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Abstract

The effects of distinct agent interaction and activation
structures are compared and contrasted in several multi-agent
models of social phenomena. Random graphs and lattices
represent two limiting kinds of agent interaction networks
studied, with so-called 'small-world' networks being an
intermediate form between these two extremes. A model of
retirement behavior is studied with each network type,
resulting in important differences in key model outputs.
Then, in the context of a model of firm formation, in which
multi-agent  structures  (firms) are emergent, it is
demongtrated that the medium of interaction—whether
through individual agents or through firms—affects the
qualitative character of the results. Finally, alternative agent
activation 'schedules are studied. In particular, two
activation modes are compared: (1) all agents being active
exactly once each period, and (2) each agent having a
random number of activationsin every period with mean 1.
In many circumstances these two regimes produce
indistinguishable results at the aggregate level, but in
certain cases the differences between them are significant.

| Introduction?

One class of multi-agent systems (MAS) consists of a
relatively small number of agents, each of whom has
relatively sophisticated behavior (e.g., a rich cognitive
model, perhaps for dealing with a complex task
environment [18]). A different type of MAS involves
relatively large numbers of behaviorally simple agents. This
second family of multi-agent systems is of significant
interest as the basis for empirically-relevant models of
human social and economic phenomena. Such models
typically involve the use of aggregate social or economic
data to estimate parameters of a MAS in which agents have
heterogeneous internal states (e.g., preferences) but a
common repertoire of behaviors (e.g., economic exchange).

One reason for the elevated attention given to simple
agents is that the prevailing norm in the mathematical

1 Thanks are due Michael Cohen for stimulating my interest in this
subject, and to workshop participants at the Program for the Study of
Complex Systems at the University of Michigan, for many useful
comments.

social sciencesisto build models that abstract from the
details of cognition.2 Stated differently, the focus of
economists and other quantitative social scientists on
behaviorally simple models is a symptom of the lack today
of anything like a universal model of cognition. A second
reason for differential interest in models composed of
moderate or large numbers of simple agentsis that such
systems are quite capable of complex aggregate behavior,
involving, for example, the spontaneous emergence of
behavioral norms (e.g., [19]) or the self-organization of
multi-agent coalitions (e.g., [3]). Understanding the origin
of these complex patterns of emerged behavior is often a
significant challenge, and would be even more difficult if
individual agents were complex in their own right—if
individual decisions were also emergent.

Given the relative simplicity of individual agentsin such
systems, it is almost certainly true that model specifications
beyond the individua level play a somewhat more
important role in such models than in MAS involving few
agents. In particular, the interconnections between
agents—the interaction topology—and the relative amount
of individual activity in the agent population—the agent
activation regime—surely must matter in wide varieties of
models, especiadly to the extent that such models have
empirical ends.

In this paper it is demondrated that these
factors—interaction topology and activation regime—can be
crucially important in multi-agent systems, illustrated
through a variety of empirically-oriented models of social
phenomena. Specifically, when structures of interaction and
activation are systematically altered, the aggregate statistics
produced by such models can vary substantially. The next
section addresses interaction networks in two multi-agent
models. First, an existing multi-agent model of retirement
dynamics, in which social networks are dynamic, random
graphs, is modified to have lattice-type networks in the
space of age cohorts. Thisis shown to systematically alter
the overall behavior of the agent society as measured by the
time required for establishment of a socid norm in

2 There are many reasons for this state of affairs. The fact that
cognitive psychology has focussed little on economic behavior [15] is
certainly one reason, remediable in practice. That most economists have
little training in cognitive science represents a larger challenge.



retirement age. Second, in a model of endogenous firm
formation, where agents learn of aternative employment
opportunities through social networks, akey statistic of the
model is shown to depend crucially on the structure of these
networks. Then, in section three we study the effect of two
asynchronous agent activation regimes. uniform activation,
in which all agents are active exactly once each period, and
random activation, in which agents are active once a period
on average. The effect of changing regimes is described in
multi-agent models of trade, cultural transmission, and firm
formation. A final section draws conclusions.

Il Effect of Agent Interaction Topologies

Social networks play a critica role as the medium
within which human beings are socialy situated and
through which interactions between individuals occur.
Therefore, it is hardly surprising that positive models of
human social processes should include such networks. What
is perhaps surprising is the extent to which relatively small
changes in network structure can lead to large changesin
macro-social outcomes. Experiments with human subjects
involving systematic changes to social networks ae
difficult to perform, of course. Here we utilize multiagent
systems in their role as social science laboratories, since
such models allow us to methodically alter such networks
and to then discover, by spinning the models forward in
time, the overall effects of such alterations. In this section,
two model s—one on the dynamics of retirement norms and
the other a multi-agent model of firm formation—have their
social networks systematically altered. In the first case an
extant model employing random graph networks is morphed
to alattice configuration, and then to a so-caled ‘small
world’ graph.3

Recently, procedures for creating ‘small world’ graphs
have been introduced in [17]. Analysis of such graphs
demonstrate that they possess a form intermediate between
regular and random graphs, and have many properties of
rea-world social networks. Specificaly, start with a ¢
dimensional lattice having a fixed number of edges. Then,
systematically break each edge with some probability, p,
and reattach each broken edge to a random node. There
results a graph having a well-defined sense of ‘localness’ as
in aregular graph (i.e., agents who know each other have
significant overlap in their individual social networks), as
well asrelatively short paths between any two agentsin the
graph, a characteristic feature of random graphs. These
‘small world graphs are thought to be relatively good
models of certain social networks (cf. [11], [16]).

Coordination in Transient Social Networks: A
Model of the Timing of Retirement

In [5] amodel of retirement behavior is described in
which there is a population of agents of various ages, with
each agent having to decide when to retire. The model

3 Anillustration of the importance of social network structure in several
game theoretic models can be found in [13].

abstracts from economic factors in attempting to explain a
certain puzzle in the evolution of the modal age of
retirement—namely the long lag between the last big
change in benefits policy and the systematic change in the
overall behavior of retirees. Specifically, in 1961 an 'early
retirement' age of 62 was ingtituted by the U.S. Socia
Security Administration. Benefits received by age 62 retirees
were reduced in comparison with age 65 recipients, by an
‘actuarially neutral' amount—typical people would be, it
was thought, indifferent between retiring at any age between
age 62 and 65. The puzzle is that in 1961 the modal
retirement age was 65, and this remained so up through
1990. Only by 1995 had this shifted, rather abruptly, to age
62. Standard rational actor accounts of retirement decision-
making have difficulty explaining the long lag between
changes in benefits and responsesin overall behavior.

Our model of the retirement process employs a
heterogeneous population in which there are three kinds of
agents:

1. ‘rationals retire at the earliest age permitted by law;

2. imitators play a coordination game in their social

networks—if the fraction of agents who are retired
among those eligible for retirement within an
agent’s network exceeds a threshold, t, then the
agent too retires, else it continues working;

3. randomly-behaving agents retire with some fixed

probability, p, once they are eligible to do so.
This simple model is capable of reproducing certain features
of retirement data from the United States, particularly a
relatively long lag time from the change in earliest
retirement age until its establishment as a behavioral norm
in the population.

During each period of model execution, each agent ages
one year and gets to decide whether or not to retire (thereis
also some chance of dying). The behavior of the first and
third agent types is straightforward, while that of the second
type, the imitators, can be characterized using game
theoretic notions.# Consider a population of A agents, in
which the state of agent i is xj 1 {working, retired}. Then
the state of society is given by x T {working, retired}A.
Agent i has a social network, consisting of a set, Nj, of
other agents. Overall, the utility that agent i derives, U;,
from interacting with members of its network is given by

Ui(x) = ‘iér‘u.u(Xi’Xj)

where theu(xj, xj) can be thought of as payoffsina2x 2
game, asin table 1.

working retired
working W, W 0,0
retired 0,0 r,r

Table 1: Imitation as a coordination game

An agent's imitation threshold, t, can be stated in terms of
these payoffs, given the graph weights in its social

4 Formal results for games of this type played on static graphs are
developed in [20].



network. In the case of uniform weighting—i.e., the
behavior of all neighbors considered equally—t = w/(r+w);
for r= w, t = 1/2. Furthermore, if the payoffs are made
heterogeneous in the population then the imitation
thresholds become heterogeneous as well.

For the imitators in the model, their networks ae
random graphsin [5].° Note that although each agent has a
fixed network, the overlapping generations character of the
population, in which old agents die and new, younger
agents are born, renders the overall networks in society as
transient. Here we study the effect of first moving to regular
graphs of a certain type and then to small world graphs.
Since human social networks tend to be highly correlated
with age—i.e., people's designations of their friends are
often dominated by people within afew years of their own
age—the regular graph we employ islocalized in the cohort
space. That is, each agent has friends who are near it in age.

The key statistical output of this model is a measure of
how long it takes a social norm of age 65 retirement to
establish itself from an initial condition of no retirement
age norm. In [5] the way in which this measure depends on
various parameters of random graphs—e.g., their size, their
extent in the cohort dimension, their heterogeneity—is
studied. Here we investigate how altering the network
structure to lattice social networks in the cohort dimension
modifies the time required for establishment of this social
norm. When populations are homogeneous and interactions
occur on regular graphs, it is known analytically that the
transition time between equilibria can be sped up through
local interactions [7]. But for heterogeneous populations on
transient graphs little is known analytically about waiting
times, the lifetimes of transients, and so on.

In order to facilitate comparisons, the size and extent of
agent networks is kept fixed as we vary network type. These
and other parameters are described in table 2. The agents are
parametrically homogeneous here, but each agent has a
unique socia network and therefore the population of agents
is heterogeneous. These parameters differ somewhat from
the 'base case' described in [5], involving larger social
networks that have less extent in the cohort dimension
(‘'network age extent' of 2 means that an agent's network
includes agents who are within 2 years of its own age).

Parameter Value
Agents/cohort 100
Imitation threshold, t 50%
Social network size 24
Network age extent 2
Random agents 5%
p 0.50

Table 2: Configuration of the retirement model

This set of parameters yields a model in which the typical
timerequired to establish an age 65 retirement norm is
somewhat greater than in the base case in [5], due to the

5 For analysis of the properties of random graphs see [6].

larger social networks. The rightmost line if figure 1 below
gives these times as a function of the fraction of rational
agents in the population, holding the number of randomly
behaving agents constant at the level of table 2. Note that
for approximately 15% rational agents, the average
transition time is around 100 years. The bars above ad
below the average values in the figure represent +1 standard
deviation; these are asymmetrical because the ordinateisin
logarithmic coordinates.

Running this model demonstrates that the state of being
‘retired”  percolates upward from below—from older
cohorts—as it were.® The model behaves as if retirement
were diffusing through or infecting the population, from
older to younger individuals. In effect, the agents are an
excitable media through which retirement behavior can
spread, with agent interaction serving to speed the adoption
of retirement while at the same time the aging of the
population and the inherently transient nature (through die-
off) of all social networks acts in the opposite direction, to
limit adoption. Overall there is continual ebb and flow of
the retirement state through socia networks, until
eventualy it takes hold among essentially all agents capable
of being in such a state. This uniform adoption of
retirement behavior is best understood as the emergence of a
social norm of uniform retirement age. While such norms,
once established, can be destabilized by chance events, in
general they are quite robust.
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Figure 1: Time until establishment of age 65 retirement
norm, as a function of social network configuration

These results can be compared with those that obtain for
lattice-type regular social networks. These are also depicted
in figure 1, as the leftmost line. For a given fraction of the
population acting rationally, lattice networks clearly require
significantly less time for social normsto arise than random
graph networks. The effect is dramatic at small levels of
rationality, where random graphs would essentially take
forever to lock in to a social norm, but lattice networks
may require only afew decades. Equivaently, for a specified
transition time a much smaller fraction of the population
needs to be rational when social networks are lattice-like.

6 typical realization of this model can be found in QuickTime® format
at www.brook.edu/es/dynamics/papers/ interaction.



Typical model realizations’ reveal that this model has a
different dynamic for the establishment of retirement norms.
In contrast to retirement percolating from older to younger
cohorts, with lattice social networks retirement behavior
starts among age 65 agents, first in a small group, ad
grows outward through that cohort, then down through the
population as it ages. Visually it is clear that thisis a very
different mechanism than with random graph networks.

As has been argued briefly above, neither random nor
regular graphs well-represent empirically-significant social
networks. In random graphs there is no sense of location,
whilein lattices the 'social distance' between two agents can
be very large. Rather, real-world social networks seem to
have the 'small world' property, i.e., networks are localized
yet the path length between any two individuals is not
large. From [17] we know there is a well-defined sense in
which we can move from lattices to random graphs by
randomly selecting links to be broken and randomly
reattached. Such a process yields small world graphs. Figure
1 also reports results for the dynamics of retirement in such
small world socia networks, with two different values of
the probability of breaking and randomly reattaching alink,
p. For p = 10%, the social networks retain their lattice
look, but now there exist much shorter paths between any
pair of agents. The establishment of retirement norms looks
much like the lattice social network model in this case,
although the transition times are somewhat longer. In the
case of p = 25%, the paths between arbitrary pairs of agents
are even shorter. Here, the fraction of rational agents
necessary to achieve a specified transit time to a retirement
age norm is about halfway between the pure lattice and
random graph social network cases. Clearly, these small
world graphs behave as an intermediate form between
regular graphs and random ones.

The Emergence of Firms

In[3] amodel is developed in which heterogeneous, self-
interested agents form groups in a team production
environment with increasing returns. Each agent has
preferences for income, gained from working, and for leisure
(all time not spent working). Nash equilibrium effort levels
ina group are Pareto-dominated by higher effort levels,
although these are not individually-rational. The main
analytical result for this strategic situation is that thereis a
size beyond which any group is unstable. That is, thereisa
maximum stable group size for any distribution of
preferences. As groups exceed their maximum size, agents
are permitted to join other groups or to start up new groups
if it iswelfare-improving to do so. It turns out that meta-
stable groups—temporary coalitions—of agents can survive
in this model out of equilibrium for significant lengths of
time. We have studied such transient groups via a multi-
agent system.

Interestingly, many of the statistical features of these
groups closely resemble what is known about the

7 Also available at www.brook.edu/es/dynamics/papers/interaction.

population of firms. In particular, the size distribution of
such groups is highly skewed, approximating a power law
(Pareto distribution) in the upper tail, a well-known
property of firmsin industrial countries. Second, the growth
rate distributions in the model are closely related to those
found empirically for U.S. firms—essentially, non-normal
distributions with heavy tails. Third, the way in which
growth rate variance depends on firm size in the model can
be made almost identical to the data (more on this later).
Fourth, it is something of an empirical puzzle that wages
tend to increase with firm size. This phenomenon can be
found in the model, but only for particular interaction
topologies. To understand how thisis so, it is necessary to
consider the details of agent decision-making.

When an agent is activated in this model, it assesses
how its utility could be increased by altering its effort level.
Perhaps several new agents have joined the group since it
last re-evauated its effort, or maybe other agents have
systematically dtered their effort contributions to
production. This assessment by the agent could involve
utility maximization, taking as given other agents
behaviors or taking into account the reactions of othersto
its own change in effort level. Alternatively, it could be
simply utility-improving through a process of groping for
better effort levels. However potential utility increases are
determined, the agent stores these new efforts and utilities
for comparison with other options, including joining other
firms as well as starting up anew firm on its own. For each
of these options the agent determines effort levels that
improve its utility. But which extant firms do agents
consider? There are many ways to do this. First, an agent
could simply pick afirm at random in the population of
firms. Alternatively, it could pick an agent at random from
the overall population and consder joining its firm.
Similarly, it might carry around with it a social network of
'friends' and each period consider joining the firms of its
friends. Or, perhaps most realistically, firms that can profit
most from hiring could post ‘ads' in a virtual newspaper in
order to attract potentially interested agents.

Clearly, these are quite varied ways of selecting
prospective employers, and there is no obvious reason why
they should yield the same results, especially given the
highly skewed distribution of firm sizes. That is, due to the
size distribution skewness, sampling arandom firm is very
different from selecting an agent at random. The former
process produces a small firm with high probability—
median firm sizeis under 10, the mode is 1 or 2—while the
latter more frequently samples larger firms. Interestingly, it
turns out that most of the empirical features of this model
are robust, qualitatively, to such variations, i.e., size
distributions remain skewed, growth rate distributions have
fat tails, and growth rate variance scales with size. However,
one empirical feature is sensitive to the structure of
interactions, the wage-size effect. In figure 2 the dependence
of wages on size is shown for two kinds of networks, one
in which random agents are selected (lower line), and one
based on choosing new firms (upper line). It is clear from
thisfigure that there is little wage-size effect in the former



case (i.e., random agents), while wages increase with sizein
the latter case. Empirically wagesa size™™°, while the upper
linein figure 2 describes an almost identical relationship.
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Figure 2: Effect of firm size on wages, search networks
based on new firms (upper) and random agents (lower line)

This clear difference in wage-size effects that results from
changing the networks in which search is conducted is due
to the different kinds of prospective employers yielded by
the sampling process, as alluded to above. Due to increasing
returns, growing firms in this model have high output per
employee (productivity) and create high utility for their
workers. When job-seeking agents can 'see’ such firms, as
with firm-based search networks, then output per worker
grows with size. Alternatively, if such firms are
infrequently sampled, as with random agent networks, then
the 'arbitrage’ in marginal utility that takes place in this
model as agents migrate between firms yields constant
output per agent across firms.

11 Effect of Agent Activation Regime

By agent activation we refer to the order and frequency of
agent action. Because real social processes are rarely
synchronous, modeling them by permitting each agent to
update its states exactly once each period, using last period’'s
state information, is usually inappropriate. Two types of
asynchronous activation regimes are commonly employed
in large population, simple agent MAS described in this
paper. In uniform activation a period is defined as the time
during which all agents are active once and only once. In
random activation each agent has an equa a priori
probability of being active each period, but stochastic
variations lead some agents to be more active than others.
We study these in turn below.® In general, we can expect
these alternative execution regimes to yield different
individual agent histories, and possibly different macro-
social outcomes as will be illustrated below. Indeed, even
for a given type of activation it is only under very

8 An important exception to this statement are multi-agent models of
traffic. In [10] a critique of the use of synchronous updating in certain
game theoretic models is rendered, demonstrating that results from such
models are typically not robust to asynchronous updating.

9 The case in which agents have differential incentive to be active is
treated in [12].

specialized conditions that distinct agent updating histories
will yield invariant histories of agent states[9].

Uniform Activation

In uniform activation, each agent is activated once per
period. A possible problem with this execution regimeis
that if agent i always actsimmediately before agent j over
the course of many periods then there exists the possibility
that correlation between these agents will develop that is
unrelated to the agent behavioral rules, but is rather a direct
consequence of the activation structure. We call this
spurious agent-agent correlation and suggest that in most
cases it should be considered a programming artifact—an
unintended consequence or side effect—and avoided.
Happily, by randomizing the order of agent activation from
period to period it is usually possible to remove al artifacts
of thistype and thus avoid any spurious correlation. Stated
differently, with uniform activation it is crucia to
periodically randomize the order of agent updating.

But how much randomization is appropriate? That is,
given the order in which agents were serially activated last
period, how many agents need to be repositioned in this
sequence so that in the next period most of the agents either
precede or follow a different agent—i.e., most agents have
one or more new neighbors in the execution sequence? We
have tried to answer this question anaytically, without
success10 To get some feeling for the difficulty of this
guestion, consider the simple case of a single pair of
randomly selected agents who are swapped in the agent
activation list. How many agents will have 1 new
neighbor? How many will have 2 new neighbors? There are
three cases to consider:

1. The agents sdected to be swapped are neither
neighbors nor have any neighbors in common, so
rearranging them will give each of their 4 previous
neighbors 1 new neighbor. Therefore, the fraction
of the population that has exactly 1 new neighbor is
4/A. Furthermore, each of the agents who moved
have 2 new neighbors.

2. The agents to be swapped are immediate neighbors,
so the process of rearranging them yields 4 agents
who have exactly 1 new neighbor, and no agents
with 2 new neighbors.

3. The agents to be moved have 1 neighbor in
common, so the rearrangement process aso
produces 4 agents with exactly 1 new neighbor, and
no agents with 2 new neighbors.

Now, to figure out the probabilities of having exactly 1 or
2 new neighbors it is necessary to determine the relative
probabilities of these 3 cases. Then, the case of rearranging
2 agent pairs (4 agentstotal) involves 3 x 3 cases: the first
agent pair generates the three cases above, and for each one
of these the next agent pair creates 3 more cases. For an
arbitrary number of rearrangements, this quickly becomes a

10 This problem is very similar to the card shuffling problem—how
much shuffling is sufficient to satisfactorily “mix” a deck?



very messy analytical problem and so we have resorted to a
computational analysis, described in the following example.

Example: Agent list randomization

Consider a population of size A maintained in alinear
data structure with the last element connected to the first, so
that each agent has two immediate neighbors. The agents
are activated according to their position in thislist. We are
interested in how much agent rearrangement is necessary to
produce a well-shuffled list. Pick L agents at random and
reposition them in the data structure.1! What fraction of
the agents in the list have at least 1 new neighbor? What
fraction have 2 new neighbors?

This process has been studied for L varying from 1% to
150% of A—that is, from 2 agents up through 1.5 A—for
various population sizes, A = 100, 500 and 1000. For each
(L, A) pair, 100 realizations were made and statistics
computed concerning the number of new neighbors. The
average results did not differ appreciably across population
sizes, and shown in figure 3 below isthe A = 1000 case.
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Figure 3: Probabilities of having at least one (upper line)
and exactly two new neighbors (lower line) as a function
of the percentage of agents who are rearranged

Notice that for relatively few agent rearrangements, a
relatively large fraction of the agents get at least one new
neighbor—e.g., 25% rearrangement corresponds to nearly
50% of the agents having new neighbors. However, it is
also the case that in order to guarantee that 90% of the
agents have 2 new neighbors a very large number of
rearrangements have to be performed—a number larger than
the entire population!  The lesson here is that random agent
selection and repositioning is arelatively good way to do
modest agent population list rearrangement, but it is too
expensive to serve as a general method, especially when it
is desired to completely rearrange a list. (If complete list
rearrangement is desired then there are a variety of waysto
accomplish this at less cost than random repositioning.) In
those cases where having al agents activein asingle period
is behaviorally reasonable, i.e., uniform activation, then
figure 3 can be consulted to determine the effect of
randomization.

11 There are many efficient ways to do this, depending on the data
structure involved. For instance, swapping the positions of two agents
consecutively drawn works well for fixed size structures such as arrays.

Random Activation

Now consider the case of k distinct agents selected in a
single period from a population of size A in order to interact
socially. For k = 1 the agents are solitary actors, while for k
= 2 these are bilateral interactions. When the probability
that an agent is active is uniform throughout the
population, the distribution of agent activation is binomial,
and we call this random activation. In a population of size
A, the probability that an agent is active in any particular
period is k/A. Over T periods the probability that an agent
interacts each period is (k/A)T, while the probability it does
not interact at all isjust (1-k/A)T. Overall the probability
that an agent is active i times over T periodsis simply

T ok 0/ goA- ko'

CikATE A o
The mean number of activationsis KT/A, the variance is
KT (A-k)/AZ2, the coefficient of variation, s2/m= (A-K)/A, is
independent of T, and the skewness coefficient is (A-
2k)/OKT (A-K)); note that this last quantity is positive for A
> 2k. The time a particular agent must wait to be first
activated—the waiting time—is a random variable, W,
having a geometric distribution,; its pm{ ii

k ko ™
Pr(W=T) A?é?[ v

The expected value of W is A/k, with variance A(A-k)/kz.

For T » A » Kk, the average number of activationsis
approximately k, the variance is also about k, and the
skewness lies around 1/Ck. Since the mean and variance are
nearly equal in this case, many agents will fail to be active
over time T. This can also be seen from the waiting time,
the mean value of which is large with the variance
approximately equal to the mean sgquared. A situation of this
type can be viewed as problematical in multi-agent systems,
where a reasonable presumption is that models are run long
enough for all agentsto be active.

From the waiting time distribution we can explicitly
compute the probability that W exceeds T for a particular
agent. Calculations of this type are summarized in figure 4.
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Figure 4: Probability that a particular agent in a population
of size A has been inactive over T periods when k agents
are activated at once
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As Tincreasesbeyond A, that is, T » A, the mean
number of interactions rises together with the variance in
proportion to T, while the skewness coefficient approaches
0; for A » k skew vanishes like 1/Q(2T).

Example: Distribution of the number of interactions per
agent in bilateral exchange processes
Consider an economy in which agents are randomly
paired to engage in bilateral exchange, a single pair of
agents trades each period (k = 2), and the probability that an
agent is part of a trading pair is uniform across the
population. For 100 agents (A = 100) over 1000 periods (T
= 1000) the probable number of activations per agent is
shown below in figure 5.
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Figure 5: Probability mass function for the number of
agent activations in a population of 100 agents over
1000 periods when agents are paired sequentially with
uniform probability

The mean number of activationsin figure 5 is exactly 20,
although the modal event of 20 activationsis only slightly
more probable (p = 0.0897) than 19 (p = 0.0896). The
standard deviation of this distribution is 4.43, and it is
skewed slightly, with a‘fatter’ right tail, as evidenced by a
skewness coefficient of 0.217.

Clearly, uniform and random activation represent very
different models of agent activity. In a certain sense,
uniform activation is the zero variance limit of random
activation—the number of activations per agent has no
variance in the case of uniform activation. In the next
subsection the differential effects of these two activation
regimes are compared. But before moving on, a third
activation regime will be briefly described.

Imagine that each agent has its own 'Poisson clock' that
wakes it up periodically in order to be active, such that the
probability of its being active over asingle time period is
k/A. Then, over time T each agent is active KT/A times on
average, just as in random activation, with the variance
equal to the mean. Here, however, during any period of time
the total number of agent activations is arandom variable,
and the random activation model described aboveisakind of
zero variance limit of random activation of the Poisson
variety. Thereisaclear connection between these two types
of random activation, since the Poisson distribution closely
approximates the binomial for large valuesof A and T.

Comparison of Activation Regimes

The so-caled Sugarscape model [8] is a multi-agent
system designed for the study of demography, economics,
disease propagation, and cultural transmission, on spatial
landscapes. It utilizes uniform activation with execution
order being randomized each period. A somewhat more
elaborate model for the transmission of culture that uses
random activation has been studied by Axerod [2]. A
‘docking experiment' was undertaken in which the culture
component of the Sugarscape MAS was extended to
incorporate Axelrod's model, in hopes of being able to
reproduce the latter's somewhat counter-intuitive results. As
described in [4], initial attempts to 'dock' the two distinct
multi-agent systems yidded qualitatively similar results
despite different activation regimes. However, statistical
testsrejected the hypothesis that the data from the two
models were the same. Only by altering the Sugarscape
execution model to random activation was it possible to
guantitatively 'dock’ the two models. So thisis an example
of agent activation regime having a measurable statistical
effect, although not altering the qualitative character of the
output.

Returning now to the model of firm formation proposed
in [3], one of the most striking regularities in the empirical
dataisthat the variance in log(growth rates) decreases with
firm size. Large firms simply have less variation in their
growth rates than do small firms. Figure 6 below reproduces
afigurein [3] that describes the close quantitative agreement
between the model and the data on U.S. firms—essentially,
the standard deviation in the logarithm of growth ratesisa
power law in firm size, with exponent approximately equal
to -1/6. (The data scatter at large firm sizesis due to small
sample sizes.)
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Figure 6: Effect of firm size on variance in the
logarithm of growth rate with random activation

The basic version of this model uses random activation.
In the course of investigating the effect of aternative
activation regimes on the model it was discovered that
uniform activation (with 50% randomization each period)
generates the reverse dependence of growth rates on
size—variance increases with size. Thisis shown in figure
7.
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Figure 7: Effect of firm size on variance in the
logarithm of growth rate with uniform activation, 50%
randomization each period

Here the slope is approximately +1/6, just the inverse of
random activation. Such data could hardly be in greater
disagreement with the facts. The reason why this happensis
that when large firms begin to decline—and it is a theorem
in the model that all firms eventually decline—the process
is hastened by uniform activation. Once afew agentsrealize
there are better opportunities elsewhere, other agentsin the
firm progressively learn this. Such ‘unraveling' processes
are more diffuse with random activation—those agents
inactive during a period of declinein their firm look up
from their desks one day to find things in bad shape, and
only then do they consider leaving. The random activation
model implies more heterogeneous rates of sampling of
external job opportunities among the agents within afirm.

IV Conclusions

The effects of agent interaction topology and agent
activation regime have been investigated in several multi-
agent systems. In moving between regular graphs (lattices)
and random graphs, through small world-type graphs, the
overall behavior of a model of the timing of retirement
changed significantly. Then, altering the qudlitative
character of social networks in an empirically-accurate
model of firm formation caused the wage-size effect in the
model to disappear.

Two distinct agent activation schemes were compared
and contrasted, uniform and random activation. These
produced qualitatively similar but statisticaly different
output models of cultural transmission. In the firm
formation model, random activation yields empirically-
significant results. Moving to uniform activation generates
qualitatively different and unrealistic output.

Clearly, agent interaction and activation structures can
play important rolesin MAS. Careful consideration of these
‘architectural details’, including systematically studying
how model output changes as they are varied, must be a key
to robust analysis of multi-agent systems.
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