sociologists need if they are to navigate effectively through this ocean of words
and analyze selected portions of text in the most effective manner?

Already a number of text-analysis software packages exist for microcom-
puters. Heise (1992) has shown that much can be accomplished with an
ordinary word processor, and software packages like HyperResearch and Ethno
have some of the qualities of expert systems, and thus they begin to enter the
territory of ASIL. “Intelligent” search procedures and modern knowledge rep-
resentation schemes can help pre-process data (Franzosi 1990a,b) and recode
data (Carley 1988) for general content or map analysis procedures. For some
of these procedures the “intelligence” is built into the coding mechanism, in
the form of “frames” that the researcher must fill in (Roberts 1989, Carley &
Palmquist 1992, Carley 1993). These frames, which embody vast quantities
of expertise are then used to postprocess and analyze the data.

Within narrative analysis, Al procedures can be used for examining, pro-
cessing, and generating the story line in the narratives (Abell 1984, 1989).
Ethno, for example, allows one to model event structures, including narratives,
as production systems (Heise 1989, Griffin 1993). Related approaches are
decision-based procedural analysis or protocol analysis, where the goal is to
locate the explicit and implicit “rules” that the speaker uses to perform a task
such as playing chess (Ericsson & Simon 1984). Gilbert & Heath (1986) have
shown how PROLOG can be the basis of an intelligent system to capture public
rules from narratives and retrieve the sense of textual items, illustrating the
ways this would be done with medical records. Cope is a software system of
nodes and linkages designed to produce cognitive maps of texts, thus helping
develop grounded theory and capture verbal accounts (Cropper et al 1990).
Automatic procedures such as Cirrus (VanLehn & Garlick 1987, Kowalski &
VanLehn 1988) and ACM (Langley & Ohlsson 1984) have emerged, providing
hope that larger numbers of texts can be analyzed quickly and economically.

Social scientists of politics have used expert system shells to analyze se-
quences of deeds and words in international relations (Schrodt 1988). For
example, Mills (1990) created a rule-based expert system for analyzing nego-
tiations and applied it to three sessions of talks between China and the Soviet
Union. As the program runs, it asks the social scientist a set of questions about
the behavior of each side at different points in the episode, then it outputs a
summary analysis.

Despite the disillusionments of the 1960s, natural language processing has

"made substantial progress in translating texts and extracting meaning from



428  BAINBRIDGE ET AL

them, particularly, in the realm of story understanding (Abelson 1976, Rumelh-
art 1978, Schank & Riesbeck 1981, Lehnert & Ringle 1982). Plot-based pro-
cedural analysis lends itself to automation due to the presence of basic syntactic
units (Lehnert 1981, Lehnert & Vine 1987) that make possible the automatic
coding of texts.

Often the challenge is to trace linkages between texts, and a prime example
is citation analysis in the sociology of science. Recent work in this area has
employed search procedures from computer science to locate citation paths
giving a history of which researcher cites which (Hummon & Doreian 1989,
1990, Hummon et al 1990, Hummon & Carley 1993, Carley et al 1993). These
procedures make it possible not only to identify the main path of scientific
development, but to understand the roles played by different types of research.

Al-Enhanced Statistical Analysis

Neural networks can readily substitute for multiple regression and for other
multivariate techniques that aim to predict the value of one variable on the
basis of the values of other variables. It is claimed that neural nets outperform
other methods, chiefly because a sufficiently large neural net can in principle
handle any pattern of nonlinearity in the relationships and complex interactions
between independent variables. Indeed, for some problems neural nets may
represent overkill, and if a net is given too many hidden units, it can overfit
the data disastrously, producing an unreasonably complex and contorted curve
on the scattergram.

Another disadvantage is that neural nets solve problems in ways that are far
from transparent to human users, and they do not automatically generate lucid
equations that can be comprehended in terms of explanatory theories. Perhaps
this is why neural nets have been employed analytically in the social sciences
primarily to make economic predictions (Lin & Lin 1993) when predictive
power may be more important than explanatory intelligibility.

Neural nets do readily produce some conventional measures such as mean
squared error (Smith 1993), and robust estimates of errors can easily be derived
through procedures related to bootstrapping (Dietz et al 1987, 1991). The fact
that neural nets have been doing useful statistical analysis for less than five
years suggests that a full kit of related tools will require further time and effort.
Perhaps one of the best ways to accomplish that is simply to attempt a variety
of empirical studies and see what capabilities need to be added to those already
possessed by neural nets.

Kimber (1991) compared neural networks with traditional methods and with
ID3, a classification algorithm sometimes built into expert systems, to see
which technique could best predict the emergence of democracy in nations,
on the basis of such variables as urbanization, literacy, and economic resource
distribution. Notably, the neural network performed better than did traditional
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regression analysis. Similarly, neural nets did well in predicting outcomes of
conflict between nations, in a study by Schrodt (1991). Huntley (1991) applied
neural networks to analysis of time series data in order to forecast manpower
needs in the Navy. Garson (1991) tested neural nets, ID3, and some more
traditional techniques on sets of simulated data where the actual relationships
between variables could be specified, finding that neural nets did a superior
job with several kinds of problem.

Clearly, neural nets are not the only Al technique that may be useful for
statistical analysis, and some of the procedures employed in symbolic proces-
sors could be applied to quantitative rather than qualitative data. While genetic
algorithms have scored successes in econometric modelling (Koza 1992), their
potential for analyzing social-scientific data remains largely unexplored.

A range of Al techniques can also be used in automatic security systems
that prevent misuse of confidential data while enabling maximum legitimate
use by social scientists (Keller-McNulty & Unger 1993). Government agencies
and private corporations frequently corrupt datasets before releasing them, to
satisfy anonymity and confidentiality regulations. Their chief concern is to
prevent users from identifying the record of a particular person, and they do
this by deleting cells from a table, truncating or collapsing values, adding
random numbers to cells or values, and removing variables. The alternative is
to embed the dataset in full-featured statistical software that employs encryp-
tion and analysis-monitoring techniques to prevent the user from inspecting
the raw data directly and from deducing the identities of particular cases. An
Al system could watch the user and prevent any sequence of statistical ma-
nipulations that could identify a single case, and they could also link separate
datasets about the same people through their names without letting the user
see them.

Expert systems and related tools such as hypertext can serve as method-
ological consultants, whether attached to familiar statistical packages or pro-
duced as stand-alone software. Statistical Navigator (Brent et al 1991) is a
decision support system that helps a researcher select which techniques of
statistical analysis are appropriate for an intended research project, and it can
be used to give students an overview of statistical methods commonly used
by social scientists. In its “consult mode,” the software asks the researcher a
series of questions about the aims and assumptions of the research project, and
about the intended audience for its publications, using the answers to early
questions to decide which other questions to ask. Many require the user to rate
various possible objectives of the work on a 0 to 10 scale. After this, the
software recommends a short list of methods to the user, rating them in terms
of how well they serve the goals, assumptions, and audience for the particular
piece of research. The hypertext feature allows the user to see a description
of each method, linked to definitions of all technical terms, and the software
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can also be run in “browse mode” where the user can roam this network of
information at will. A detailed report of how the system arrived at its conclu-
sions can be printed directly or saved onto disk for later editing.

CONCLUSION

Work on artificial intelligence has been subject to innumerable fads and fre-
quently overblown publicity. Early proponents often made highly exaggerated
claims for the computer programs they had written and hollow promises about
what they would shortly accomplish. But these facts should not deter sociol-
ogists from examining the potential of artificial social intelligence, because
steady progress in computer science has brought technology to the point where
several valuable applications already exist and even modest extrapolations
suggest that ASI could be of great significance to sociology.

Sociologists interested in exploring ASI will ask themselves how much they
need to learn about computing, as opposed to relying upon computer scientist
collaborators for expertise in that field. We think it is essential to be able to
program in at least one high-level computing language, preferably in two very
different ones such as Pascal and PROLOG, and to inform oneself about a
range of recent technical developments. Particularly in the field of artificial
intelligence, it is difficult to understand the meaning of the techniques unless
one is capable of programming at least some of them from scratch. It is true
that ready-made Al software exists that can be used for ASI, notably expert
system shells and neural network packages for statistical analysis, but for the
foreseeable future most ASI applications in sociology require writing a con-
siderable amount of fresh code. And the fact is that sociologists and computer
scientists have great difficulty communicating with each other, neither one
generally appreciating the other’s assumptions or understanding the simplest
things the other says. We are convinced that collaborations between sociolo-
gists and computer scientists will be highly fruitful, but the sociologist will
have to go the extra mile and enter the world of computers if such projects
are to have any chance of success.

Current graduate training does not prepare students to take advantage of
ASI. Although some probability theory can be useful, hardly any of the material
taught in statistics courses is relevant to the computer techniques described
here. Two or three decades ago, there was much debate about requiring students
to learn computer programming, even the interesting idea of counting high-
level computing languages toward the then-existing foreign language require-
ments. Of course, today few sociologists write programs from scratch, because
they cannot compete with the elaborate and accurate statistical packages avail-
able on the market at low cost. But now, we suggest, ASI presents an array
of new reasons to become competent in programming, not the least of which
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is our belief that ASI skills enhance a person’s capacity to think both logically
and creatively.

While recognizing the danger of being swept away by excessive enthusiasm,
in a field that has been rife with fads, we believe that ASI opens an entirely
fresh era for social theory. Sociologists are concerned with the behavior of
societies of complex, adaptive individuals. Therefore, rigorous theory building
and testing requires the use of mathematics or computer simulations. Even as
physics and economics are developing computational components, so should
sociology.

The general public, to the extent that it has any opinion about social theory
at all, probably considers it to be mere ideology. So long as theories are
rambling verbal meditations punctuated with dubious metaphors, there is little
defense against this accusation. ASI and mathematical formalism are compat-
ible methods for stating a theory precisely, connecting its concepts in rigorous
intellectual structures, and identifying both hidden assumptions and unex-
pected consequences. Skillfully written simulation programs can be an excel-
lent medium for communication of precise theoretical statements, so long as
the intended audience has learned how to read programs.

Whatever the future of various government initiatives in high performance
computing, a Global Information Infrastructure is gradually emerging. Internet
links the National Science Foundation with literally millions of computer users
already, and many archives and libraries are steadily increasing the amount of
text and other data available over it. Alternately, the medium for distribution
of data may be laser discs (CD ROM) or a successor technology that carries
information in physical objects rather than in electronic bit streams. Social
scientists need to be involved in the development of these technologies, in part
because we can be sophisticated advocates for the general public whose real
data and software needs might otherwise have little influence on systems
created by engineers and bureaucrats. As the Global Information Infrastructure
develops, both social scientists and members of the general public will need
AST agents, specialized computer programs that can be sent into this practically
infinite universe of data in search of desired information.

Sociologists have become adept with a wide variety of statistical tools, and
one would have thought that our quantitative methodology is thoroughly ma-
ture at this point. Thus it is surprising to see neural networks suddenly com-
peting with multiple regression and other well-established methods. Partic-
ularly for analysis of texts, ASI techniques may prove superior to other ap-
proaches, and it is possible that artificial intelligence will play a prominent
role in management and analysis of quantitative datasets, as well.

There is much talk these days about the malaise into which sociology
supposedly has fallen. Whether or not this is true, ASI has the potential to
revolutionize sociology. To be sure, if unprepared sociologists rushed to ASI
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in search of salvation, they would undoubtedly be disappointed, and the sub-
stantial real gains that ASI promises might be lost in their disillusionment.
Prudent but creative incorporation of ASI methods into sociology could rein-
vigorate stagnant subdisciplines, open new fields for exploration, keep sociol-
ogists competitive in the study of traditional sociological questions, and pre-
vent our discipline from falling behind other social and behavioral sciences
that have more enthusiastically exploited the tremendous possibilities offered

by computer intelligence.

Any Annual Review chapter, as well as any article cited in an Annual Review chapter,
may be purchased from the Annual Reviews Preprints and Reprints service.
1-800-347-8007; 415-259-5017; email: arpr @class.org
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