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Abstract. One of the most widely studied systems of argumentation is the one
described by Dung in a paper from 1995. Unfortunately, this framework does not
allow for joint attacks on arguments, which we argue must be required of any truly
abstract argumentation framework. A few frameworks can be said to allow for
such interactions among arguments, but for various reasons we believe that these
are inadequate for modelling argumentation systems with joint attacks. In this
paper we propose a generalization of the framework of Dung, which allows for
sets of arguments to attack other arguments. We extend the semantics associated
with the original framework to this generalization, and prove that all results in the
paper by Dung have an equivalent in this more abstract framework.

1 Introduction

In the last fifteen years or so, there has been much interest in argumentation systems
within the artificial intelligence community3. This interest spreads across many differ-
ent sub-areas of artificial intelligence. One of these is non-monotonic reasoning [10,
19], which exploits the fact that argumentation systems can handle, and resolve, incon-
sistencies [12, 13] and uses it to develop general descriptions of non-monotonic rea-
soning [8, 18]. This line of work is summarised in [28]. Another area that makes use
of argumentation is reasoning and decision making under uncertainty [5, 16, 17], which
exploits the dependency structure one can infer from arguments in order to correctly
combine evidence. Much of this work is covered in [9]. More recently [23, 26], the
multi-agent systems community has begun to make use of argumentation, using it to
develop a notion of rational interaction [4, 20].

One very influential system of argumentation was that introduced by Dung [11].
This was, for instance, the basis for the work in [8], was the system extended by Am-
goud in [1, 2], and subsequently as the basis for the dialogue systems in [3, 24]. In [11],

3 There were AI researchers who were interested in argumentation before this, for example [6,
7, 14, 21], but this interest was very localized.



Dung presents a very abstract framework for argumentation and a series of semantics
for this framework. He goes on to prove a series of relationships between his framework
and different varieties of formal logics, including a proof that logic programming can
be seen as a special case of his framework. As a last result of the paper he provides a
method for encoding systems of the argumentation framework as logic programs. The
importance of Dung’s results is mainly due to the fact that his framework abstracts away
from details of language and argumentation rules, that the presented semantics therefore
are clear and intuitive, and that relationships among arguments can be analysed in iso-
lation from other (e.g. implicational) relationships. Furthermore, the results can easily
be transferred to any other argumentation framework, by identifying that framework’s
equivalent of an attack. It is this generality, we believe, that has contributed to the pop-
ularity of the work, and we see it as a prime contender for becoming an established
standard for further investigations into the nature of arguments and their interaction.

However, even though Dung tried to abstract away from the underlying language
and structure of arguments, he did not succeed in doing so completely. In fact if his
framework is expected to be able to model all possible kinds of attack, there is an
implicit assumption that the underlying language contains a logical “and” connective.
This hidden assumption arises from that fact that Dung’s attack relation is a simple
binary relation from one argument to another, rather than a relation mapping sets of
arguments to other sets of arguments.

While not explicitly analyzing the fundamental problem of Dung’s framework, some
previous works, most notably the efforts of Verheij, have allowed for sets of attacking
arguments, although mostly as side effects. We do not find these solutions fully satisfy-
ing, and none of them can be said to be conservative generalizations of the framework
of [11], that is a generalization that makes the minimum changes to the Dung frame-
work necessary to allow it to handle sets of attacking arguments. We elaborate further
on this throughout the paper.

In this paper we analyze Dung’s framework, and point out the hidden assumption
on the underlying language. We present a generalization of Dung’s framework, keeping
as close to his ideas as possible, which frees the underlying language from being closed
under some logical “and” connective. We do this by allowing sets of arguments to attack
single arguments, and provide new definitions and proofs mirroring Dung’s results for
this more general framework. We also argue why allowing sets of arguments to attack
other sets of arguments does not provide further flexibility, and provide an automated
encoding of systems of the new framework in Prolog, mirroring Dung’s encoding of his
systems as logic programs.

The paper is organized as follows: In Sect. 2 we present the essentials of Dung’s
framework, and then through examples illustrate how a more general attack relation is
needed for a truly abstract framework. Then, in Sect. 3 we present our generalization of
Dung’s framework, complete with definitions, proofs, and a Prolog encoding method.
Following this, in Sect. 4, we review other works on argumentation systems where sets
of arguments can attack other arguments, and relate them to the approach presented in
this paper. Finally, we conclude on the work presented here. Throughout the paper we
use the term argumentation system, where [11] uses argumentation framework, to de-
note the actual mathematical structures we work with. The term framework we reserve



for denoting the overall approaches to describing and reasoning about the argumenta-
tion systems, such as the one represented by [11] and the ones reviewed in Sect. 4.

2 Dung’s Framework

Dung [11] defines an argumentation system as a pair (A, !), where A is a set of argu-
ments, and ! ⊆ A × A is an attack relation. If for two arguments A and B we have
A ! B, then we say that A attacks B, and that B is attacked by A. As examples, we
might consider the following as arguments:

E1 “Joe does not like Jack”,
E2 “There is a nail in Jack’s antique coffee table”,
E3 “Joe hammered a nail into Jack’s antique coffee table”,
E4 “Joe plays golf, so Joe has full use of his arms”, and
E5 “Joe has no arms, so Joe cannot use a hammer, so Joe did not hammer a nail into

Jack’s antique coffee table”.

As can be seen it is not required of an argument that it follows the “if X then conclude
Y” pattern for reasoning, or, for that matter, that it represents sound reasoning.

As examples of attacks, we could have that E5!E3, E3!E5, and E4!E5. Intuitively,
and in any common-sense argumentation system, we would expect that A ! B if the
validity of the argument A is somehow obstructing B from being valid.

Without loss of generality, we will assume that the arguments are members of some
underlying language L. This assumption is necessary if any kind of meaning is to be
extracted from an argumentation system. For instance, in our example, L would neces-
sarily include the strings represented by E1 to E5.

It seems reasonable that sometimes a number of arguments can interact and con-
stitute a stronger attack on one or more of the other arguments. For instance, the two
arguments E1 and E2 would jointly (but not separately) provide a case for the con-
clusion that Joe has struck a nail into Jack’s antique coffee table, and thus provide a
joint attack on argument E5, which has the opposite conclusion. The principle of syn-
ergy among arguments is not new, and has previously been debated in connection to
“accrual of arguments” (see e.g. [25, 27, 29]). The difference between that discussion
and the issue addressed here is we (and Dung) do not consider arguments as having
a numerical strength, and a set of defeated arguments thus cannot accrue to become
undefeated, unless that set is explictly specified to defeat each argument defeating its
individual members.

Going back to the example, if this synergy is to be modelled under Dung’s limita-
tions, somehow there must be a new argument:

E6: “Joe does not like Jack and there is a nail in Jack’s antique coffee table”,

which attacks E5. If this is taken to be a general solution, it is obviously required that
the underlying language L is closed under some “and”-connective.

Furthermore, what we meant to state was that E1 and E2 jointly attacked E5 and
the solution does not quite suffice: It may turn out that ! is defined in such a manner
that one (or both) of E1 and E2 is attacked by another valid argument, while E6 is



not. That would mean that “Joe does not like Jack and there is a nail in Jack’s coffee
table” is a valid argument, whereas, say, “Joe does not like Jack” is not. Clearly this is
nonsense, and in order to ensure that nonsense conclusions cannot arise, ! would have
to be restricted accordingly. This muddles the clear distinction between arguments and
attacks, which was the very appeal of Dung’s framework.

These underlying consistency relations between arguments would seemingly be
good candidates for encoding in a logical language (for example E1 ∧ E2 ⇒ E6

and E6 ⇒ E1), and in fact an underlying logical language employing standard negation
could be used to model sets of attacking arguments (i.e. E1 ∧ E2 ⇒ ¬conclusion(E5)
with attack relations ¬conclusion(A) ! A for all arguments A), but we chose not
to go this route for a number of reasons. Primarily, it adds a another level of interde-
pendencies between arguments, which makes it hard to survey the effects of one set of
argument on others and calls for more specialized formalisms for analysis than Dung’s.
Moreover, examples of joint undercutting attacks seems to be inherently argumentative
in nature, and only obscurely encoded in an implicative manner. Consider for instance
the following arguments:

F1 “The Bible says that God is all good, so God is all good”,
F2 “The Bible was written by human beings”, and
F3 “Humans beings are not infallible”.

F2 and F3 attacks the validity of F1, but clearly it makes no sense to encode this as F2 ∧
F3 ⇒ ¬conclusion(F1) as the facts that human beings are not to be considered
infallible and that some of them just happened to write the Bible, do not entail that God
is not all good. To capture the intended meaning of the attack, one would have to add an
explicit presumption, like “The Bible can be trusted on all matters” to F1, and allow for
such assumptions to be targets of attacks, which — besides requiring identification of
all such implicit assumptions — can hardly be said to be as elegant as allowing attacks
at the argumentative level4

Having argued for the necessity of allowing a set of arguments to attack another
argument, we now examine settings where an entire set of arguments is attacked by
either a single argument or another set of arguments. Without loss of generality, we
assume that what is needed is an attack

{A1, . . . , An} ! {B1, . . . , Bm} ,

such that the validity of all the A-arguments prevents the B-arguments from being valid.
There are two distinct manners in which this can be interpreted:

1. Either the validity of the A-arguments means that each Bi cannot be valid, no matter
the validity of the other B-arguments, or

2. the validity of the A-arguments mean that not all of the B-arguments can be valid
at the same time.

4 Those swayed more by practical considerations than examples should note that the original
motivation for this work was to allow arguments about Bayesian networks, in which sets of
attacking arguments very naturally occur.



[29] refers to these as “collective” and “indeterministic defeat”, respectively — a ter-
minology we adopt in this text.

As an example consider the following twist on the story about Jack, Joe, and the
antique coffee table:

E7 “Jack has been telling lies about Joe to Jill”
E8 “Jack is a rabbit”
E9 “Joe loves all animals”

If E8 is a valid argument, then none of the arguments in the set {E3, E7} can be valid:
E3 because rabbits do not own antique coffee tables, and E7 because rabbits, being
unable to speak, do not lie. This is thus an example of collective defeat. As an example
of indeterministic defeat, E9 attacks the set of arguments {E1, E8} seen as a set: E1

and E8 cannot both be valid arguments if Joe loves all animals. However, both E1 and
E8 can be valid seen as individual arguments, no matter how Joe feels about animals.

We claim that it is never necessary to specify a non-singleton set of arguments as
attacked, as in {A1, . . . , An} ! {B1, . . . , Bm}: If collective defeat is taken to heart, the
attack can be reformulated as a series of attacks

{A1, . . . , An} ! B1

...
{A1, . . . , An} ! Bm .

It is easily seen that the above attacks would imply the attack, which is intended, as the
validity of the A-arguments would ensure that none of the B-arguments are valid.

If instead indeterministic defeat is required, the attack can be reformulated as

{A1, . . . , An, B2, . . . , Bm} ! B1 ,

which ensures that in case the A-arguments are valid, then B1 cannot be a valid ar-
gument if the remaining B-arguments are also true, thus preventing the entire set of
B-arguments from being valid at once, if the A-arguments are true. In the example
above, we would state that {E8, E1} attacks E9. Notice that this “trick” is not depen-
dent on the actual structure or language of the arguments, nor require the introduction
of a new dummy argument, as was the case if only single arguments were allowed as
attackers.

In conclusion, we have argued for the insufficiency of Dung’s treatment, when sets
of arguments are taken into account, and that an attack relation that allows for sets
of arguments attacking single arguments is sufficient to capture any kind of relation
between sets of arguments.

3 Argumentation with Attacking Sets of Arguments

In this section we present our generalization of the framework of [11]. In an effort to
ease comparison, we have labelled definitions, lemmas, and theorems with the same
numbers as their counterparts in [11], even if this means that there are holes in the



numbering (e.g. there is no Lemma 2). Furthermore, we have omitted proofs where
the original proofs of [11] suffice. As a result of the tight integration with [11] most
definitions and results have been worded in a nearly identical manner, even if the proofs
are different and the meaning of individual words are different. Those definitions and
results that differ essentially from their counterparts in [11], or which is entirely new,
have been marked with an asterix (*). The rest are identical to those in [11].

Throughout the presentation, it should be clear that the framework presented here
reduces to that of [11] if only singleton sets are allowed as attackers.

Definition 1 (Argumentation System*). An argumentation system is a pair (A, !),
where A is a set of arguments, and ! ⊆ (P(A) \ {∅})× A is an attack relation.

We say that a set of arguments S attacks an argument A, if there is S ′ ⊆ S such that
S′ ! A. In that case we also say that A is attacked by S. If there is no set S ′′ ! S′ such
that S′′ attacks A, then we say that S′ is a minimal attack on A. Obviously, if there
exists a set that attacks an argument A, then there must also exist a minimal attack on
A. If for two sets of arguments S1 and S2, there is an argument A in S2 that is attacked
by S1, then we say that S1 attacks S2, and that S2 is attacked by S1.

Definition 2 (Conflict-free Sets*). A set of arguments S, is said to be conflict-free if it
does not attack itself, i.e. there is no argument A ∈ S, such that S attacks A.

Let S1 and S2 be sets of arguments. If S2 attacks an argument A, and S1 attacks
S2, then we say that S1 is a defense of A from S2, and that S1 defends A from S2.
Obviously, if S3 is a superset of S1, S3 is also a defense of A from S2.

Definition 3 (Acceptable and Admissable Arguments*). An argument A is said to
be acceptable with respect to a set of arguments S, if S defends A from all attacking
sets of arguments in A.

A conflict-free set of arguments S is said to be admissible if each argument in S is
acceptable with respect to S.

Intuitively, an argument A is acceptable with respect to some set S, if anyone believing
in the validity of the arguments in S can defend A against all attacks. If a set of argu-
ments is admissible, it means that anyone believing this set of arguments as valid is not
contradicting himself and can defend his beliefs against all attacks.

Definition 4. An admissible set S is called a preferred extension if there is no admis-
sible set S′ ⊆ A, such that S ! S′.

Building on the intuition from before, taking on a preferred extension as your beliefs
thus means that you would not be able to defend any more arguments without contra-
dicting yourself.

Lemma 1 (Fundamental Lemma). Let S be an admissible set, and A and A′ be ar-
guments that each are acceptable with respect to S, then

1. S′ = S ∪ {A} is admissible, and
2. A′ is acceptable with respect to S′.



Proof. 1) As S is admissible, and A is acceptable with respect to S, it is obvious that
S, and therefore also S′, defends each argument in S′. Thus we only need to prove
that S′ is conflict-free. Assume not. Then there is an argument B ∈ S ′ and an attack
S′′ ⊆ S′ on B. Since each argument in S′ is defended by S it follows that S attacks
S′′.

As S attacks S′′ it follows that S must attack at least one argument of S ′′. Let C
be this argument. We consider two cases: First C ≡ A and second C )≡ A. If C ≡ A
then it follows that S attacks A. As A is acceptable with respect to S, S must then
necessarily attack S, which contradicts the assumption that S is conflict-free. Assume
then that C )≡ A. Then C must be part of S, and consequently S attacks S yielding the
same contradiction with the assumptions.

2) Obvious. *+

Using the Fundamental Lemma the following important result, guaranteeing that an
admissible set can be extended to a preferred extension, can be proven.

Theorem 1. For any argumentation system the set of admissible sets forms a complete
partial order with respect to set inclusion, and for each admissible set S there exists a
preferred extension S′, such that S ⊆ S′.

As the empty set is an admissible set, we have:

Corollary 2. Every argumentation system has at least one preferred extension.

A more aggressive semantics is the stable semantics:

Definition 5 (Stable Semantics). A conflict free set S is a stable extension if S attacks
all arguments in A \ S.

Lemma 3. S is a stable extension iff S = {A | A is not attacked by S}.

Proof. “only if”: Obvious.
“if”: Assume not. Then S is either not conflict-free, or there is an argument in

A \ S not attacked by S. The latter possibility is precluded by the definition of S, so
there must be a set S′ ⊆ S and an argument A ∈ S such that S ′ attacks A. But then S

also attacks A, which contradicts the definition of S. *+

The general connection between stable and preferred semantics is given by the follow-
ing result:

Lemma 4. Every stable extension is a preferred extension, but not vice versa.

Both preferred and stable semantics are credulous in the sense that they represent beliefs
that include as much as possible. Next, we consider semantics corresponding to more
skeptical points of views. For this we need the notion of a characteristic function, and
some general results on this:

Definition 6 (Characteristic Function). The characteristic function of an argumenta-
tion system is the function F : P(A) → P(A) defined as

F (S) = {A | A is acceptable wrt. S} .



Next, we state a couple of properties of the characteristic function F . The first result is
not explicitly stated in [11], but included only as part of a proof. We make it explicit
here as it is a property required of F by some proofs that have been left out.

Proposition 1 (*) If S is a conflict-free set, then F (S) is also conflict-free.

Proof. Assume this is not the case, then there is S ′ ⊆ F (S) and A ∈ F (S) such that
S′ attacks A. Since A is acceptable wrt. S, S must attack at least one element B of S ′.
But since B is in F (S) it must be acceptable wrt. S, and S must consequently attack
itself. This contradicts the assumption that S is a conflict-free set. *+

Lemma 5. A conflict-free set S is admissible iff S ⊆ F (S).

Proof. “only if”: All arguments of S are acceptable wrt. S, so S ⊆ F (S).
“if”: As S ⊆ F (S) it follows that all arguments of S are acceptable wrt. S. *+

Lemma 6. F is a monotonic function with respect to set inclusion.

Proof. Follows since adding arguments to a set of arguments cannot cause the set to
attack fewer arguments, and consequently cannot change the status of any of the argu-
ments currently defended into being not defended. *+

Now, we can introduce the most skeptical semantics possible:

Definition 7 (Grounded Extension). The grounded extension of an argumentation
system, is the least fix-point of the corresponding characteristic function.

A grounded extension is thus the set of arguments that are not challenged by any other
arguments, along with the arguments defended by these arguments, those defended by
those, and so on. [11] does not prove that the grounded extension of an argumentation
system is well-defined, but we include a proof here.

Proposition 2 (*) If G1 and G2 are both grounded extensions of an argumentation
system, then G1 = G2.

Proof. Assume not, and let C = G1 ∩ G2. As G1 and G2 are different and also
minimal, it follows that none of them can be the empty set, and hence that F (∅) )= ∅. As
F (∅) consists of the arguments that are not attacked by any arguments at all, it follows
that these are acceptable wrt. any set. In particular, F (∅) must be a subset of both G1

and G2, so C is non-empty. Furthermore, as Lmm. 6 assures that F is monotonic, it
follows that F (C) must be a subset of both G1 and G2. But then F (C) must be equal
to C, and is thus a fix point of F . As both G1 and G2 were supposed to be minimal
and different, this yields the desired contradiction. *+

As a common class, encompassing all the semantics we have discussed so far, we
introduce complete extensions:

Definition 8 (Complete Extension). An admissible set S is called a complete exten-
sion, if all arguments that are acceptable with respect to S are in S.



A couple of results tie the complete extension semantics to the other semantics we have
discussed:

Lemma 7. A conflict-free set S is a complete extension iff S = F (S).

Theorem 2. Extensions are such that:

1. Each preferred extension is a complete extension, but not vice versa.
2. The grounded extension is the least complete extension with respect to set inclusion.
3. The complete extensions form a complete semi-lattice with respect to set inclusion.

Next, we investigate classifying argumentation systems according to desirable proper-
ties of their corresponding semantics.

Definition 9 (Finitary System*). An argumentation system is said to be finitary if for
each argument A, there is at most a finite amount of minimal attacks on A, and each
minimal attack is by a finite set of arguments.

Lemma 8. For any finitary system, F is ω-continuous.

Proof. Let S1 ⊆ S2 ⊆ · · · be an increasing series of sets of arguments, and S = ∪iSi.
We need to show that F (S) = ∪iF (Si). As adding arguments to a set cannot reduce the
set of arguments attacked by this set, and therefore cannot reduce the set of arguments
that are acceptable with respect to it, we have that F (Si) ⊆ F (S) for each i, and thus
F (S) ⊇ ∪iF (Si).

To see that F (S) ⊆ ∪iF (Si), consider an argument A ∈ F (S), and let T1, . . . , Tn

be the finitely many minimal attacks on A. As S attacks each attack on A, there must
be an argument Bi in each Ti, which is attacked by S. Let Ui ⊆ S be the minimal
attack of Bi. As each minimal attack consists of a finite number of arguments, the set
U = U1 ∪ · · · ∪ Un is finite as well, and thus there must be a j, such that U ⊆ Sj .
Consequently, A must be in F (Sj) and therefore also in ∪iF (Si). *+

Definition 10 (Well-founded System*). An argumentation system is well-founded, if
there exists no infinite sequence of sets S1, S2, . . ., such that Si is a minimal attack on
an argument in Si−1 for all i.

Theorem 3. Every well-founded argumentation system has exactly one complete ex-
tension, which is grounded, preferred, and stable.

Proof. It suffices to prove that the grounded extension G is stable. Assume this is
not the case, and let S = {A | A /∈ G and A is not attacked by G}, which must be
nonempty if the grounded extension is not stable. We prove that each argument A in S

is attacked by a minimal set S′ such that S ∩ S′ )= ∅, and therefore that the system
cannot be well-founded.

Since A is not in G it is not acceptable with respect to G. Therefore there must be
a minimal attack T of A, not itself attacked by G. Since G does not attack A, at least
one element of T must be outside of G. Let T ′ be T \G, which is thus non-empty. As
G does not attack T , it furthermore follows that T ′ must be a subset of S. Thus, T is
the set S′ we were looking for, and the proof is complete. *+



Definition 11 (Coherent and Relatively Grounded System). An argumentation sys-
tem is coherent if all its preferred extensions are stable. A system is relatively grounded
if its grounded extension is the intersection of all its preferred extensions.

Let A1, A2, . . . be a (possible finite) sequence of arguments, where each argument Ai

is part of a minimal attack on Ai−1. Then the arguments {A2i}i≥1 are said to indirectly
attack A1. The arguments {A2i−1}i≥1 are said to indirectly defend A1. If an argument
A is both indirectly attacking and defending an argument B, then A is said to be con-
troversial with respect to B, or simply controversial.

Definition 12 (Uncontrovertial and Limited Controversial System). An argumenta-
tion system is uncontroversial if none of its arguments are controversial. An argumen-
tation system, for which there exists no infinite sequence of arguments A1, A2, . . ., such
that for all i, Ai is controversial with respect to Ai−1, is said to be limited controversial.

Obviously, a controversial argumentation system is also limited controversial.

Lemma 9. In every limited controversial argumentation system there exists a nonempty
complete extension.

Proof. We construct the nonempty complete extension C. Since a nonempty grounded
extension would suffice, we assume that it is empty. Since the system is limited contro-
versial, every sequence of arguments, where Ai is controversial with respect to Ai−1,
must have a last element, B. It follows that there is no argument that is controversial
with respect to B. We define E0 to be {B}, and Ei to be Ei−1 ∪ Di, where Di is a
minimal set that defends Ei−1 from A\Ei−1, for all i ≥ 1. As the grounded extension
is empty, each argument is attacked by some other argument, and therefore each Di is
guaranteed to exist.

We then prove by induction that, for each i ≥ 0, Ei is conflict-free and each argu-
ment in Ei indirectly defends B.

The hypothesis trivially holds true for i = 0. We assume it to be true for i − 1 and
show that it also must be true for i: From the induction hypothesis we know that Ei−1

consists of arguments that indirectly defends B. As each argument in Di participates
in attacking an argument, which participates in an attack on an argument in Ei−1, each
of these must also indirectly defend B, and consequently this is true of all arguments in
Ei. Assume then that Ei is not conflict-free. Then there is a set of arguments S ⊆ Ei,
that attack an argument B ∈ Ei. But then the arguments in S are attacking an indirect
defender of B, and thus are indirect attackers of B. This mean that the arguments in S

are controversial with respect to B, violating the assumptions of the lemma. Thus, the
induction hypothesis is proved.

Next, let E = ∪iEi. We prove that this set is admissible, and then let C be the
least complete extension containing E. We know such an extension exists as by Thm. 1
a preferred extension containing E must exists, and from Thm. 2 that extension must
be a complete extension. To see that E is admissible, first let C ∈ E be an argument.
There must be some i, such that C ∈ Ei, and therefore a defense of C must be in Di,
and consequently in Ei+1. But then that defense is also in E, and hence C must be
acceptable with respect to E. To see that E is conflict-free assume that it contains C
and S, such that S attacks C. As each argument of S must be an element of some set



Ei, it follows that each of these indirectly defend B. But as C also indirectly defends B,
each element of S must indirectly attack B also, and is thus controversial with respect
to B. But this violates the assumption that no argument is controversial with respect to
B, and there can therefore be no such S and C. *+

Lemma 10. For any uncontroversial system, with an argument A that is neither a mem-
ber of the grounded extension nor attacked by it,

1. there exists a complete extension containing A, and
2. there exists a complete extension that attacks A.

Proof. 1) Similar to the proof in [11].
2) Proof by construction. Since A is not part of the grounded extension G, nor

attacked by it, it is attacked by some minimal set of arguments S, such that S )⊆ G and
G does not attack S. As the system is uncontroversial, it is impossible for any member
of S to participate in a minimal attack on S, so the set S is conflict-free. Following a
process similar to the one in the proof of Lmm. 9, substituting S for {B}, we can build a
series of conflict-free sets that consists of arguments that indirectly attack A. Extending
the union of these sets to a complete extension provides the sought extension. *+

Theorem 4. Every limited controversial system is coherent, and every uncontroversial
system is also relatively grounded.

Corollary 11. Every limited controversial argumentation system possesses at least one
stable extension.

This ends our derivation of results mirroring those in [11]. [11] furthermore provides
a series of results, showing how some formalisms are special cases of his framework.
As Dung’s framework itself is a special case of our framework, it follows that these
frameworks are also special cases of our framework.

[11] ends with a procedure that turns any finitary argumentation system, as defined
in [11], into a logic program, and thereby provides a tractable means for computing
grounded extensions of such systems. As our framework is more general, it does not
allow for Dung’s procedure to be used directly. Instead we provide the following pro-
cedure for finitary systems: Given a finitary argumentation system (A, !), we define a
Prolog encoding of this system as the clauses

{attacks([S], A) ← | S ! A} ,

where [S] is a Prolog list declaration containing the arguments in S.
Furthermore, a general interpreter for a Prolog encoding of a finitary argumentation

system, is defined as:

{acceptable(X) ← ¬defeated(X);

defeated(X) ← attacks(Y, X), acc(Y );

acc(X |Y ) ← acceptable(X), acc(Y );

acc(X) ← acceptable(X); } .



4 Related Work

While not explicitly analyzing the problem of Dung’s framework addressed here, nor
trying to generalize it in a conservative manner, some previous works have allowed
for sets of attacking arguments, although mainly as side effects. First and foremost,
[29, Chapter 5] provided a framework, CumulA, with a very general attack relation,
which allows sets of arguments to attack other sets. However, the framework is focused
on modelling the actual dialectic process of argumentation, rather than investigating
the essentials of justified and acceptable arguments, and perhaps as a consequence of
this, the semantics presented by Verheij is neither as clear as Dung’s nor does it allow
for simple comparisons with other formalisms. Furthermore, there are some flaws in
Verheij’s treatment, which effectively leave CumulA with no well-founded semantics.
Specifically, three requirements on allowed extensions turn out to prevent seemingly
sensible systems from being analysed, and the semantics associated with an attack on
sets of arguments is context dependent. For more on these problems see [22].

Later, Verheij has developed two additional frameworks that allow for sets of at-
tacking arguments, namely Argue!, described in [30], and the formal logical framework
of DefLog, described in [32] and implemented in [31]. Even though these frameworks
builds on ideas from CumulA, they avoid the problems associated with that framework.
However, the two frameworks have other short-comings that make us prefer a conserva-
tive generalization of Dung’s framework: Argue! employs only a step-based procedural
semantics, and thus lacks the analytical tools, theoretic results, and scope of [11]. De-
fLog, on the other hand, is well-investigated, but lacks a skeptical semantics, and allows
sets of attacking arguments only as a rather contrived encoding. For instance, the attack
{A, B} ! C would be encoded as

A ! (B ! ×(C)),

where ! denotes primitive implication, and ×(·) denotes defeat of its argument. There
are two two problems with this encoding, one technical and one aesthetic. The first
is that systems involving infinite sets of attacking arguments cannot be analysed. The
second that the symmetry of the set of attackers is broken. Consider for instance the
case where A is “X weighs less than 80 kg”, B is “X is taller than 180 cms”, and C is
“X is obese”; here encoding the fact that A and B together defeat C as “X weighs less
than 80 kg” implies that “X is taller than 180 cms, so X is not obese” seems to us to be
inelegant, and the larger the set of attackers, the larger the inelegance.

The power of encoding sets of attacking arguments wielded by DefLog is due to its
expressive language, which is closed under both an implicative operator and an negative
operator. Some other argumentation frameworks that are based on formal languages
employing similar operators also have implicit methods for encoding attacks by sets of
arguments. Most notable is the framework presented in [33], which allows for any sets
of sentences to attack each other by encoding rules that from each of them lead to a
contradiction. Undercutting attacks are, however, not expressible without assumptions
on the underlying language. [8] and [15] present frameworks based on similar ideas.
However, all of these fail to abstract from the structure of arguments and as a result do
not clearly distinguish between arguments and their interactions, unlike the frameworks



of [11] and this paper. Moreover, the approach of encoding attacks in a logical language
restrains sets of attackers to be finite.

5 Conclusions

In this paper we have started exploring formal abstract argumentation systems where
synergy can arise between arguments. We believe that we have argued convincingly
for the need for such systems, and have examined some of the semantics that can be
associated with them. We have tried to do this in the most general fashion possible,
by taking outset in the abstract frameworks of [11], and creating a new formalization
that allows for sets of arguments to jointly attack other arguments. As we argued in
Sect. 2 this degree of freedom ensures that all kinds of attacks between arguments can
be modelled faithfully.
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Abstract. This document describes a strawman specification for an Ar-
gument Interchange Format (AIF) that might be used for data exchange
between Argumentation tools or communication in Multi-Agent Sys-
tems (MAS). The document started life as a skeleton for contributions
from participants in the Technical Forum Group meeting in Budapest
in September 2005, receiving also input from third parties. The results
were subsequentely improved and added to by online discussion to form
a more substantial. In its current form, this document is intended to be a
strawman model which serves as a point of discussion for the community
rather than an attempt at a definitive, all encompassing model. The hope
is that it could provide a useful input to ArgMAS discussion in paricu-
lar on the utility of common Argumentation Interchange Formats, what
form they might take and a potential research / development agenda to
help realise them.

1 Introduction and Background

Argumentation is a verbal and social activity of reason aimed at increasing
(or decreasing) the acceptability of a controversial standpoint for the listener
or reader, by putting forward a constellation of propositions intended to jus-
tify (or refute) the standpoint before a rational judge [22, page 5]. The theory
of argumentation is a rich, interdisciplinary area of research lying across phi-
losophy, communication studies, linguistics, and psychology. Its techniques and
results have found a wide range of applications in both theoretical and practical
branches of artificial intelligence and computer science as outlined in various re-
cent reviews [2, 3, 15, 18]. These applications range from specifying semantics for
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logic programs [4], to natural language text generation [5], to supporting legal
reasoning [1], to decision-support for multi-party human decision-making [7] and
conflict resolution [20].

In recent years, argumentation theory has been gaining increasing interest
in the multi-agent systems (MAS) research community [16, 17]. On one hand,
argumentation-based techniques can be used to specify autonomous agent rea-
soning, such as belief revision and decision-making under uncertainty and non-
standard preference policies. On the other hand, argumentation can also be used
as a vehicle for facilitating multi-agent interaction, because argumentation nat-
urally provides tools for designing, implementing and analysing sophisticated
forms of interaction among rational agents. Argumentation has made solid con-
tributions to the theory and practice of multi-agent dialogues.

While these efforts have made great progress there remain major barriers
to the development and practical deployment of Argumentation systems. One of
these barriers is the lack of a shared, agreed notation or “Interchange Format” for
argumentation and arguments. The potential benefits of such a format include:

– Providing a convergence point for discussing the syntax and semantics of
argumentation-related agent interaction.

– Provide a common basis for discussing and comparing Argumentation sce-
narios.

– Enabling the development of a variety of compatible tools/systems which
share the same argumentation input/output formats.

– Facilitating the development of agents capable of interaction via argumen-
tation using a shared formalism.

While argumentation mark-up languages such as Araucaria,9 Compendium10

and ASCE11 (see [9] for example) already exist they are primarily a means to
enable user to structure arguments through diagramatic linkage of natural lan-
guage sentences. These mark-up languages are not designed to process formal
logical statements such as those used within multi-agent systems. As a result,
the aim of the Argumentation Interchange Format (AIF) workshop hosted in
Budpest, Hungary in September 2005 was to sketch out a strawman document
that presents an attempt to consolidate, where possible, the work that has al-
ready been done in argumentation mark-up languages and multi-agent systems
frameworks. It is hoped that this effort will provide a convergence point for
theoretical and practical work in this area, and in particular facilitate:

1. Argument interchange between agents within a particular multi-agent frame-
work.

2. Argument interchange between agents across separate multi-agent frame-
works.

9 http://araucaria.computing.dundee.ac.uk/
10 http://www.compendiuminstitute.org/tools/compendium.htm
11 http://www.adelard.co.uk/software/asce/
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3. Inspection/manipulation of agent arguments through argument visualization
tools.

4. Interchange between argumentation visualization tools.

The remainder of this document provides a first-cut model for such a format
in order that it might form a discussion point in the community.

2 Overall Approach

An Argumentation Interchange Format, like any other data representation, re-
quires a well defined syntax and semantics. The syntax is required as a concrete
representation of statements relating to arguments, and the semantics conveys
the meaning of statements made using the syntax. However, beyond this basic
requirement, there are a wide range of approaches which could be taken for defin-
ing both syntax and semantics. In particular, semantics may be explicit (using
some previous formal notation with its own syntax and semantics) or implicit
(hard coded into a piece of software which subsequently behaves in a given way
for each combination of inputs), machine readable or targeted at a human au-
dience (written notes for human consumption), formal or informal, etc. Further
questions arise as to whether there should be one single AIF format defined,
whether variations should be allowed for, how extensions should be dealt with,
etc. Given this range of possibilities the approach taken in this document adheres
to the following overall principles:

– Machine readable syntax : AIF representations are specifically targeted at
machine read/write operations rather than human level documentation. While
using formats which are human readable is desirable (for example for debug-
ging purposes) the primary aim of the format is data interchange between
software systems.

– Explicit and (where possible) machine processable semantics: The semantics
of AIF statements are to be stated explicitly in specification documents, such
that they may be implemented by multiple tool/system providers. Secondly,
where possible, the nature of the semantic definition should enable the im-
plementation of processing tools such as reasoners (for example using some
existing logical framework).

– Unified abstract model, multiple reifications: the AIF should be defined in
terms of: 1) An abstract model defining the concepts which could be ex-
pressed in an AIF and their relationship to one other, and 2) a set of concrete
reifications / concrete syntaxes which instantiate these concepts in a partic-
ular syntactic formalism (such as XML, Lisp-like S-expressions, etc.). Using
this even if different computational environments require different styles of
Syntax, interoperability may still be facilitated by similarities at the abstract
level.

– Core concepts, multiple extensions: recognizing that different applications
may require statements about a wide array of different argumentation related
concepts, the AIF will be structured as a set of core concepts (those likely to
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be common to many applications) and extensions (those which are specialist
to particular domains or types of applications). It is anticipated that: A)
the core will evolve over time as consensus changes on what is central and
applications generate experience, and that B) extensions could be generated
by any user of the AIF and, if they turn out to be particularly useful, shared
amongst large groups of users (potentially also being merged into the core).

3 Abstract Model / Core Ontology

The foundation for the AIF model is a set of definitions for high-level concepts
related to argumentation which may need to be represented in the proposed
format. These concepts are gathered into three main groups:

1. Arguments and Argument Networks: the core ontology for argument entities
and relations between argument entities with the purpose of reification in
an AIF (see Section 3.2).

2. Communication: the core ontology for items which relate to the interchange
of arguments between two or more participants in an environment, including
locutions and protocols (see Section 3.4).

3. Context : the core ontology for items associated with environments in which
argumentation may take place. These include participants in argument ex-
changes (agents), theories contained in the environment that are used for
argumentation, and other aspects which may affect the meaning of argu-
ments/communication of arguments (see Section 3.5).

In the next subsections an overview of the above concepts is given. Definitions
are drawn from existing theories when possible, but may diverge where alignment
between theories is needed. Items unique to argumentation (such as the notion
of an “argument” itself) are naturally treated in greater depth than items for
which more general definitions are already available (such as the notion of an
“agent” for example). The relationships between these groups of concepts are
shown in Fig. 1.

3.1 The Notion of Argument

Before proceeding with these definitions, it is worth noting that we will not
take a position on the precise definition of the notion of “argument” itself, even
though later sections do provide structures for describing argument. The reason
for this is that initially we found it too difficult to select a single definition
acceptable to all. We contend that progress on such a definition might be better
made once some consensus is reached on the necessary lower level concepts. A
useful starting point for understanding philosophical notions of arguments can
however be found in David Hitchcock’s input to the original AIF meeting.12

12 http://www.x-opennet.org/aif/Inputs/aif2005_david_hitchcock_1.pdf
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Fig. 1. Overview diagram of main groups of concepts defined by the AIF Core Ontology

3.2 Arguments / Argument Networks

The following section defines the top level concepts to be considered for an
ontology of arguments and relationships between arguments.

Concepts and Relations: The starting point of this section is the assump-
tion that argument entities can be represented as nodes in a directed graph
(di-graph). This di-graph is informally called an argument network (AN). An
example of an AN is displayed in Fig. 3. This figure will be described later,
in Sec. 3.3. The rational for not to restrict ourselves to directed acyclic graphs
(DAGs) or even trees is that argumentation formalisms vary to a great extent.
A number of formalisms allow for cycles where others forbid them explicitly.
One of our basic assumptions is that the core ontology should cater for these
differences, and should be able to capture extreme cases.

Nodes: There are two kinds of nodes, namely, information nodes (I-nodes) and
scheme application nodes or scheme nodes (S-nodes) for short (see Fig. 2). Note
that one alternative for “scheme node” could be “application node”. However,
the meaning of “application” is not precise, neglecting the scheme connotation.

Whereas I-nodes relate to content and represent claims that depend on the
domain of discourse, S-nodes are applications of schemes. Such schemes may
be considered as domain-independent patterns of reasoning (that resemble rules
of inference in deductive logics but broadened to non-deductive logics and not
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Fig. 2. Concepts and relations for an ontology of arguments

restricted to classical logical inference). The present ontology deals with two dif-
ferent types of schemes, namely inference schemes and attack schemes. Poten-
tially scheme types could exist, such as evaluation schemes and scenario schemes,
which will not be addressed here.

If a scheme application node is an application of an inference scheme it is
called a rule of inference application node (RA-node). If a scheme application
node is an application of a preference scheme it is called a preference applica-
tion node (PA-node). Informally, RA-nodes can be seen as applications of rules
of inference while PA-nodes can be seen as applications of (possibly abstract)
criteria of preference among evaluated nodes.

Node Attributes: Nodes may possess different attributes such as “title,”
“text,” “creator,” “type” (decision, action, goal, belief), “creation date,” “eval-
uation” (or “strength,” or “conditional evaluation table”), “acceptability,” and
“polarity” (values either “pro” or “con”). These attributes may vary and are
not part of the core ontology. The term “conditional evaluation table” is in-
spired by its Bayesian analogon named “conditional probability table” (CPT).
Most attributes are proper, that is, essential to the node itself, while others are
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derived. In this example, all attributes except “acceptability” are proper. It is
imaginable that a derived attribute such as “acceptability” may be obtained
from node-specific attributes through calculation. In this case, “acceptability”
may be obtained from “evaluation” through mechanical inference.13

Edges: Let us analyze the notion of support. In the context of a graph repre-
senting argument-based concepts and relations, a node A is said to support node
B if and only if an edge runs from A to B. This rather broad notion of sup-
port turns out to be remarkably convenient in discussions on argument ontology.
Alternative terminology, more akin to graph-theory is “children of”.14

1. Every node (i.e., every I-node and every S-node) can be supported by zero
or more S-nodes.

2. Every S-node can be supported by zero or more I-nodes.

Edges do not need to be explicitly marked, labelled, or otherwise supplied
with semantical pointers. A very practical example showing this would be an
“edge table” representing edges between nodes. Besides an OID (object iden-
tifier) column, such an edge table does not need more than two columns: a
from oid field, denoting the OID of the source node, and a to oid field, denot-
ing the OID of the sink node.

If desired, edge types can be inferred from the nodes they connect. Basically
there are two types of edges, namely scheme edges and data edges. Scheme edges
emanate from S-nodes and are meant to support conclusions. These conclusions
may either be I-nodes or S-nodes. Data edges emanate from I-nodes, necessarily
end in S-nodes, and are meant to supply data, or information, to scheme appli-
cations. In this way, one may speak of I-to-S edges (“information,” or “data”
supplying edges), S-to-I edges (“conclusion” edges) and S-to-S edges (“warrant”
edges). Table 1 summarizes the relations associated with the semantics of sup-
port. Notice that I-to-I edges are forbidden, as will be discussed further on in
this section.

To distinguish scheme edges from data edges in diagrams, edges that emanate
from S-nodes may be supplied with a closed arrowhead at the end, while edges
that emanate from I-nodes may be supplied with an open arrowhead at the end.
Edges fall into different categories, such as support edges (that are associated
or “colored” by the scheme of the S-node they are connected to; for S-to-S
edges, the nodes that they emanate from), inference edges (those edges that are
connected to an RA-node, shown in black in Fig. 3), and attack edges (edges

13 There are voices that advocate to drop derived node attributes altogether, for differ-
ent algorithms may assign different statuses to arguments within one and the same
argument network.

14 Note however that the term support could be misleading when applied to preference
application nodes, as preference application is intuitively associated with concepts
such as negation, counterargument and preference. In such cases it may help to think
of negative support.
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to I-node to RA-node to PA-node
from I-node data/information used

in applying an
inference

data/information used
in applying a
preference

from RA-node inferring a conclusion
in the form of a claim

inferring a conclusion
in the form of a
scheme application

inferring a conclusion
in the form of a
preference application

from PA-node applying preferences
among information
(goals, beliefs, ..)

applying preferences
among inference
applications

meta-preferences:
applying preferences
among preference
applications

Table 1. Semantics of support.

that are connected to an PA-node, shown in red in Fig. 3).15 Marking edges and
applying arrowheads to edges is not part of the ontology but only meant to help
human beings in its interpretation.

Constructions that are not permitted: The ontology is flexible enough
to allow for exceptional constructions. Still, it does not account for a number
of artifacts. The following list shows a number of constructions that are not
accommodated for in the present ontology:

1. I-nodes cannot be linked to other I-nodes. The reason for this restriction
is that I-nodes cannot be connected without explaining why the connection
is being made. There is always a reason, scheme, justification, inference, or
rationale behind a relation between two or more I-nodes.

2. S-nodes may not be employed as I-nodes. Notice that it is difficult to find a
compelling example that would justify the use of an S-node as an I-node. A
possible example could be “But previously you said that items that look red
generally are red, so in the same way I say here that items that look like an
apple generally are an apple”. In these cases, it seems that it is not really a
scheme application that is being used as an I-node-like premise, but rather
something slightly different. Also, rather than using an S-node as an I-node,
it seems more plausible to re-apply the scheme used for that S-node to create
a new S-node.

Derived concepts: Concepts from an extension ontology, in particular con-
cepts such as rebut, undercut, defend, and defeat can in principle be derived
from the concepts in the diagram that is displayed in Fig. 2. Thus, an argument
qualified with derived concepts can in principle be described in terms of basic
concepts in a mechanical manner. Nevertheless, such derived concepts may still

15 Note that in the color printed version of the document different colors are visible for
edges for clarity – however, they are not essential to intepretation.
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Fig. 3. Sample argument network.

have an important place that should be respected by their inclusion in an ex-
tension ontology that we might call “derived concepts” (see further discussions
in Section 5).

3.3 Examples

This section presents three examples: an abstract example that shows most of
the features of the ontology, a translation of Toulmin’s scheme, and a simple
concrete example.

Abstract example of an argument network: An abstract example of an
argument network is displayed in Fig. 3. This network contains eleven I-nodes,
namely I-node1 , . . . , I-node11 and six rule application nodes, namely RA-node1,
RA-node2, RA-node3, RA-node4, PA-node1, and PA-node2. This abstract ex-
ample is meant to demonstrate the flexibility of the core ontology, stretching the
limits of the model. Obviously, most existing argument formalisms would not
support the constructions shown in this example. Some observations that can
be drawn from the diagram:

1. The main claim is supported by two inference applications and two attack
applications.
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2. Scheme-to-conclusion (SC) edges are drawn with an arrowhead, while premise-
to-scheme (PS) edges are drawn without arrowheads. This is for two reasons.
The first reason is to distinguish PS from SC edges. The second reason is to
disambiguate direction when two S-nodes are connected by an SC edge (no-
tice the SC-edge from RA-node4 to RA-node2). The arrowhead distinction is
for diagrammatic purposes only, and it has no added value for representation
and interchange formats.

3. I-node4 shows that our model allows for multiple node references. Thus,
nodes may be referred to more than once. In particular, an argument network
(AN) need not be a tree.

4. The two inference applications

I-node2, I-node3 −(RA-node1)→ I-node1 (main claim)
I-node1, I-node6, I-node7 −(RA-node3)→ I-node2

show that cycles in theory may occur.
5. If I-nodes are attacked, then the premises connected to the intermediate

PA-node are called rebutters. For example, I-node1 is rebutted by I-node4
and I-node-5 through PA-node-1 and PA-node-2, respectively. These are two
independent rebutters.

6. If RA-nodes are attacked, then the premises connected to the intermediate
PA-node are called undercutters. For example, RA-node1 is undercut by I-
node12 through PA-node3. In general, every type of node may be attacked,
including attack nodes themselves. The diagram does not contain an instance
of the latter.

Argumentation à la Toulmin. Example: Toulmin’s scheme as depicted in
(Eq. 1) is constituted of six essential elements, namely data (D), warrant (W ),
backing (B), qualifier (Q), rebuttal (R) and claim (C). A (somewhat liberal)
translation is displayed in Fig. 4. The shadow-encircled nodes together relate to
the original backing B.

D −→ Q,C
| |

since W unless R
|
B

(1)

Notice that in Fig. 4, R (rebuttal) attacks C (claim) rather than W (warrant).
It is not clear from “The Uses of Argument” [21] whether R should attack C or
W . Since an attack on C is called a rebuttal, and since an attack on W is called
an undercutter in our terminology, we have chosen the one which is consistent
with it. Nevertheless, R can reasonably be taken to attack C, to support not-C,
to attack W , or to attack an implicit warrant (the dots). This document does not
advocate a mechanism for translation but merely that any of those translations
should be representable in the present ontology.
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Fig. 4. Toulmin scheme.

A concrete and simple example: In Fig. 5 we show a concrete and simple
example of an argument network for handling the well-known AI example of
modelling the flying abilities of birds and penguins, and reasoning about whether
a particular penguin opus can fly. In this case there are two arguments, one for
fly(opus) and one for ~fly(opus).

Fig. 5. Concrete example of an argument network.

The argument for ~fly(opus) is composed of one scheme-application, namely
Modus Ponens (MP). A simplistic version of MP reads as follows: if there are
two information nodes A(x) and A(x)->B(x) then conclusively infer B(x). The
argument for fly(opus) is composed of one scheme-application, namely defeasi-
ble Modus Ponens (dMP). A simplistic version of dMP reads as follows: If there
are two information nodes A(x) and A(x)-(qualifier)->B(x) then defeasibly
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infer B(x). The conflicting nodes fly(opus) and ~fly(opus) are related by a
PA-node that says that the argument against fly(opus) is conclusive and there-
fore preferred over the argument for fly(opus). This PA-node is an instance of
a more general scheme saying that deductive arguments always win out over
non-deductive arguments.

3.4 Communication: Locution / Protocols

The second group of concepts identified in discussions are those which concern
communication in the context of argumentation, for example, concepts which
capture:

– The utterance of a statement containing an argument or argument network
by an agent.

– A sequence of legal statements making reference to arguments/argument
networks which could be made by a set of agents in order to make a decision
or reach some other goal.

In turn, as with arguments / argument networks, communication also takes
place in a context –elements of which may affect the interpretation of statements
(such as references to the participants in a dialogue, the ontologies applying, the
semantic models adopted etc.). Presentation here is initially split into two parts:

– Locutions: individual words, phrases or expressions uttered by an agent.
– Interaction Protocols: sequences of locutions involving one or more (usually

at least two) agents and usually designed to achieve a specific goal (such as
reaching an agreement or giving information).

Hence locutions form the basic building blocks of protocols. It is important
to note however that there are different “schools of thought” on how the se-
mantics for locutions and protocols should be defined in terms of one another.
One approach, such as FIPA ACL [6], holds that semantics are attributed to
individual locutions –and the semantics of a protocol are a compound of the
semantics of individual locutions. Another approach holds that the semantics of
locutions vary depending on their context (e.g. the commitments made thus far)
and hence their place in a particular protocol [11].

Locutions: A rich literature exists on locutions of various types and their se-
mantics. In terms of general agent communication, languages such as FIPA-ACL
and KQML define sets of general locutions such as inform, request, query, tell
and so on –each with an associated formal logical semantics. However, while
these languages may provide useful resources, it is also clear from more spe-
cific argumentation literature that the types of locutions which occur frequently
are more specific / different to those found in FIPA-ACL / KQML. Examples
include: assert, accept, challenge, question, concede, and prefer.
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While different authors use different labels for different locutions, there seem
to often be similarities in semantics. Work such as that by McBurney, Parsons
and Wooldridge [14], McBurney and Parsons [13], Maudet and Chaib-draa [10]
and Mcburney, Hitchcock, and Parsons [12] provides a starting point for poten-
tially determining a limited number of locutions which could form the core of
an AIF, others potentially being added as extensions. In this setting, at a more
general level however an AIF core ontology should usefully define the notions of:

– Locution: the notion of a locution, and its associated properties, which might
include (taken from the FIPA-ACL message structure specification [6]):16

- Sender : the agent uttering a locution (note that a distinction could also
be made between the sender who makes and utterance and the origi-
nator(s) – an agent or group of agents responsible for generating the
utterance.)

- Receiver or Receivers: Agents “hearing” an utterance (distinctions could
be made between intended recipients, those intentionally made aware of
the message but not the intended recipients and those who unintention-
ally become aware of an utterance).

- Ontologies: the ontologies which hold and define elements of the content.
- Language: the content language used in the content part of the message

(which should itself have a formal semantics).
- Protocol : the protocol a locution is part of.
- Content : the object of the locution.
- Message management elements: items such as a message-identifier, a

conversation-identifier, in-reply-to field etc.
– Individual Locutions: potentially a set of subclasses of the class of locutions

which capture individual locutions such as those listed at the beginning of
this section.

Interaction Protocols: It is possible to construct comprehensive standards of
language usage for computational systems that are widely used and relatively
precise. This is the case for programming language standards (such as Prolog,
dialects of ADA, etc). By contrast, in areas where standardization of more
abstract concepts is required, consensus appears to be much harder to achieve,
because abstract concepts are difficult to pin down uniquely in a simple way.
In this circumstance it is often expedient to define precisely a core standard,
containing only those elements essential to getting the job done, and then allow
extensions to this core in a controlled (but perhaps less precise) way. An example
of this form of standardization is the Process Interchange Format (PIF) which
is a standard for describing processes. The PIF core contains a small number of
very generic concepts at the heart of that standard and then allows those with
specific process description needs to meet their own requirements by building on
that core.
16 Note that additionally one could add a slot for semantics which points to the defined

formal semantics for the locution.



14

Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role | Message | Def then Def | Def or Def

Message := M ⇒ Role | M ⇒ Role← C | M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or number

Fig. 6. LCC syntax

The definition of a interaction protocol language as part of an argument
interchange format provides a number of advantages. If the language can be used
for computation then the standard is, effectively, a programming standard and
history suggests that such standards tend to be durable because they connect
to practice (or fail to connect and then die cleanly). If it is also declarative –
and hence independent of current fashion in low level implementation languages
or basic communications protocols– then it can support formal analysis and
verification more readily. In addition, the use of a high level language arguably
facilitates human readability. For software engineers there is a natural notion of
pattern in the design of protocols and this is one approach to extension from a
core protocol syntax to a (more interesting) set of extensions via patterns.

Protocols are an area where traditional computer science helps supply stan-
dards. For example, Figure 6 defines the syntax of the Lightweight Coordination
Calculus (LCC) that uses a combination of traditional specification drawn from
CCS and logic programming (for details on LCC see [19]). An interaction model
in LCC is a set of clauses, each of which defines how a role in the interaction
must be performed. Roles are described by the type of role and an identifier for
the individual agent undertaking that role. The definition of performance of a
role is constructed using combinations of the sequence operator (‘then’) or choice
operator (‘or’) to connect messages and changes of role. Messages are either out-
going to another agent in a given role (‘⇒’) or incoming from another agent in
a given role (‘⇐’). Message input/output or change of role can be governed by
a constraint defined using the normal logical operators for conjunction, disjunc-
tion and negation. Notice that there is no commitment to the system of logic
through which constraints are solved –on the contrary, we would expect different
agents to operate different constraint solvers. Hence the standardization in LCC
is on the generic language for describing interaction (only) and in this sense it
is “core”. It also has the added benefit of having a style of description that is
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close to computation –in this case quite close to logic programming (despite the
process operators) where we already have a successful ISO standard.

3.5 Context: General Context / Participants / Theory

The third group of concepts in the ontology is that of elements which form
the context in which argumentation takes place. In keeping with the distinction
already made between concepts for communication and those for arguments /
argument networks, concepts related to context may also be usefully grouped
into these two areas.

Communication Context: Here, context captures information relevant to
argument-based dialogues. These include:

– Participants: We may require references to agents taking place in the dia-
logue, possibly including:
1. Participant ID: an identifier for a participant.
2. Participant role: the role of the participant in relation to the dialogue

(e.g. pro, con, persuader, buyer, seller, etc.). This may influence the way
dialogue proceeds.

– Dialogue topic: This refers to the main issue under discussion (e.g. the ques-
tion under enquiry, or resource under negotiation).

– Dialogue type: a reference to the type of the dialogue (e.g. persuasion, ne-
gotiation [23]). This can be simply a name, or it can be a pointer to more
elaborate dialogue typology.

– Background theory: This includes statements that participants agree upon
(e.g. legal rules), and which may be used to construct arguments within the
dialogue.

– Commitment stores: This is a data structure that allows agents to add and
remove commitments during their dialogues [8].

– Commitment rules: These are rules that specify how dialogue participants
may modify the content of commitment stores.

Argument Network Context: Here, context captures information relevant
to the interpretation and processing of the argument network.

– Argumentation theory rules: These are the rules that specify the way argu-
ments are constructed and interpreted. In a way, they represent the under-
lying formal argumentation theory. These include:
1. Inference rules: These can be thought of as the specifications of the types

of inference application nodes that can be used in the argument network.
2. Preference rules: Similarly, these can be thought of as the specifications

of the types of preference application nodes that can be used in the
argument network.
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– Background theory: This includes statements taken for granted (e.g. legal
rules), and which may be used to interpret or process arguments.

– Domain ontologies: One could add references to ontologies that may be used
to interpret argument networks. For example, suppose an argument network
represents claims and justifications of the medical properties of a particular
drug. In order to process these arguments automatically, we may benefit from
a specialized medical drug ontology while interpreting these arguments.

4 Reifications

Reifications of the concepts defined in the AIF are concretizations from abstract
to more concrete definitions. In particular the primary use of reifications in AIF
is to define concrete syntaxes which can be unambiguously serialized and de-
serialized for transmission between two communicating participants exchanging
arguments or between two software tools using the AIF:

– More than one reification may exist.
– Two different reifications may not be interoperable. That is, serializers for

one reification may produce output which is not readable by parsers for
another.

– While individual reifications will each aim to capture the semantics of the
concepts defined in the AIF ontologies, they may also be influenced by the
semantics of the encoding language used. Hence minor semantic differences
as well as syntactic differences may arise.

A simple example of what is meant by a reification can be seen in the AIF
input document by Willmott, Fox and Reed to the original AIF event.17

5 Conclusions and Open Issues

As described in the introduction, the development of an AIF is a highly chal-
lenging endeavor and this document is intended as a discussion starter and not
a fully fledged proposal. Further, as noted in Section 3.2, the current model
may well not capture all types of argumentation that are of interest. Specific
significant open issues which arose during discussion included:

1. Currently no distinction is being made for AIF formalisms which might be
used in GUI/Tool import-export type application and those which might be
used in agent-to-agent communication. While the core concepts may be the
same it remains an open issue as to whether one format can really adequately
cover both cases.

17 http://x-opennet.org/aif/Inputs/aif2005_steven_willmott_2.pdf
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2. Given the potential richness of the communication concepts ontology it
remains an open issue as to how close to generic Agent Communication
Languages (ACLs – such as FIPA-ACL, KQML etc.) AIF definitions may
get. This affects possible re-use of ACL concepts and/or overlap with them
and/or worries about tractability issues which affected ACL semantics also
affecting the semantics of concepts defined here.

3. How should the community of users around the AIF organize themselves to
agree on core concepts and extensions?

4. How should reifications be generated in detail from high level concepts (e.g.
development of specific RDF / XML schemas or other syntax forms?

A longer version of this document, initial inputs, previous versions and a
discussion forum for feedback can be found on the AIF website at http://
x-opennet.org/aif/.
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Abstract. Social influences play an important part in the actions that an indi-
vidual agent may perform within a multi-agent society. However, the incomplete
knowledge and the diverse and conflicting influences present within such soci-
eties, may stop an agent from abiding by all its social influences. This may, in
turn, lead to conflicts that the agents need to identify, manage, and resolve in or-
der for the society to behave in a coherent manner. To this end, we present an em-
pirical study of an argumentation-based negotiation (ABN) approach that allows
the agents to detect such conflicts, and then manage and resolve them through
the use of argumentative dialogues. To test our theory, we map our ABN model
to a multi-agent task allocation scenario. Our results show that using an argu-
mentation approach allows agents to both efficiently and effectively manage their
social influences even under high degrees of incompleteness. Finally, we show
that allowing agents to argue and resolve such conflicts early in the negotiation
encounter increases their efficiency in managing social influences.

1 Introduction

Autonomous agents usually operate as a multi-agent community performing actions
within a shared social context to achieve their individual and collective objectives. In
such situations, the actions of these individual agents are influenced via two broad forms
of motivations. First, the internal influences reflect the intrinsic motivations that drive
the individual agent to achieve its own internal objectives. Second, as agents reside and
operate within a social community, the social context itself influences their actions. For
instance, within a structured society an agent may assume certain specific roles or be
part of certain relationships. These, in turn, may influence the actions that an agent may
perform. Here, we categorise such external forms of motivations as social influences.
Now, in many cases, both these forms of influence are present and they may give

conflicting motivations to the individual agent. For instance, an agent may be internally
motivated to perform a specific action. However, at the same time, it may also be subject
to an external social influence (via the role it is enacting or the relationship that it is part
of) not to perform it. Also an agent may face situations where different social influences
motivate it in a contradictory fashion (one to perform a specific action and the other not



to). Furthermore, in many cases, agents have to carry out their actions in environments
in which they are not completely aware of all the roles, relationships, or the ensuing
commitments that they and their counterparts enact. Thus, in such instances, an agent
may not be aware of the existence of all the social influences that could or indeed should
affect its actions and it may also lack the knowledge of certain specific social influences
that motivate other agents’ actions. Therefore, when agents operate in a society with
incomplete information and with such diverse and conflicting influences, they may, in
certain instances, lack the knowledge, the motivation and/or the capacity to abide by all
their social influences.
However, to function as a coherent society it is important for these agents to have a

means to resolve such conflicts, manage their internal and social influences, and to come
to a mutual understanding about their actions. To this end, Argumentation-Based Nego-
tiation (ABN) has been advocated as a promising means of resolving conflicts within
such agent societies [7, 12]. In more detail, ABN allows agents to exchange additional
meta-information such as justifications, critics, and other forms of persuasive locutions
within their interactions. These, in turn, allow agents to gain a wider understanding of
the internal and social influences affecting their counterparts, thereby making it easier
to resolve certain conflicts that arise due to incomplete knowledge. Furthermore, the
negotiation element within ABN also provides a means for the agents to achieve mutu-
ally acceptable agreements to the conflicts of interests that they may have in relation to
their different influences.
Against this background, this work advances the state of the art in the following

ways. First, our main contribution is to propose a novel ABN approach that allows
agents to detect, manage, and resolve conflicts related to their social influences in a
distributed manner within a structured agent society. In order to demonstrate the per-
formance benefits of our method, we use our proposed ABN framework to design a
number of ABN strategies to manage such conflicts and then use an empirical evalu-
ation to assess their impact. Specifically, we show that allowing agents to argue about
their social influences provides them with the capability to not only manage their social
influence more effectively, but to do so more efficiently as a society. Furthermore, we
show that giving these agents the capability to challenge their counterparts and obtain
their reasons for violating social commitments (instead of simply attempting to claim
the penalty charges to which they are entitled) allows the agents to manage their social
influences even more efficiently. Our second main contribution is to the ABN commu-
nity. Here, we present a complete ABN framework which allows agents to argue and
negotiate and resolve conflicts in the presence of social influences. Furthermore, we
demonstrate the versatility of that framework; first, by mapping it to a specific com-
putational problem of a multi-agent task allocation scenario and second, by using it to
design a number of ABN strategies to resolve conflicts within a multi-agent society.
To this end, the remainder of the paper is structured as follows. First, Section 2 high-

lights the theoretical model of our ABN framework. Section 3 then maps this model to a
computational context detailing the different representations and algorithms used. Sub-
sequently, Section 4 details the experimental setting, presents our results and an analysis
of the key observations. Next, Section 5 discusses the related work and Section 6 con-
cludes.



2 Social Argumentation Model

In this section, we give a brief overview of our formal and computational framework for
arguing and negotiating in the presence of social influences. In abstract, our framework
consists of four main elements: (i) a schema for reasoning about social influence, (ii)
a set of social arguments that make use of this schema, (iii) a language and protocol
for facilitating dialogue about social influence, and (iv) a set of decision functions that
agents may use to generate dialogues within the protocol. In the following sub-sections,
we discuss each of these elements in more detail.1

2.1 Social Influence Schema

The notion of social commitment acts as our basic building block for capturing social
influence. First introduced by Castelfranchi [3], it remains simple, yet expressive, and
is arguably one of the fundamental approaches for modelling social behaviour among
agents in multi-agent systems. In essence, a social commitment (SCx→y

θ ) is a commit-
ment by one agent x (termed the debtor) to another y (termed the creditor) to perform a
stipulated action θ. As a result of such a social commitment, the debtor is said to attain
an obligation toward the creditor, to perform the stipulated action. The creditor, in turn,
attains certain rights. These include the right to demand or require the performance of
the action, the right to question the non-performance of the action, and, in certain in-
stances, the right to demand compensation to make good any losses suffered due to its
non-performance. We refer to these as rights to exert influence. This notion of social
commitment, resulting in an obligation and rights to exert influence, allows us a means
to capture social influences between two agents. In particular, obligations reflect the
social influences an agent is subjected to, while rights reflect the social influences the
agent is capable of exerting on others.
Given this basic building block for modelling social influence between specific pairs

of agents, we now proceed to explain how this notion is extended to capture social influ-
ences resulting due to factors such as roles and relationships within a wider multi-agent
society (i.e., those that rely on the structure of the society, rather than the specific indi-
viduals who happen to be committed to one another). Specifically, since most relation-
ships involve the related parties carrying out certain actions for each other, we can view
a relationship as an encapsulation of social commitments between the associated roles.
For instance, a relationship between the roles supervisor and student may be associ-
ated with a social commitment “to hand over the thesis in a timely manner.” This social
commitment, in turn, gives the student an obligation toward the supervisor to hand in
the thesis, and gives the supervisor the right to exert influence on the student by either
demanding that he does so or through questioning his/her non-performance. In a similar
manner, the supervisor may be influenced to review and comment on the thesis. This
again is another social commitment associated with the relationship. In this instance,
it subjects the supervisor to an obligation to review the thesis while the student gains
the right to demand its performance. In this manner, social commitment again provides
1 It is important to note that here we only give a basic recap of our model to enable the reader to
gain an overall understanding. A comprehensive formal representation of the framework can
be found in [8, 9].



an effective means to capture the social influences emanating through roles and rela-
tionships of the society (independently of the specific agents who take on the roles).
Given this descriptive definition of our model, we now formulate these notions to cap-
ture the social influences within multi-agent systems as a schema (refer to Figure 1 and
formulae (1) through (6)):

Definition 1: For nA, nR, nP , nΘ ∈ N
+, let:

• A = {a1, . . . , anA} denote a finite set of agents,
• R = {r1, . . . , rnR} denote a finite set of roles,
• P = {p1, . . . , pnP } denote a finite set of relationships,
• Θ = {θ1, . . . , θnΘ} denote a finite set of actions,
• Act : A × R denote the fact that an agent is acting a role,
• RoleOf : R × P denote the fact that a role is related to a relationship, and
• In : A × R × P denote the fact that an agent acting a role is part of a relationship.

If an agent acts a certain role and that role is related to a specific relationship, then that agent

acting that role is said to be part of that relationship (as per Cavedon and Sonenberg [4]):

Act(a, r) ∧ RoleOf(r, p) → In(a, r, p) (Rel. Rule)
Definition 2: Let SC denote a finite set of social commitments and SCx→y

θ ∈ SC. Thus, as
per [3], SCx→y

θ will result in the debtor attaining an obligation toward the creditor to perform a

stipulated action and the creditor, in turn, attaining the right to influence the performance of that

action:

SCx→y
θ → [Ox→y

θ ]f
x
∧ [Ry→x

θ ]
y

, (S-Com Rule)
where:
- [Ox→y

θ ]f
x
represents the obligation that x attains that subjects it to an influence of a degree f

(refer to [9] for more details) toward y to perform θ and
- [Ry→x

θ ]
y
represents the right that y attains which gives it the ability to demand, question,

and require x regarding the performance of θ.
Definition 3: Let:
• DebtorOf : (R∪A)×SC denote that a role (or an agent) is the debtor in a social commitment,
• CreditorOf : (R∪A)×SC denote that a role (or an agent) is the creditor in a social commitment,
• ActionOf :Θ × SC denote that an act is associated with a social commitment, and
• AssocWith :SC × P denote that a social commitment is associated with a relationship.

If the roles associated with the relationship are both the creditor and the debtor of a particular

social commitment, then we declare that social commitment is associated with the relationship

(as per Section 2.1).

Applying the Rel. Rule to a society where: ai, aj ∈ A ∧ ri, rj ∈ R ∧ p ∈ P s.t. Act(ai, ri),
Act(aj , rj), RoleOf(ri, p), RoleOf(rj , p) hold true, we obtain:

Act(ai, ri) ∧ RoleOf(ri, p) → In(ai, ri, p) (1)
Act(aj , rj) ∧ RoleOf(rj , p) → In(aj , rj , p). (2)

Now, consider a social commitment SCri→rj

θ associated with the relationship p in this society.
Applying this to Definition 3 we obtain:

(DebtorOf(ri, SC) ∧ RoleOf(ri, p)) ∧ (CreditorOf(rj , SC) ∧ RoleOf(rj , p))

∧ ActionOf(θ, SC) → AssocWith(SCri→rj

θ , p). (3)
Applying the S-Comm rule to SCri→rj

θ we obtain:
SCri→rj

θ →
ˆ

Ori→rj

θ

˜f

ri
∧

ˆ

Rrj→ri

θ

˜

rj
. (4)



An agent ai acting the role ri
Leads it to be part of the relationship p
With another agent aj acting the role rj
A social commitment SC

ri→rj
θ associated with p

• Leads to ai attaining an obligation O toward rj ,
Which subjects it to an influence of degree f
To perform the action θ

• And, in turn, leads to aj attaining the right R toward ri
To demand, question, and require the performance
of action θ

Fig. 1. Schema of Social Influence.

Combining (1), (3) and (4) we obtain:
In(ai, ri, p) ∧ AssocWith(SCri→rj

θ , p) →
ˆ

Oai→rj

θ

˜f

ai
. (5)

Combining (2), (3) and (4) we obtain:
In(aj , rj , p) ∧ AssocWith(SCri→rj

θ , p) →
ˆ

Raj→ri

θ

˜

aj
. (6)

2.2 Social Arguments

Having captured the notion of social influence into a schema, we now show how agents
can use this schema to systematically identify social arguments to negotiate in the pres-
ence of social influences. Specifically, we identify two major ways in which social in-
fluence can be used to change decisions and, thereby, resolve conflicts between agents.

Socially Influencing Decisions. One way to affect an agent’s decisions is by arguing
about the validity of that agent’s practical reasoning [2]. Similarly, in a social context,
an agent can affect another agent’s decisions by arguing about the validity of the other’s
social reasoning. In more detail, agents’ decisions to perform (or not) actions are based
on their internal and/or social influences. Thus, these influences formulate the justifi-
cation (or the reason) behind their decisions. Therefore, agents can affect each other’s
decisions indirectly by affecting the social influences that determine their decisions.
Specifically, in the case of actions motivated via social influences through the roles and
relationships of a structured society, this justification to act (or not) flows from the so-
cial influence schema (see Section 2.1). Given this, we can further classify the ways
that agents can socially influence each other’s decisions into two broad categories:
1. Undercut the opponent’s existing justification to perform (or not) an action by dis-
puting certain premises within the schema that motivates its opposing decision (i.e.,
dispute ai is acting role ri, dispute SC is a social commitment associated with the
relationship p, dispute θ is the action associated with the obligation O, etc.).

2. Rebut the opposing decision to act (or not) by,
i. Pointing out information about an alternative schema that justifies the decision
not to act (or act as the case may be) (i.e., point out that ai is also acting in role
ri, that SC is also a social commitment associated with the relationship p, that θ
is the action associated with the obligation O, etc.).

ii. Pointing out information about conflicts that could or should prevent the oppo-
nent from executing its opposing decision (i.e., point out conflicts between two
existing obligations, rights, and actions).



REJECT ASSERT

OPEN−DIALOGUE PROPOSE ACCEPT CLOSE−DIALOGUE

CHALLENGE

Fig. 2. Dialogue Interaction Diagram.

Negotiating Social Influence. Agents can also use social influences within their ne-
gotiations. More specifically, as well as using social argumentation as a tool to affect
decisions (as above), agents can also use negotiation as a tool for “trading social influ-
ences”. In other words, the social influences are incorporated as additional parameters
of the negotiation object itself. For instance, an agent can promise to (or threaten not to)
undertake one or many future obligations if the other performs (or does not perform) a
certain action. It can also promise not to (or threaten to) exercise certain rights to in-
fluence one or many existing obligations if the other performs (or does not perform) a
certain action. In this manner, the agents can use their obligations, rights, and even the
relationship itself as parameters in their negotiations.

2.3 Language and Protocol

To enable agents to express their arguments, we define two complimentary languages:
the domain language and the communication language (see [8] for a complete formal
specification). The former allows the agents to express premises about their social con-
text and also the conflicts that they may face while executing actions within such a
context. The communication language, on the other hand, enables agents to express
premises about the social context in the form of arguments and, thereby, engage in their
discourse to resolve conflicts. This consists of seven elocutionary particles (i.e., OPEN-
DIALOGUE, PROPOSE, ACCEPT, REJECT, CHALLENGE, ASSERT, and CLOSE-
DIALOGUE). These locutions can be used together with content expressed in the do-
main language in order to allow agents to make utterances (e.g., assert a particular
social premise, challenge a premise, make a specific proposal, and so on).
The protocol, which indicates the legal ordering of communication utterances, has

six main stages: (i) opening, (ii) conflict recognition, (iii) conflict diagnosis, (iv) conflict
management, (v) agreement, and (vi) closing. The opening and closing stages provide
the important synchronisation points for the agents involved in the dialogue, the former
indicating its commencement and the latter its termination [11]. The conflict recogni-
tion stage, the initial interaction between the agents, brings the conflict to the surface.
Subsequently, the diagnosis stage allows the agents to establish the root cause of the
conflict and also to decide on how to address it (i.e., whether to avoid the conflict or
attempt to manage and resolve it through argumentation and negotiation [7]). Next, the
conflict management stage allows the agents to argue and negotiate, thus, addressing
the cause of this conflict. Finally, the agreement stage brings the argument to an end,
either with the participants agreeing on a mutually acceptable solution or agreeing to
disagree due to the lack of such a solution. In operation, it is defined as a dialogue game
protocol which gives locutions rules (indicating the moves that are permitted), com-



Algorithm 1 Decision making algorithm for PROPOSE.
1: if (Capable(do(ai, θi)) ∧ B

ai
do(aj ,θj) > C

ai
do(ai,θi)

) then

2: PROPOSE(do(aj, θj), do(ai, θi))
3: end if

Algorithm 2 Decision making algorithm for ACCEPT or REJECT.
1: if (Capable(do(aj, θj)) ∧ B

aj
do(ai,θi)

> C
aj
do(aj,θj )

) then

2: ACCEPT(do(aj, θj), do(ai, θi))
3: else
4: REJECT(do(aj, θj), do(ai, θi))
5: end if

mitment rules (defining the commitments each participant incurs with each move), and
structural rules (specifying the types of moves available following the previous move).
Figure 2 presents these locutions and structural rules in abstract.

2.4 Decision Making Functionality

The protocol described above gives agents a number of different options, at various
stages, as to what utterances to make. For instance, after a proposal the receiving agent
could either accept or reject it. After a rejection, the agent may choose to challenge
this rejection, end the dialogue, or forward an alternative proposal. An agent, therefore,
still requires a mechanism for selecting a particular utterance among the available legal
options. To this end, for each of the possible dialogue moves, we specify general de-
cision making algorithms to give the agents that capability. Specifically, Algorithms 1
and 2 show two such examples, the former for generating a proposal and the latter for
evaluating such a proposal. In abstract, a proposal in our formulation has two aspects;
the request and the reward. Thus, when generating a proposal the agent would assess
two aspects (i) if it is capable of performing the reward and (ii) the benefit it gains from
the request (Bai

do(aj,θj)) is greater than the cost of reward (Cai
do(ai,θi)

) (Algorithm 1). On
the other hand, when evaluating a proposal, the agent will consider (i) if it is capable of
performing the request and (ii) that the benefit of the reward (B

aj

do(ai,θi)
) is greater than

the cost incurred in performing the request (Caj

do(aj,θj )) (Algorithm 2).

3 Argumentation Context

To evaluate how our argumentation model can be used as a means of managing social
influences, we require a computational context in which a number of agents interact in
the presence of social influences and conflicts arise as a natural consequence of these
interactions. To this end, we now proceed to detail how we map our general framework
into a specific multi-agent task allocation scenario. We first provide an overview de-
scription of the scenario and then proceed to explain how we map the notion of social
influence within it. Finally, we detail how the agents can use our ABN model to interact
within this social context and manage conflicts related to their social influences.

3.1 The Scenario

The argumentation context is based on a simple multi-agent task allocation scenario
(similar to that presented in [7]) where a collection of self-interested agents interact



Table 1. A Sample Scenario

Time a0 a1 a2

c(0,0.9), c(1,0.1) c(0,0.1), c(1,0.9) c(0,0.4), c(1,0.5)

t0 θ0 : [c(0,0.5), 200] θ0 : [c(1,0.2), 500] θ0 : [c(1,0.5), 700]
t1 θ1 : [c(1,0.3), 900] θ1 : [c(0,0.4), 300] θ1 : [c(1,0.7), 100]
t2 θ2 : [c(1,0.1), 400] θ2 : [c(0,0.8), 900]
t3 θ3 : [c(0,0.9), 600]

to obtain services to achieve a given set of actions. In abstract, the context consists of
two main elements. On one hand, each agent in the system has a list of actions that
it is required to achieve. On the other hand, all agents in the system have different
capabilities to perform these actions. In this context, agents are allowed to interact and
negotiate between one another to find capable counterparts that are willing to sell their
services to perform their actions. The following introduce these main elements in more
detail:

Capability: All agents within the domain have an array of capabilities. Each such ca-
pability has two parameters: (i) a type value (x) defining the type of that capability and
(ii) a capability level (d ∈ [0, 1]) defining the agent’s competence level in that capability
(1 indicates total competence, 0 no competence). Given this, we denote a capability as
c(x,d) : [x, d].
Action: Each action has four main parameters: (i) the specified time (ti) the action
needs to be performed, (ii) the capability type (x) required to perform it, (iii) the mini-
mum capability level (dm) required, and (iv) the reward (ri; distributed normally with
a mean µ and a standard deviation σ) the agent would gain if the action is completed.
Given this, we denote an action as θi : [ti, c(x,dm), ri].

Each agent within the context is seeded with a specified number of such actions.
This number varies randomly between agents within a pre-specified range. Table 1 de-
picts one such sample scenario for a three agent context (a0, a1, and a2) with their
respective capabilities and actions.

3.2 Modelling Social Influences

Given our argumentation context, we now describe how social influences are mapped
into it. In order to provide the agents with different social influences, we embody a role-
relationship structure into the multi-agent society. To do so, first, we define a specific
number of roles and randomly link them to create a web of relationships. This defines
the role-relationship structure. Figure 3(a) shows an example of such a representation
between 3 roles: r1, r2, and r3, where 1 indicates that a relationship exists between the
two related roles, and 0 indicates no relationship.
Given this role-relationship structure, we now randomly specify social commit-

ments for each of the active relationship edges (those that are defined as 1 in the map-
ping). A social commitment in this context is a commitment by one role, to another, to
provide a certain type of capability when requested. As per Section 2.1, an important
component of our notion of social commitment is its associated degree of influence.
Thus, not all social commitments influence the agents in a similar manner (for more



r0 r1 r2
r0 0 1 0
r1 1 0 1
r2 0 1 0
(a) Rol-Rel mapping.

r0 r1 r2
r0 [0:0] [200:0] [0:0]
r1 [400:100] [0:0] [200:600]
r2 [0:0] [700:200] [0:0]

(b) Social commitment mapping.

r0 r1 r2
a0 1 0 0
a1 0 1 1
a2 0 1 0
(c) Ag-Rol mapping.

Fig. 3. Social Influence Model.

details refer to [9]). Here, we map these different degrees of influence by associating
each social commitment with a decommitment penalty. Thus, any agent may violate
a certain social commitment at any given time. However, it will be liable to pay the
specified decommitment value for this violation (this is similar to the notion of levelled
commitments introduced in [14]). Since all our agents are self-interested, they prefer
not to lose rewards in the form of penalties, so a higher decommitment penalty yields a
stronger social commitment (thereby, reflecting a higher social influence). The follow-
ing represents such a mapping. For instance, in Figure 3(b) the entry [400:100] in row
1, column 2 indicates that the role r0 is committed to provide capabilities c0 and c1 to
a holder of the role r1. If the agent holding the role r0 chooses not to honour this com-
mitment it will have to pay 400 and 100 (respectively for c0 and c1) if asked. Having
designed this social structure and the associated social commitments, finally we assign
these roles to the actual agents operating within our system as shown in Figure 3(c).
From this representation, we can easily extract the rights and the obligations of each

agent within our system. For instance, the agent-role mapping shows the fact that agent
a0 acts the role r0. Given this, its obligations and rights can be extracted as follows:
• Obligation to provide:
- c0 to an agent acting r1; obliged to pay 400 if decommitted.
- c1 to an agent acting r1; obliged to pay 100 if decommitted.

• Rights to demand:
- c0 from an agent acting r1; right to demand 200 if decommitted.
Given this global representation of social influence, we will now detail how we

seed these agents with this information. Since one of the aims in our experiments is
to test how agents use argumentation to manage and resolve conflicts created due to
incomplete knowledge about their social influences, we generate a number of settings
by varying the level of knowledge seeded to the agents. More specifically, we give only
a subset of the agent-role mapping.2 We achieve this by randomly replacing certain
1s with 0s and give this partial knowledge to the agents during initialisation. Thus, a
certain agent may not know all the roles that it or another agent may act. This may, in
turn, lead to conflicts within the society, since certain agents may know certain facts
about the society that others are unaware of. By controlling this level of change, we
2 Theoretically it is possible to introduce imperfections to all the premises within the schema
(i.e., Act(ai, ri), RoleOf(ri, p), AssocWith(SCri←rj , p), InfluenceOf(O, f) etc.; see Sec-
tion 2.1). However, since the objective of our experiments is to prove the concept of how
arguments can resolve conflicts, instead of designing an exhaustive implementation with all
possible imperfections and arguments, we chose to concentrate on the first two premises. In-
creasing the imperfections would merely increase the reasons why a conflict may occur, thus,
bringing more arguments into play. However, this would have little bearing on the general
pattern of the results.



Algorithm 3 The negotiate() method. Algorithm 4 The argue() method.
1: [p0, p1, . . . , pmax] ← generateProposals()
2: p ← p0

3: isAccepted ← false

4:
5: {Loop till either the agent agrees or the last proposal
fails.}

6: while (isAccepted $= true ‖ p ≤ pmax) do
7: response ← PROPOSE(p)
8: if (response = “accept′′) then
9: isAccepted ← true

10: else

11: if (p $= pmax) then
12: p ← getNextViableProposal()
13: end if

14: end if

15: end while
16: return isAccepted

1: {Challenge for the opponent’s justification}
2: Ho ← challenegeJustification()
3: {Generate personal justification}
4: Hp ← generateJustification()
5:
6: if (isV alid(Ho) = false) then
7: {Assert invalid premises ofHo}
8: else
9: {Adopt premises ofHo into personal knowledge}
10: end if
11: if (isV alid(Hp) = false) then
12: {Correct invalid premises ofHp within personal

knowledge}
13: else
14: {AssertHp}
15: end if

generate an array of settings ranging from perfect knowledge (0% missing knowledge)
in the society, to the case where agents are completly unaware of their social influences
(100% missing knowledge).
To explain this further, consider for instance that when initialising a0 we seeded

it with an incomplete agent-role map by replacing the 1 in column 1, row 1 with a 0.
Thus, a0 is unaware that it is acting the role r0. As a result, it is not aware of its ensuing
obligations and rights highlighted above. Now, when agents interact within the society
this may lead to conflicts between them. For example, if a0 refused to provide c0 to a1,
it may request that the violation penalty of 400 be paid. However, since a0 is unaware
of its obligation it will not pay the amount. On the other hand, when initialising a0 if we
replace the 1 in column 2, row 3 with a 0, a0 would now be unaware of its obligations
towards agent a2 since its lacks the information that its counterpart a2 acts the role r1.
This, in turn, would also lead to conflicts with the society. In these situations, agents
can use the argumentation process explained in Section 3.3 to argue and resolve such
conflicts.

3.3 Agent Interaction

Having detailed the multi-agent context, we now proceed to discuss how the agents can
use our ABN model to interact within this social setting. As mentioned in Section 3.1,
agents within the system argue and negotiate with each other to find willing and capable
partners to accomplish their actions. In essence, an agent that requires a certain capabil-
ity will generate and forward proposals to another selected agent within the community
requesting it to sell its services in exchange for a certain reward (Algorithm 1). If the
receiving agent perceives this proposal to be viable and believes it is capable of per-
forming it, then will accept it. Otherwise it will reject the proposal (Algorithm 2). In
case of a reject, the original proposing agent will attempt to forward a modified pro-
posal. The interaction will end either when one of the proposals is accepted or when all
valid proposals that the proposing agent can forward are rejected (Algorithm 3). In this
context, the two main elements of the negotiation interaction are:
Proposal Generation: When generating a proposal, an agent needs to consider two as-
pects (Algorithm 1): (i) whether it is capable of carrying out the reward and (ii) whether



the benefit it gains from the request is greater than the cost incurred while performing
the reward. To simplify the implementation, we constrain our system to produce pro-
posals with only monetary rewards. Thus, the generic proposal from an agent ai to an
agent aj takes the form PROPOSE(do(aj, θj), do(ai, m)) where θj is the requested ac-
tion and m the monetary reward. In this context, calculating the benefit and the cost
becomes straight forward. The benefit is the request rj associated with the action θj

and the cost of reward ism the monetary reward. Given this, the agent would generate
an array of proposals with increasing amounts of monetary rewards, the lowest being 1
and the highest being (rj − 1).
Proposal Evaluation: When the receiving agent evaluates a proposal it also considers
two analogous factors: (i) whether it is capable of performing the request and (ii) if
the benefit it gains from the reward is greater than the cost of carrying out the request
(Algorithm 2). To evaluate capability, the agent compares its own level with the min-
imum required to perform the action. In this case, the cost is the current opportunity
cost. Here, all agents have a minimum asking price (set to µ the mean reward value,
see Section 3.1) if they are not occupied, or, if they are, the cost is the reward plus the
decommitment cost of the previously agreed action. The benefit, in the simplest case,
is the monetary value of the rewardm. However, if the agent has a social commitment
to provide that capability type to the requesting agent, then the benefit is the monetary
reward plus the decommitment penalty of this social commitment.
Given the negotiation interaction, we will now detail how agents argue (Algorithm

4) to resolve conflicts within the multi-agent society (such as the one highlighted in Sec-
tion 3.2). Agents first detect conflicts by analysing the decommitment penalties paid by
their counterparts for violating their social commitments. In more detail, when an agent
with the right to demand a certain capability claims the penalty form another for vi-
olating its obligation and the amount paid in response is different from the amount it
expects to receive, the agents would detect the existence of a conflict. Once such a con-
flict is detected agents attempt to resolve it by exchanging their respective justifications.
These justifications would take the form of the social influence schema (see Equations 5
and 6 in Section 2.1) and are then analysed to diagnose the cause of the conflict. If there
are inconsistencies between them, social arguments (Section 2.2; Type-1) are used to
highlight these. If they are both valid, then each agent would point-out alternative jus-
tifications via asserting missing knowledge (Section 2.2; Type-2). The defeat-status is
computed via a validation heuristic, which simulates a defeasible model such as [1].

4 Managing Social Influences

As mentioned in Section 1, when agents operate within a society with incomplete
knowledge and with diverse and conflicting influences, they may, in certain instances,
lack the knowledge, the motivation and/or the capacity to enact all their social commit-
ments. In some cases, therefore, an agent may violate specific social commitments in
favour of abiding by a more influential internal or external motivation. In other cases
it may inadvertently violate such commitments simply due to the lack of knowledge
of their existence. However, to function as a coherent society it is important for these
agents to have a means to resolve such conflicts and manage their social influences in



Algorithm 5 Claim-Penalty-Non-Argue strategy. Algorithm 6 Claim-Penalty-Argue strategy.
1: isAccepted ← negotiate()
2: if (isAccepted = false) then
3: compensation← demandCompensation()
4: end if

1: isAccepted ← negotiate()
2: if (isAccepted = false) then
3: compensation← demandCompensation()
4: if (compensation < rightToPenalty) then
5: argue()
6: end if

7: end if

a systematic manner. Against this background, we will now investigate a number of
different interaction strategies that allow the agents to manage their social influences
within a multi-agent context. The underlying motivation for these strategies is our so-
cial influence schema (see Section 2.1), which gives the agents different rights; namely
the right to demand compensation and the right to challenge non-performance of social
commitments. Specifically, in the following we use our ABN model to design both ar-
guing and non-arguing strategies to implement these forms of interactions and assess
their relative performance benefits.
The experiments are set within the context described in Section 3 with 20 agents,

each having 3 capabilities with different levels of competence (varied randomly). The
number of actions each agent has vary between 20 and 30, while their respective rewards
are set according to a normal distribution with a mean 1,000 and a standard deviation
500. We use two metrics to evaluate the overall performance of the different strategies
(similar to [7, 13]): (i) the total earnings of the population as a measure of effectiveness
(the higher the value, the more effective the strategy) and (ii) the total number of mes-
sages used by the population as a measure of efficiency (the lower the value, the more
efficient the strategy). Here all reported results are averaged over 40 simulation runs to
diminish the impact of random noise, and all observations emphasised are statistically
significant at the 95% confidence level.

4.1 Demanding Compensation

If an agent violates a social commitment, one of the ways its counterpart can react is
by exercising its right to demand compensation. This formulates our baseline strategy
which extends our negotiation algorithm by allowing the agents to demand compen-
sation in cases where negotiation fails (Algorithm 5). Once requested, the agent that
violated its social commitment will pay the related penalty.3 However, in imperfect in-
formation settings, a particular agent may violate a social commitment simply because
it was not aware of it (i.e., due to the lack of knowledge of its roles or those of its coun-
terparts). In such situations, an agent may pay a decommitment penalty different to what
the other believes it should get, which may, in turn, lead to conflicts. In such situations,
our second strategy allows agents to use social arguments to argue about their social
influences (as per Section 2.2) and, thereby, manage their conflicts (Algorithm 6). Our
hypothesis here is that by allowing agents to argue about their social influences we are
providing them with a coherent mechanism to manage and resolve their conflicts and,
3 To reduce the complexity, here, we assume that our agents do not attempt to deceive one
another. Thus an agent will either honour its obligation or pay the penalty. We could drop this
assumption and make it more realistic by incorporating trust and reputation mechanism into
the system. However, this is beyond the scope of this paper.



thereby, allowing them to gain a better outcome as a society. To this end, the former
strategy acts as our control experiment and the latter as the test experiment. Figures 4
and 5 show our results from which we make the following observations:

Observation 1: The argumentation strategy allows agents to manage their social influ-
ences even at high uncertainty levels.

If agents are aware of their social influences, they may use them as parameters within
their negotiation interactions. Thereby, agents can endorse certain actions which may
otherwise get rejected (see Section 2.2). This would, in turn, increase the population
earnings as more actions are accomplished. However, if the agents are not aware of
their social influences they may not be able to use these influences to endorse such
actions. Therefore, we can observe a downward trend in the population earnings for
both strategies as the agent’s knowledge level about their social influences decrease (0
on the X-axis indicates perfect information, whereas, 100 represents a complete lack
of knowledge about the social structure). However, we can observe that the non-argue
strategy falls more rapidly than the argue one. This is because the argue method allows
agents to manage and resolve conflicts of opinion that they may have about their social
influences. For instance, if a certain agent is unaware of a role that another acts, it may
correct this through arguing with that agent. Thus, arguing allows agents to correct
such gaps in their knowledge and, thereby, resolve any conflicts that may arise as a
result. In this manner, ABN allows the agents to manage their social influences even at
high uncertainty levels. Thereby, as a society, the agents can accomplish more of their
actions and gain a higher total earnings value. The non-arguing approach, which does
not allow them to argue about their social influences and manage such conflicts, reduces
the population earnings as knowledge imperfections increase within the social system.
Observation 2: In cases of perfect information and complete uncertainty, both strate-
gies perform equally.

The reason for both strategies performing equally when there is perfect information
(0 level) is because there are no knowledge imperfections. In other words, agents do
not need to engage in argumentation to correct conflicts of opinions simply because
such conflicts do not exist. On the other hand, the reason for both strategies performing
equally when there is a complete lack of knowledge is more interesting. Since, none of
the agents within the society are aware of any social influences (even though they exist)
they are not able to detect any conflicts or violations. Consequently, agents do not resort
to arguing to manage such conflicts (see conflict recognition stage in Section 2.3). Thus,
when there is a complete lack of knowledge, the strategy that uses the argue strategy
performs the same as the non-argue one.
Observation 3: At all knowledge levels, the argumentation strategy exchanges fewer
messages than the non-arguing one.

Figure 4(b) shows the number of messages used by both strategies under all knowledge
levels. Apart from the two end points, where argumentation does not occur (see Ob-
servation 2), we can clearly see the non-arguing strategy exchanging more messages
(is less efficient) than the argue one. The reason for this is that even though agents use
some number of messages to argue and correct their incomplete knowledge, thereafter
the agents use their corrected knowledge in subsequent interactions. However, if the
agents do not argue to correct their knowledge imperfections, they negotiate more fre-
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Fig. 4. Efficiency and Effectiveness of the Argue and Non-Argue strategies with 20 Agents and 3
Roles.

quently since they cannot use their social influence. Thus, this one-off increase of argue
messages becomes insignificant when compared to the increase in the propose, accept,
and reject messages due to the increased number of negotiations.
Observation 4: When there are more social influences within the system, the perfor-
mance benefit of arguing is only significant at high levels of knowledge incompleteness.

Figure 4(a) and Figures 5(a) through 5(d) show the effectiveness of both the strategies
as the number of roles increases within the society. One of the key observations here
is the decline rate of the non-argue strategy. We can see that as the number of roles
increase, the rate of decline of the non-argue method becomes less pronounced. Fur-
thermore, the crossover point where the non-argue method starts to be less effective
than the argue strategy also shifts increasingly to the right (higher knowledge imper-
fections). In Figures 5(a) though 5(d) this level is roughly 50%, 70%, 80%, 90%. This
again is a very interesting observation. As agents gain a higher number of roles, they
aquire an increasing number of social influences. Now, as explained in Observation 1,
the agents use these social influences as a resource to endorse their actions. Thus, when
an agent has a higher number of social influences, its lack of knowledge about a certain
particular influence makes little difference. The agent can easily replace it with another
influence (which it is aware of) to convince its counterpart. Therefore, under such con-
ditions, agents arguing about their social influences to correct their lack of knowledge
would have little reward since the non-argue method can more simply replace it with
another known influence and still achieve the same end. Only when an agent has a near
complete lack of knowledge (i.e., 80%, 90%) does the argue strategy yeild significant
performance gains. This observation complements our previous emperical study on the
worth of argumentation at varying resource levels [7]. There we show that the bene-
fit of arguing is more pronounced at low resource settings and under higher resource
conditions the benefit is less.

4.2 Questioning Non-Performance

In the event that a particular social commitment is violated, apart from the right to de-
mand compensation, our social influence schema also gives the agents the right to chal-
lenge and demand a justification for this non-performance (see Section 2.1). It is gen-
erally argued in ABN theory that allowing agents to exchange such meta-information
in the form of justifications gives them the capability to understand each others’ rea-
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Fig. 5. Total population earnings with 20 agents and a varying number of roles.

sons and, thereby, provides a more efficient method of resolving conflicts under uncer-
tainty [12]. In a similar manner, we believe that providing the agents with the capability
to challenge and demand justifications for violating social commitments also allows the
agents to gain a wider understanding of the internal and social influences affecting their
counterparts, thereby, providing a more efficient method for managing social influences
in the presence of incomplete knowledge.
This intuition forms the underlying hypothesis for our next set of experiments.

More specifically, we use our previous best strategy Claim-Penalty-Argue as the con-
trol experiment and design two other strategies (Argue-In-First-Rejection and Argue-
In-Last-Rejection) to experiment with the effect of allowing the agents to challenge
non-performance at different stages within the negotiation encounter. The former al-
lows the agent to challenge after the receipt of the first rejection and the latter after
the last rejection. Thus, the two differ on when the agent attempts to find the reason
(in the first possible instance or after all proposals have been forwarded and rejected).4
Figures 6(a) and 6(b) show our results and the following highlight our key observations:

Observation 5: The effectiveness of the various argumentation strategies are broadly
similar.

Figure 6(a) shows no significant difference in the effectiveness of the three ABN strate-
gies. This is due to the fact that all three strategies argue and resolve the conflicts even
though they decide to argue at different points within the encounter. Therefore, we do
not expect to have any significant differences in number of conflicts resolved. Thus, the
effectiveness stays the same.

4 Due to space restrictions we avoid specifying the algorithms for these two strategies here.
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Fig. 6. Efficiency and Effectiveness of the various argumentation strategies.

Observation 6: Allowing the agents to challenge earlier in the dialogue, significantly
increases the efficiency of managing social influences.

Figure 6(b) shows a significant difference in the number of messages used by the three
strategies at all levels of knowledge. In more detail, the number of messages used by the
Argue-In-Last-Rejection strategy is significantly lower than our originalClaim-Penalty-
Argue one. Moreover, the Argue-In-First-Rejection strategy has the lowest number of
messages exchanged. The reason for this behaviour is based on how the agents use
these reasons exchanged during the argue phase. In the Claim-Penalty-Argue strategy
the main objective of arguing is to resolve the conflict regarding the penalty value that
should be paid. However, it does not attempt to find out the reason for why its counter-
part rejected its proposal. For instance, one reason could be the lack of capability. An-
other could be the reward of the proposal is not high enough to cover the cost. By chal-
lenging the reason for the rejection, the latter two strategies gain this meta-information
which the agents constructively use in their subsequent interactions. For instance, if the
counterpart rejected the proposal due to lack of capability, it can be excluded in future
if the agent requires a capability which is equal or greater. In this way such reasons give
useful meta-information to the agents for their future negotiations. So these strategies
allow the agents to exploit such information and interact more efficiently as a society.
Arguing in the first rejection provides this information earlier in the negotiation, which,
in turn, gives the agent more capacity to exploit such information (even in the present
negotiation) than getting it in the last encounter. Given this, we can conclude that in
our context allowing the agents to challenge non-performance earlier in the negotiation
allows them to manage their social influences more efficiently as whole.

5 Related Work

As highlighted in Section 1, to function as a coherent society, agents operating within
a multi-agent society need the ability to detect, manage, and resolve conflicts in a sys-
tematic manner. Here, we will compare our ABN approach with two others suggested
in the multi-agent literature. First, we note the work of [5] on electronic institutions
where commitments of agents resulting due to social influences are managed through a
performative structure. In more detail, they use a central authority to ensure that such
commitments are upheld by controlling the type of locutions agents can issue in cer-
tain contexts based on the state of their commitments. In a similar vein, [6] provides a
mechanism to control, verify, and manipulate commitments through the use of a state



machine. Now, one of the key distinctions of our approach from these is the absence
of a central authority. Ours is a decentralised model where agents detect, manage and
resolve conflicts about their social influences by arguing between each other. Another
key feature in our method is its ability to function under incomplete knowledge. On the
other hand, both the above approaches assume complete information within the central
entity.
Our ABN framework also extends current ABN research by allowing the agents to

argue, negotiate and manage conflicts in a multi-agent society. When compared against
the model of Kraus et al [10] our framework has two distinct advantages. First, ours ex-
pressly takes into account the impact of society by way of social commitments, whereas
their main focus is in formulating interactions between two agents. Second, they do not
take into account the impact of incomplete information. In contrast, our social argu-
ments captured in Section 2.2 allow agents to argue about their social influences and
overcome such conflicts within a society. The work of Sierra et al. [15] is an important
initial attempt to extend the work of [10] to a social context. Similar to our approach
(and unlike [10]) they allow agents to argue in social contexts with imperfect informa-
tion. However, they only consider authority based relationships, which we believe only
capture a specialised form of social context (i.e., institutions or formal organisations).
Our work, on the other hand, presents a more generic way of capturing social influences
of roles and relationships (i.e., using social commitment with different degrees of influ-
ence), thus allowing agents’ the ability to argue, negotiate and resolve conflicts under
disparate social influences.

6 Conclusions and Future Work

The incomplete knowledge and the diverse conflicting influences present within a multi-
agent society may prevent agents from abiding by all their social influences. In such
situations, in order to function as a coherent society, agents require a mechanism to
manage their social influences in a systematic manner. To this end, this paper develops a
novel ABN approach that allows agents to argue, negotiate and, thereby, achieve a con-
sensus, about their social influences. Furthermore, in order to assess the performance
benefits of our proposed method, we carry out an empirical analysis by implementing
such an ABN approach in a multi-agent task allocation context. Our results can be sum-
marised as three main points. First, our method is shown to be both a more efficient and
a more effective strategy in managing social influence even at high uncertainty levels
when compared to a non-arguing approach. Second, we show that our approach can be
further enhanced in terms of efficiency by allowing agents to challenge one another ear-
lier in the negotiation encounter and using the meta-information that is gained to guide
future negotiation encounters. Third, we show that both under complete uncertainty and
when there are abundant social influences available in the society, the effectiveness of
our approach is not significantly different from a non-arguing one.
In the future, we aim to expand our approach by allowing the agents to explicitly

trade social influences in the form of threats and promises (as per Section 2.2) and
examine the effect of so doing. At the moment agents only implicitly use these social
influences to endorse their proposals. In such a system, we also plan to experiment with
the effect of using different argument selection strategies in order to identify if certain
strategies allow the agents to argue more efficiently or effectively than others.
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Abstract. Computational argumentation has been accepted as a social
computing mechanism or paradigm in the multi-agent systems commu-
nity. In this paper, we are further concerned with what agents believe
after argumentation, such as how agents should accommodate justified
arguments into their knowledge bases after argumentation, what and how
agents acquire or learn, based on the results of argumentation. This is an
attempt to create a new learning method induced by argumentation that
we call Argument-Based Learning (ABL). To this end, we use our logic
of multiple-valued argumentation LMA built on top of Extended Anno-
tated Logic Programming EALP, and propose three basic definitions to
capture agents’ beliefs that should be rationally acquired after argumen-
tation: knowledge acquisition induced by the undercut of assumptions,
knowledge acquisition induced by difference of recognition, and knowl-
edge acquisition induced by rebut. They are derived from two distinctive
and advantageous apparatuses of our approach to multi-valued argu-
mantation under : Paraconsistency and multiple-valuedness that EALP
and LMA feature. We describe two overall argument examples to show
the effectiveness and usefulness of the agent learning methods based on
argumentation.

1 Introduction

In the last years, argumentation has been accepted as a promising social com-
puting mechanism or paradigm in the multi-agent systems community. It has
proven to be particularly suitable for dealing with reasoning under incomplete or
contradictory information in a dynamically changing and networked distributed
environment. The main concern, however, has lain in characterizing a set of
acceptable (justified) arguments just as ordinary logics are concerned with char-
acterizing validity and provability [3] [12]. In our view, there is one important
missing angle in the past works on argumentation, which we should promote
one more step further. It is such a view point that our objectives of making
arguments or dialogue are not only for reaching to agreements, understanding
with our social partners, and making decisions, but also for learning or acquir-
ing information unknown or valuable to us. In this paper, we are concerned with



how agents should accommodate those justified arguments into their knowledge
bases after argumentation, or what and how agents acquire or learn, based on
the results of argumentation, just as we know each other, learn a lot and grow,
through argumentation or dialogue in the daily, business or academic life. This
paper describes a first step towards learning and growing or evolving agents
through argumentation. To this end, we take a logic programming approach to
argumentation since it can provide agents with both knowledge representation
language and reasoning procedure in a integrated framework as well as in a
computationally feasible way. We address ourselves to our purpose stated above
in our Extended Annotated Logic Programming EALP and Logic of Multiple-
Valued Argumentation LMA. EALP is an underlying knowledge representation
language to which we extended GAP [7] for argumentation under uncertainty.
It is very general and expressive as well as computationally feasible, allowing to
deal with diverse types of truth values for various kinds of uncertain information.
LMA is an argumentation framework on top of EALP, enabling agents to argue
under their own knowledge bases with uncertainty [14]. We here emphasize that
the most distinctive and advantageous point of our approach to argument-based
learning (ABL) is to employ EALP and LMA with paraconsistency. As the re-
sult, we can be completely emancipated from the fear of inconsistency of knowl-
edge bases and can concentrate on learning or knowledge acquisition itself in a
manner more fused with argumentation, differently from the other approaches
[1] [2] [6]. Furthermore, the multiple-valuedness that EALP and LMA feature
brings us more refined knowledge acquisition methods than those of two-valued
cases[1] [2] [6]. The paper is organized as follows. In Section 2 an 3, we outline
Extended Annotated Logic Programming EALP and Logic of Multiple-valued
Argumentation LMA respectively, to make the paper self-contained. In Section
4, we propose three definitions for learning or knowledge acquisition that is to be
accomplished after argumentation. In Section 5, we illustrate two overall learning
scenarios based on both argumentation and knowledge acquisition. In particu-
lar, we discuss a dynamically changing argument in which agents are involved
in not only a single argument at a time but a process of consecutive arguments
over time, and agents gradually become wise through repeated argumentation.
In Section 6, we briefly describe some related works although there is nothing
for us to be able to directly compare with ours. The final section summarizes
contributions of the paper, and future work.

2 Overview of EALP

EALP is an underlying knowledge representation language that we formalized for
our logic of multiple-valued argumentation LMA. EALP has two kinds of explicit
negation: Epistemic Explicit Negation ‘¬’ and Ontological Explicit Negation ‘∼’,
and the default negation ‘not’. They are supposed to yield a momentum or
driving force for argumentation or dialogue in LMA. We here outline EALP.



2.1 Language

Definition 1. (Annotation and annotated atoms[7]). We assume a com-
plete lattice (T ,≤) of truth values, and denote its least and greatest element by
⊥ and $ respectively. The least upper bound operator is denoted by %. An anno-
tation is either an element of T (constant annotation), an annotation variable
on T , or an annotation term. Annotation term is defined recursively as follows:
an element of T and annotation variable are annotation terms. In addition, if
t1, . . . , tn are annotation terms, then f(t1, . . . , tn) is an annotation term. Here,
f is a total continuous function of type T n → T . If A is an atomic formula and
µ is an annotation, then A :µ is an annotated atom. We assume an annotation
function ¬ : T → T , and define that ¬(A : µ) = A : (¬µ). ¬A : µ is called the
epistemic explicit negation

Definition 2. (Annotated literals). Let A : µ be an annotated atom. Then
∼ (A : µ) is the ontological explicit negation (o-explicit negation) of A : µ. An
annotated objective literal is either ∼ A :µ or A :µ. The symbol ∼ is also used to
denote complementary annotated objective literals. Thus ∼∼ A :µ = A :µ. If L is
an annotated objective literal, then notL is a default negation of L, and called
an annotated default literal. An annotated literal is either of the form notL or
L.

Definition 3. (Extended Annotated Logic Programs (EALP)). An ex-
tended annotated logic program (EALP ) is a set of annotated rules of the form:
H ← L1 & . . . &Ln, where H is an annotated objective literal, and Li (1 ≤ i ≤
n) are annotated literals in which the annotation is either a constant annotation
or an annotation variable.

For simplicity, we assume that a rule with annotation variables or objective
variables represents every ground instance of it. In this assumption, we restrict
ourselves to constant annotations in this paper since every annotation term in
the rules can evaluate to the elements of T . We identify a distributed EALP
with an agent, and treat a set of EALPs as a multi-agent system.

2.2 Interpretation

Definition 4. (Extended annotated Herbrand base). The set of all an-
notated literals constructed from an EALP P on a complete lattice T of truth
values is called the extended annotated Herbrand base HT

P .

Definition 5. (Interpretation). Let T be a complete lattice of truth values,
and P be an EALP. Then, the interpretation on P is the subset I ⊆ HT

P of the
extended annotated Herbrand base HT

P of P such that for any annotated atom
A,
1. If A :µ ∈ I and ρ ≤ µ, then A :ρ ∈ I (downward heredity);
2. If A :µ ∈ I and A :ρ ∈ I, then A : (µ % ρ) ∈ I (tolerance of difference);
3. If ∼ A :µ ∈ I and ρ ≥ µ, then ∼ A :ρ ∈ I (upward heredity).



Definition 6. (Inconsistency). Let I be an interpretation. Then,
1. A :µ ∈ I and ¬A :µ ∈ I ⇔ I is epistemologically inconsistent (e-inconsistent).
2. A :µ ∈ I and ∼ A :µ ∈ I ⇔ I is ontologically inconsistent (o-inconsistent).
3. A : µ ∈ I and notA : µ ∈ I, or ∼ A : µ ∈ I and not ∼ A : µ ∈ I ⇔ I is

inconsistent in default (d-inconsistent).

When an interpretation I is o-inconsistent or d-inconsistent, we simply say I is
inconsistent. We do not see the e-inconsistency as a problematic inconsistency
since by the condition 2 of Definition 5, A :µ ∈ I and ¬A :µ = A :¬µ ∈ I imply
A : (µ % ¬µ) ∈ I and we think A :µ and ¬A :µ are an acceptable differentia. Let
I be an interpretation such that ∼ A :µ ∈ I. By the condition 1 of Definition 5,
for any ρ such that ρ ≥ µ, if A : ρ ∈ I then I is o-inconsistent. In other words,
∼ A :µ rejects all recognitions ρ such that ρ ≥ µ about A.

Definition 7. (Satisfaction). Let I be an interpretation. For any annotated
objective literal H and annotated literal L and Li, we define the satisfaction
relation denoted by ‘|=’ as follows.
– I |= L ⇔ L ∈ I
– I |= L1 & · · · &Ln ⇔ I |= L1, . . . , I |= Ln

– I |= H ← L1 & · · · &Ln ⇔ I |= H or I ,|= L1 & · · · &Ln

3 Overview of LMA

In formalizing logic of argumentation, the most primary concern is the rebuttal
relation among arguments since it yields a cause or a momentum of argumenta-
tion or dialogue. The rebuttal relation for two-valued argument models is most
simple, so that it naturally appears between the contradictory propositions of
the form A and ¬A. In case of multiple-valued argumentation based on EALP,
much complication is to be involved into the rebuttal relation under the different
concepts of negation. One of the questions arising from multiple-valuedness is,
for example, how a literal with truth-value ρ confronts with a literal with truth-
value µ in the involvement with negation. In the next subsection, we outline
important notions proper to a logic of multiple-valued argumentation LMA in
which the above question is reasonably solved.

3.1 Annotated arguments

Definition 8. (Reductant and Minimal reductant).
Suppose P is an EALP, and Ci (1 ≤ i ≤ k) are annotated rules in P of the
form: A : ρi ← Li

1 & . . . &Li
ni

, in which A is an atom. Let ρ = %{ρ1, . . . , ρk}.
Then the following annotated rule is a reductant of P .
A :ρ ← L1

1 & . . . &L1
n1

& . . . &Lk
1 & . . . &Lk

nk
.

A reductant is called a minimal reductant when there does not exist non-empty
proper subset S ⊂ {ρ1, . . . , ρk} such that ρ = %S

Definition 9. (Truth width [7]). A lattice T is n-wide if every finite set E ⊆
T , there is a finite subset E0 ⊆ E of at most n elements such that %E0 = %E.



The notion of truth width is for limiting the number of reductants to be con-
sidered in argument construction. For example, the complete lattice FOUR =
({⊥, t, f,$}, ≤), where ∀x, y ∈ {⊥, t, f,$} x ≤ y ⇔ x = y ∨ x = ⊥ ∨ y = $, is
2-wide, and the complete lattice (0[0, 1],≤) of the unit interval of real numbers
is 1-wide.

Definition 10. (Annotated arguments). Let P be an EALP. An annotated
argument in P is a finite sequence Arg = [r1, . . . , rn] of rules in P such that for
every i (1 ≤ i ≤ n),
1. ri is either a rule in P or a minimal reductant in P .
2. For every annotated atom A :µ in the body of ri, there exists a rk (n ≥ k > i)

such that A :ρ (ρ ≥ µ) is head of rk.
3. For every o-explicit negation ∼ A :µ in the body of ri, there exists a rk (n ≥

k > i) such that ∼ A :ρ (ρ ≤ µ) is head of rk.
4. There exists no proper subsequence of [r1, . . . , rn] which meets from the first

to the third conditions, and includes r1.
We denote the set of all arguments in P by ArgsP , and define the set of
all arguments in a set of EALPs MAS = {KB1, . . . ,KBn} by ArgsMAS =
ArgsKB1 ∪ · · · ∪ ArgsKBn (⊆ ArgsKB1∪···∪KBn).

3.2 Attack relation

Definition 11. (Rebut). Arg1 rebuts Arg2 ⇔ there exists A :µ1 ∈ concl(Arg1)
and ∼ A :µ2 ∈ concl(Arg2) such that µ1 ≥ µ2, or exists ∼ A :µ1 ∈ concl(Arg1)
and A :µ2 ∈ concl(Arg2) such that µ1 ≤ µ2.

Definition 12. (Undercut). Arg1 undercuts Arg2 ⇔ there exists A : µ1 ∈
concl(Arg1) and notA : µ2 ∈ assm(Arg2) such that µ1 ≥ µ2, or exists ∼ A :
µ1 ∈ concl(Arg1) and not ∼ A :µ2 ∈ assm(Arg2) such that µ1 ≤ µ2.

Definition 13. (Strictly undercut). Arg1 strictly undercuts Arg2 ⇔ Arg1

undercuts Arg2 and Arg2 does not undercut Arg1.

Definition 14. (Defeat). Arg1 defeats Arg2 ⇔ Arg1 undercuts Arg2, or
Arg1 rebuts Arg2 and Arg2 does not undercut Arg1.

When an argument defeats itself, such an argument is called a self-defeating
argument. For example, [p : t ← not p : t] and [q : f ←∼ q : f, ∼ q : f] are all
self-defeating. In this paper, however, we rule out self-defeating arguments from
argument sets since they are in a sense abnormal, and not entitled to participate
in argumentation or dialogue.

Definition 15. (x/y-acceptable and justified argument [4]). Let x and y
be attack relations on Args. Suppose Arg1 ∈ Args and S ⊆ Args. Then Arg1 is
x/y-acceptable wrt. S if for every Arg2 ∈ Args such that (Arg2, Arg1) ∈ x there
exists Arg3 ∈ S such that (Arg3, Arg2) ∈ y. The function FArgs,x/y mapping
from P(Args) to P(Args) is defined by FArgs,x/y(S) = {Arg ∈ Args | Arg is
x/y-acceptable wrt. S}. We denote a least fixpoint of FArgs,x/y by JArgs,x/y. An



argument Arg is x/y-justified if Arg ∈ Jx/y; an argument is x/y-overruled if it
is attacked by a x/y-justified argument; and an argument is x/y-defensible if it
is neither x/y-justified nor x/y-overruled.

In this paper, we employ JArgs,d/su to specify the set of justified arguments
where stands d for defeat and su for strictly undercut. Justified arguments can
be dialectically determined from a set of arguments by the dialectical proof
theory.

Definition 16. (d/su-dialogue [14]). An d/su-dialogue is a finite nonempty
sequence of moves movei = (Playeri, Argi), (i ≥ 1) such that
1. Playeri = P (Proponent) iff i is odd; and Playeri = O (Opponent) ⇔ i

is even.
2. If Playeri = Playerj = P (i ,= j) then Argi ,= Argj.
3. If Playeri = P (i ≥ 3) then (Argi, Argi−1) ∈ su; and if Playeri = O (i ≥ 2)

then (Argi, Argi−1) ∈ d.

In this definition, it is permitted that P = O, that is a dialogue is done by only
one agent. Then, we say such an argument is a self-argument.

Definition 17. (d/su-dialogue tree [14]). An d/su-dialogue tree is a tree of
moves such that every branch is an d/su-dialogue, and for all moves movei =
(P,Argi), the children of movei are all those moves (O,Argi+1,j) (j ≥ 1) such
that (Argi+1,j , Argi) ∈ d.

We have the sound and complete dialectical proof theory for the argumentation
semantics JArgs,d/su [14]. In the learning process described in the next section,
we will often take into account deliberate or thoughtful agents who put forward
deliberate arguments in the dialogue.

4 Learning by Argumentation

We have outlined notions and definitions provided in EALP and LMA that are
to be underlain in considering learning by argumentation. The most common
form of machine learning is learning from examples, data and cases such as in
inductive learning [13]. There are some argumentation-related learning meth-
ods [5][8] . They, however, are concerned with introducing traditional learning
methods from examples. From this section, we will address ourselves to a new
approach to machine learning that draws on some notions and techniques of
EALP and LMA. Although there are so many aspects, methods and techniques
already known on learning [13], our motivation for machine learning comes from
argumentation since we learn and grow through argumentation or dialogue with
our partners, friends, colleagues or even enemies in the daily life and scientific
communities, as well as through self-deliberation that can be though of as self-
argumentation. Actually, we benefit a lot from argumentation, and we believe
argumentation is a desideratum to learning.

In this paper, we propose three basic approaches to learning by argumenta-
tion, which naturally reflect our intuitions and experiences that we have had in



the daily life so far. They are conceptually methods: (i) to correct wrong knowl-
edge, (ii) to reconsider, (iii) to have a second thought, through argumentation.
These are considered exhaustive in its types of argument-based learning on the
basis that the learning process is presumably triggered by the attack relation
such as the rebut and undercut of LMA. Below, let’s take up simple but natural
arguments to see shortly what they are like.
(i)Correct wrong knowledge: Here is an argument on a soap to slim between Mr.
A and Mr. B. They argue about whether the soap to slim works or not.
Mr. A: I do not have experienced its effect, but I think that it is effective because
TV commercial says so.
Mr. B: I have not become thin.
Mr. A: Now that you haven’t, I may not become thin either.

After such an argumentation, we as well as Mr. A would usually correct or
change our previous belief that the soap is effective, into its contrary. Like this,
we may correct wrong knowledge and learn counter-arguments. Technically, the
first assertion in Mr. A’s locution is considered as having an assumption ”the
soap is effective to slim”. And Mr. B argues against Mr. A. It amounts to un-
dercut in terms of LMA. In the next subsection 4.1, we formally capture this
type of learning by argumentation, calling it knowledge acquisition induced by
the undercut of assumptions.
(ii) Reconsider: Let’s consider the evaluation of a movie.
Mr. C: The story of the movie is so fantastic! I recommend it.
Mr. D: The performance of the actors in the movie is unskilled, so I do not
recommend it.

Agent D states an opinion contrary to Agent C, but does not intend to refuse
and take back Agent A’s opinion. In the dialogue, they simply state their own
opinion on the evaluation of the movie. They are not necessarily in a conflict
with each other, and simply made it sure that they had a contrary opinion on
the matter. Through the dialogue, they will know or learn that there are facets
or aspects on the movie that can be evaluated and can not. In the subsection 4.2,
we formally capture this type of learning by argumentation, calling it knowledge
acquisition induced by difference of recognition.
(iii) Have a second thought: Let’s see the third type of learning by argumenta-
tion with an argument on which is correct, the Copernican theory or Ptolemaic
theory.
Mr. E: I agree with the Ptolemaic theory because we see the Sun go around us,
and the Bible also tells us so.
Mr. F: I agree with the Copernican theory because the Earth moves according
to our observation.

People who have believed the Ptolemaic theory may have a second thought if
the Copernican theory is justified by a (scientific) argumentation. Or, they may
reach such an eclectic conclusion that both the Ptolemaic theory and the Coper-
nican theory are partial knowledge. In the subsection 4.3, we formally capture
this type of learning by argumentation, calling it knowledge acquisition induced
by rebut.



4.1 Knowledge acquisition induced by the undercut of assumptions

In this paper, we think that the momentum of knowledge acquisition or learning
comes when agents recognize right and wrong of arguments. And we identify it
with the notion of justification for arguments in Definition 15. The first learning
definition based on it is the following.

Definition 18. (Knowledge acquisition induced by the undercut of as-
sumptions). Suppose KBs = {KB1, . . . ,KBn} is a set of EALPs. We denote
the set of all arguments in KBi by ArgsKBi (1 ≤ i ≤ n), and Arg is an ar-
gument in ArgsKBi . Let JA be the set of justified arguments. If there exists an
argument Arg′ ∈ JA such that it undercuts Arg, we say Agent i acquires Arg′,
letting KB′

i = KBi ∪ {Arg′}.

After argumentation, Agent i acquires all the rules included in Arg′ with this
definition.

Corollary 1. The new knowledge base of KB′
i after knowledge acquisition in-

duced by the undercut of assumptions is inconsistent in default (d-inconsistent),
that is, the interpretation I such that ∀B ∈ KB′

i |= B is d-inconsistent.

The proof is straightforward, and importantly we do not need to have a fear
of such an inconsistency since our EALP is advantageously paraconsistent [14].
If the underlying complete lattice of truth values is 1-wide, then we have

Corollary 2. JA is preserved by knowledge acquisition induced by the undercut
of assumptions.

The proofs are straightforward. Taking up the previous argument example,
we illustrate how the definition operates.

Example 1. Let T = 〈R[0 1],≤〉 be a complete lattice on the unit interval of
real numbers. Suppose Agent A and B have the following knowledge bases KBA

and KBB on a soap to slim respectively.
KBA = { become slim : 0.8 ← medical rationale : 0.7 & information from TV :

0.8&not experience of effect :0.0, medical rationale :0.8 ←, information from TV :

0.9 ←},
KBB = { become slim : 0.0 ← experience of effect : 0.0, experience of effect :

0.0 ←}.
Then, the sets of arguments ArgsKBA and ArgsKBB are;
ArgsKBA = {[ become slim : 0.8 ← medical rationale : 0.7& Information from TV :

0.8&not experience of effect :0.0, medical rationale :0.8 ←, information from TV :

0.9 ← ], [ medical rationale :0.8 ← ], [ information from TV :0.9 ← ]},
ArgsKBB = {[ become slim :0.0 ← experience of effect :0.0,

experience of effect :0.0 ← ], [ experience of effect :0.0 ← ]}.
These are representations of verbal and natural arguments described in (i)Correct
wrong knowledge above. The set of justified arguments JA is as follows.
JA = { [ become slim : 0.0 ← experience of effect : 0.0, experience of effect :

0.0 ← ], [ medical rationale :0.8 ← ], [ information from TV :0.9 ← ],



[ experience of effect :0.0 ← ] }.
JA can be seen as a set of agreements on various issues among agents con-

cerned. Agents then get down to acquiring knowledge with JA based on Defini-
tion 18. Suppose Agent A put forward the following argument Arg1.
Arg1 = [ become slim :0.8 ← medical rationale :0.7& information from TV :0.9

&not experience of effect : 0.0, medical rationale : 0.8 ←, information from TV :

0.9 ← ].
However, it can be seen that it is undercut by justified arguments Arg2 =
[ experience of effect :0.0 ← ]. Therefore, agent A acquires Arg2, and builds
a new knowledge base KB′

A as follows.
KB′

A = { become slim : 0.8 ← medical rationale : 0.7& information from TV :

0.9&not experience of effect :0.0, medical rationale :0.8 ←,

experience of effect :0.0 ←, information from TV :0.9 ←}.

It is noted that agent A is no more entitled to put forward the previous argu-
ment Arg1 with KB′

A since the newly added rule ‘experience of effect :0.0 ←’
immediately blocks it by undercut under deliberate argumentetion in Definition
17. Note also that the new knowledge base of an agent after argumentation does
not coincide with the set of justified arguments JA that has been obtained be-
fore the learning process . For example, KB′

A ,= JA in general. This means
that the learning is a genuine process to raise a agent’ mind under selective at-
tention. This property also applies to the succeeding two knowledge acquisition
approaches below.

4.2 Knowledge acquisition induced by difference of recognition

In this section, we describe the second learning method inspired by the notion
of difference of recognition.

Definition 19. (Difference of recognition). Let KBs = {KB1, ...,KBn} be
a set of EALPs, ArgsKBi and ArgsKBk(1 ≤ i, k ≤ n) be the sets of all arguments
in KBi and KBk respectively, and Arg be an argument in ArgsKBi . If there exist
A : µ1 ∈ concl(Argi) and A : µ2 ∈ concl(Argk) such that µ1 ,= µ2, agent i and
agent k have different recognition about the proposition A.

Example 2. Let a lattice T = R[0, 1] and a multi-agents system KB1 = { p :

0.8 ← q : 0.4, q : 0.5 ← }. KB2 = { p : 0.5 ← q : 0.2, q : 0.5 ← }. ArgsKB1 and
ArgsKB2 are basically the same as above as follows. ArgsKB1 = { [ p : 0.8 ← q :

0.4, q :0.5 ← ], [ q :0.5 ← ] } ArgsKB2 = { [ p :0.5 ← q :0.2, q :0.5 ← ], [ q :0.5 ← ] }
Then, agent 1 and agent 2 have different recognition about p.

In argumentation, we did not pay attention to difference of recognition agents
hold, which does not produce any conflict between them, but simply represents
their own views mutually. From learning point of view, however, we suppose
agents wish to know and learn the other party’s opinion or view. Based on the
two notions of difference of recognition and justified arguments, we capture this



by classifying it into three cases: (1) both Arg1 and Arg2 are justified, (2) either
Arg1 or Arg2 is justified, and (3) neitherArg1 nor Arg2 is justified.

Definition 20. (Knowledge acquisition induced by difference of recog-
nition) Let KBs = {KB1, ...,KBn} be a set of EALPs, ArgsKBi and ArgsKBk

(1 ≤ i, k ≤ n) be the sets of all arguments in KBi and KBk respectively, and
Argi ∈ ArgsKBi and Argk ∈ ArgsKBk in which there exist A :µ1 ∈ concl(Argi)
and A : µ2 ∈ concl(Argk) such that µ1 ,= µ2. JA denotes the set of justified
arguments. Then,
1. if Argi ∈ JA and Argk ∈ JA, agent i updates KBi to KB′

i = KBi∪ArgKBk ,
and agent k updates KBk to KB′

k = KBk ∪ ArgKBi ;
2. if ArgKBi ∈ JA and ArgKBk ,∈ JA, then agent k updates KBk to KB′

k =
KBk ∪ ArgKBi ;

3. if ArgKBi ,∈ JA and ArgKBk ,∈ JA, then agent i and k do not learn anything,
resulting in no updates on their knowledge bases.

Under this definition, agents or agents’ attitude toward update are supposed
to be credulous in the sense that they update their knowledge bases as far as
arguments are justified.

Corollary 3. The new knowledge base of KB′ after knowledge acquisition in-
duced by difference of recognition can be inconsistent in d-inconsistent or o-
inconsistent, that is, the interpretation I such that ∀B ∈ KB I |= KB′ is
d-inconsistent or o-inconsistent.

Again we do not need to have a fear of such an inconsistency since our EALP is
advantageously paraconsistent [14]. If the underlying complete lattice of truth
values is 1-wide, then we have

Corollary 4. JA is preserved by knowledge acquisition induced by difference of
recognition.

Example 3. Let T = FOUR, and MAS = {KBA,KBB}, where Agent A and
B have the following knowledge bases on the evaluation of a movie.
KBA = { recommend(movie) :t ← famous(actor) :t& famous(story) :t,

famous(actor) :t ←, famous(story) :t ← },
KBB = { recommend(movie) : f ← poor(actor) :t& see(movie) :t,

poor(actor) :t ←, see(movie) :t ← }.
Suppose they put forward the arguments ArgA and ArgB respectively.

ArgA = [ recommend(movie) :t ← famous(actor) :t& famous(story) :t,

famous(actor) :t ←, famous(story) :t ←],

ArgB = [ recommend(movie) : f ← poor(actor) :t& see(movie) :t,

poor(actor) :t ←, see(movie) :t ← ].

Then, there is no attack relation between them, so all arguments made from
MAS are justified (JA = ArgsKBA ∪ ArgsKBB ). However, agent A and B have
difference of recognition about recommend(movie). So they go into the learning
process of and get the new knowledge base KB′

A and KB′
B respectively.

KB′
A = KB′

B = { recommend(movie) :t ← famous(actor) :t& famous(story) :t,

recommend(movie) : f ← poor(actor) :t& see(movie) :t,

poor(actor) :t ←, see(movie) :t ← famous(actor) :t ←, famous(story) :t ←, }



The new set of justified argument JA’ constructed from these new KB′
A and

KB′
B includes the additional argument: [ recommend(movie) :$ ← famous(act

or) :t& famous(story) :t& poor(actor) :t& see(movie) :t, famous(actor) :t ←,
famous(story) : t ←, poor(actor) : t ←, see(movie) : t ← ]. This is due to the
reductant constructed from two contrary propositions: recommend(movie) : t
and recommend(movie) : f . This fact also exemplifies the failure Corollary 4
since T is not 1-wide. In argumentation, both agents A and B only got on their
soapbox, but they do not intend to exclude the other’s argument. What they
get to know through learning is that the movie has good and wrong points:
recommend(movie) :$. In EALP, this does not mean a contradiction but a way
of recognizing things. Agents now is in such an epistemic state.

4.3 Knowledge acquisition induced by rebut

In this subsection, we formally consider the third learning scheme that we have
seen in an argument example on which is correct, the Copernican theory or
Ptolemaic theory. In terms of LMA, it is a scheme induced by rebut since these
two theories rebut each other. Then, we consider it by three cases similarly to
Definition 20. First, we introduce a preliminary notion of Agreement rule and
Agreed composite argument

Definition 21. (Agreement rule and Agreed composite argument). Let
MAS = {KB1, ...,KBn} be a set of EALPs, ArgsKBi (1 ≤ i ≤ n) be the set of
all arguments in KBi, Argi and Argk be in ArgsKBi and ArgsKBk respectively,
and JA be the set of justified argument.

Suppose Argi=[ri
1, . . . , r

i
n] ,∈ JA such that ri

1 = A : µ1 ← Li
1 & . . . &Li

ni
,

and Argk =[rk
1 . . . , rk

m] ∈ JA such that rk
1 =∼ A : µ2 ← Lk

1 & . . . &Lk
nk

, and
A : µ1 and ∼ A : µ2 rebut each other. Then, we call the following synthetic rule
an agreement rule:
A : ρ ← Li

1 & . . . &Li
ni

&Lk
1 & . . . &Lk

nk
for some ρ such that ρ < µ2. And the

following is called an agreed composite argument:
[A :ρ ← Li

1 & . . . &Li
ni

&Lk
1 & . . . &Lk

nk
; (Arg1 \ ri

1); (Arg2 \ rk
1 )],

where the semicolon denotes the list concatenation.

This definition is given relying upon the notion of justified arguments like the
previous definitions of learning. Let us see an intuitive meaning of the agreement
rule. Suppose [∼ A :t] ∈ JA and [A :t] ,∈ JA under the complete lattice of ideals
of FOUR. The regions of ideals as truth values [14] for two conflicting literals
A : t and ∼ A : t and the agreement region for both A : t and ∼ A : t is seen in
Figure 1. That is, the agent who asserts [A :t] could modifies its rule A :t down
to A :⊥. The ρ may be arbitrary as far as it is less than µ2.

Example 4. Let T = R[0, 1], KB1 = {p : 0.8 ← q : 0.4&not r : 0.1, q : 0.5},
and KB2 = {∼ p : 0.6 ← r : 0.1, r : 0.5}. Then, the arguments are Arg1 = [p :
0.8 ← q : 0.4 &not r : 0.1, q : 0.5] and Arg2 = [∼ p : 0.6 ← r : 0.1, r : 0.5]. After
argumentation, we have Arg1 ,∈ JA, Arg2 ∈ JA, and hence an agreed composite
argument, [p :ρ ← q :0.4& r :0.1, q :0.5, r :0.5] for ρ < 0.6.
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Using the notions of ACA, we give a method of knowledge acquisition induced
by rebut.

Definition 22. (Knowledge acquisition induced by rebut) Let MAS =
{KB1, ...,KBn} be a set of EALPs, ArgsKBi (1 ≤ i ≤ n) be the set of all
arguments in KBi, Argi and Argk be in ArgsKBi and ArgsKBk respectively,
and JA be the set of justified argument. Suppose Argi=[ri

1, . . . , r
i
n] such that

ri
1 = A :µ1 ← Li

1 & . . . &Li
ni

, and Argk =[rk
1 . . . , rk

m] such that rk
1 =∼ A :µ2 ←

Lk
1 & . . . &Lk

nk
, and A :µ1 and ∼ A :µ2 rebut each other. Then,

1. if Argi ∈ JA rebuts Argk ,∈ JA, then KB′
k = KBk ∪ Argi \ rk

1 ;
2. if Argi ,∈ JA rebuts Argk ∈ JA, then agent i makes an agreed composite

argument ACA from Argi and Argk, and KB′
i = KBi ∪ ACA \ {ri

1};
3. if Argi ,∈ JA rebuts Argk ,∈ JA, agents i and k do not learn anything,

resulting in no change in their knowledge bases.

Example 5. Consider T = {1, 2, ..., 10}, and MAS = {KBA,KBB ,KBC}, where
KBA = { recommend(movie) :8 ← good story :9&not expensive(movie) :7, good stor

y :9 ← }, KBB = {∼ recommend(movie) :2 ← skilled actor :3, skilled actor :3 ← }
KBC = {recommend(movie) : 1 ← expensive(movie) : 8, expensive(movie) : 8 ← }.
When these agents argue about the issue recommend(movie) : 8, agent B’s ar-
gument and agent C’s argument are justified. Following Definition 20, agent A
obtains the following new knowledge:
KB′

A = { recommend(movie) : 1 ← actor : 3 & story : 9&not expensive : 7, actor : 3 ←
, story :9 ← }.

Without simply renouncing his belief, agent A still has his belief recommend(mov

ie) but with a less truth value 1 than 2 of agent B and his original value 8 since
the part of premises of the original rule, story : t, is justified (in fact there is no
objection to it). Furthermore, at the beginning of the argument, agent A has
no information about the actor, but through the argumentation, he got to know
about the actor. As the result, he degraded his belief recommend(movie), but
still keeps it with a different truth value and an newly added premise. This type
of learning looks very natural in our daily life as well.



5 Illustrative Examples of ABL

In this section, we describe two overall argument examples to show the effective-
ness and usefulness of the agent learning methods based on argumentation.

Example 6. Agents 1, 2 and 3 are arguing about the next conference venue.
As an unconventional but necessary complete lattice of truth values, we take
the power set of a set consisting of symposium venues A, B, and C as ele-
ments, with set inclusion order. Their knowledge bases are as follows. MAS =
{KB1,KB2, KB3, }, where
KB1 = { symposium : (A) ← scenic : (A, B)& safe : (A, C), symposium : (B) ←
scenic : (A, B)& safe : (A, C), symposium : (C) ← scenic : (A, B)& safe : (A, C),

scenic : (A, B) ←, safe : (A, C) ← },
KB2 = { symposium : (B) ← easy access : (A, B), ∼ symposium : (A) ← last venue :

(A) &not tasty food : (A), easy access : (A, B) ←, last venue : (A) ← },
KB3 = { symposium : (A) ← tasty food : (A), ∼ symposium : (C) ← not easy access :

(C), ∼ symposium : (B) ← not safe : (B), tasty food : (A) ← }.

The literal, for example, symposium : (A), reads ”A is a venue candidate for the
symposium”, and safe : (A,C) ”A and C are safe places”. The set of all possible
arguments in this MAS is as follows.
Arg11 = [ symposium : (A) ← scenic : (A, B)& safe : (A, C), scenic : (A, B) ←, safe :

(A, C) ← ],

Arg12 = [ symposium : (B) ← scenic : (A, B)& safe : (A, C),

scenic : (A, B) ←, safe : (A, C) ← ],

Arg13 = [ symposium : (C) ← scenic : (A, B) & safe : (A, C).,

scenic : (A, B) ←, safe : (A, C) ← ],

Arg14 = [ symposium : (A, B) ← scenic : (A, B)& safe : (A, C),

scenic : (A, B) ←, safe : (A, C) ← ],

Arg15 = [ symposium : (A, C) ← scenic : (A, B) & safe : (A, C),

scenic : (A, B) ←, safe : (A, C) ← ],

Arg16 = [ symposium : (B, C) ← scenic : (A, B) & safe : (A, C),

scenic : (A, B) ←, safe : (A, C) ← ],

Arg17 = [ symposium : (A, B, C) ← scenic : (A, B)& safe : (A, C),

scenic : (A, B) ←, safe : (A, C) ← ],

Arg18 = [ scenic : (A, B) ← ], Arg19 = [ safe : (A, C) ← ]

Arg21 = [ symposium : (B) ← easy access : (A, B), easy access : (A, B) ← ],

Arg22 = [ ∼ symposium : (A) ← last venue : (A)&not tasty food : (A),

last venue : (A) ← ],

Arg23 = [ easy access : (A, B) ← ], Arg24 = [ last venue : (A) ← ],

Arg31 = [ symposium : (A) ← tasty food : (A), tasty food : (A) ← ],

Arg32 = [∼ symposium : (C) ← not easy access : (C) ],

Arg33 = [ ∼ symposium : (B) ← not safe : (B) ], Arg34 = [ tasty food : (A) ← ].

The attack relation is shown in Figure 2, and from it we can construct the set
of justified arguments, {Arg11, Arg23, Arg24, Arg31, Arg34}. Overally, this says
”There is no guarantee that B is safe, and C is not an easy to access place. The next sym-

posium should be held at A which was the last symposium venue”. We could see this
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as a current common belief (agreement) among the agents. Then, each agent goes
into the phase of learning according to Definition 18, 20 and 22. Agent 1 gets two
arguments(Arg33 and Arg32) and loses two rules(symposium : (B) ← scenic :
(A,B)& safe : (A,C) and symposium : (C) ← scenic : (A,B)& safe : (A,C))
based on Definition 22, and gets an argument Arg31 based on Definition 20. In
the same way, Agents 2 and 3 revise their knowledge bases. The new knowledge
bases KB′

1, KB′
2 and KB′

3 are as follows;
KB′

1 = { symposium : (A) ← scenic : (A, B) & safe : (A, C), scenic : (A, B) ←, safe :

(A, C) ←, tasty food : (A) ←, symposium : (A) ← tasty food : (A), ∼ symposium :

(C) ← not easy access : (C), ∼ symposium : (B) ← not safe : (B) },
KB′

2 = { symposium : (A) ← scenic : (A, B)& safe : (A, C), ∼ symposium : (B) ←
not safe : (B), scenic : (A, B) ←, safe : (A, C) ←, easy access : (A, B) ←, last venue :

(A) ←, tasty food : (A) ← },
KB′

3 = { symposium : (A) ← tasty food : (A), ∼ symposium : (C) ← not easy access :

(C), ∼ symposium : (B) ← not safe : (B), tasty food : (A) ←, symposium : (A) ←
scenic : (A, B)& safe : (A, C), scenic : (A, B) ←, safe : (A, C) ←, tasty food : (A) ← }.

As the result of knowledge acquisition, any conflicting arguments disappear
among ArgKBA , ArgKBB and ArgKBC as far as they put forward only argu-
ments justified within their knowledge bases. This represents a stable and calm
state of the agent society to which they reached after both argumentation and
learning, and hence in which they have no need to argue and make decisions for
the moment.

Next, we describe a dynamically changing argument example in which agents
are involved in not only a single argument at a time but a process of consecu-
tive arguments over time, and agents gradually become wise through them. This
suggests an interesting and important direction to which argumentation studies
head from now since acquisition not only ends once and for all, but also it contin-
ues repeatedly every time new information are found and added, and new agents
appear. Similar observation can be seen in dialectic development of thought, so-
ciety and so on in philosophy, and social processes of scientific development in
philosophy of science.



Example 7. Let T = R[0 1] be a complete lattice of the unit interval of real num-
bers. Consider the following multi-agents systems MAS = {KBChild,KBPtolemy,
KBCopernicus}, where
KBChild = { agree(Ptolemaic theory) :0.0 ←, agree(Copernican theory) :0.0 ← },
KBPtolemy = { ∼ agree(Copernican theory) : 1.0 ← bible : 1.0&notmove(Earth) :

1.0, agree(Ptolemaic theory) :1.0 ← move(Sun) :1.0, stay(Earth) :0.2 ← notmove(E

arth) : 0.0, ∼ move(Earth) : 1.0 ← bible : 1.0, bible : 1.0 ←, move(Earth) : 0.0 ←,

move(Sun) :1.0 ← see(moving Sun) :1.0, see(moving Sun) :1.0 ← },
KBCopernics = {∼ agree(Ptolemaic theory) : 1.0 ←, agree(Copernican theory) :

1.0 ← move(Earth) : 1.0, move(Earth) : 1.0 ← observation : 0.8, move(Earth) : 1.0,

move(Sun) :1.0 ←, observation :0.8 ←}.
First, consider the situation in which the child agent meets Ptolemy agent

and argues about astronomy. Then, all arguments should be justified since as can
be seen from its knowledge base, the child agent knows neither Ptolemaic theory
nor Copernican theory. According to Definition 20, child agent’s knowledge is
simply increased as follows.
KB′

Child = { agree(Ptolemaic theory) :0.0 ←, agree(Copernican theory) :0.0 ←,

∼ agree(Copernican theory) :1.0 ← bible :1.0&notmove(Earth) :1.0, agree(Ptolema

ic theory) : 1.0 ← move(Sun) : 1.0, stay(Earth) : 0.2 ← notmove(Earth) : 0.0,

∼ move(Earth) : 1.0 ← bible : 1.0, bible : 1.0 ←, move(Earth) : 0.0 ←, move(Sun) :

1.0 ← see(moving Sun) :1.0, see(moving Sun) :1.0 ← }
We omit the change in Ptolemy agent’s knowledge since we now are not

concerned with it. The child agent becomes agreeable to the Ptolemaic theory
through the argument with Ptolemy agent. Next, consider the situation in which
the child agent meets Copernicus agent and argues about astronomy again with
the new knowledge base above. As the result of argumentation, we have a new
JA as follows.
JA = { [ agree(Ptolemaic theory) : 0.0 ← ], [ agree(Copernican theory) :
0.0 ← ], [ agree(Copernican theory) : 1.0 ← move(Earth) : 1.0,move(Earth) :
1.0 ← ], [ move(Earth) : 1.0 ← observation : 0.8, observation : 0.8 ← ],
[ move(Sun) :1.0 ← see(moveingSun) :1.0, see(moving Sun) :1.0 ← ], [move(S
un) : 1.0 ← ], [bible : 1.0 ← ], [observation : 0.8 ← ], [move(Earth) : 0.0 ← ],
[see(moving Sun) :1.0 ← ] }.

Acceding to Definition 18 and 20, the child agent acquires the following new
knowledge.
KB′′

Child = { agree(Ptolemaic theory) : 0.0 ←, agree(Copernican theory) :
0.0 ←, agree(Ptolemaic theory) :1.0 ← move(Sun) :1.0, agree(Copernican the
ory) :1.0 ← move(Earth) :1.0, bible :1.0 ←, move(Earth) :0.0 ←, see(moving S
un) : 1.0 ←, move(Sun) : 1.0 ← see(moving Sun) : 1.0, move(Earth) : 1.0 ←
observation :0.8, observation :0.8 ← }.

The child agent gets to believe both Ptolemaic theory and Copernican theory,
that is, it possesses believable aspects in them. What we have presented here is
said to be unsupervised learning, that is learning without teachers. We would say
argumentation, in a sense, plays a role of teachers in a changing information space



over time. The order of argumentation and learning might bring us a different
outcome in general, resulting in non-confluent property. For this example, the
outcome coincides before and after the change of order in argumentation and
learning.

6 Related Work

So far, much work has been devoted towards generic methods to update or revise
knowledge bases avoiding contradictions caused by merging them or accommo-
dating new information. However, there is few work with which we share our pur-
pose of this paper in relation to argumentation, except [1] [2] [6]. In [1], Amgoud
and Parsons propose a method to merge conflicting knowledge bases based on
their preference-based argumentation framework. It allows arguments to be built
not from a union of knowledge bases but from separate knowledge bases, and
the arguments to then be merged. For example, supports of justified arguments
can be safely merged without drawing inconsistency. In [2], Capobianco et al.
think that the beliefs of agents are warranted goals computed by argumentation.
They design the agents with ability to sense the changes in the environment and
integrate them into their existing beliefs. Then, new perceptions always super-
sede old ones. This is a simple updating method, but in doing so, they introduce
dialectical databases that is for storing arguments as precompiled knowledge to
speed up argument construction when making arguments and responding in the
future. In [6], Gómez et al. attempt to integrate their defeasible argumentation
and the machine learning technique of neural networks. The latter is used to
generate contradictory information that in turn is to be resolved by the former.
This, however, is a work on a combination of existing learning techniques with
argumentation, not an amalgamation of both. In the area of legal reasoning, we
can find some works on argument construction from the past cases in legal data
and knowledge base. Such a case-based legal reasoning shows another possibility
of synergy of argumentation and machine learning. But it just have started.

Parsons, Wooldridge and Amgoud explore how the kinds of dialogue in which
agents engage depend upon features of the agents themselves and then intro-
duced assertion attitudes such as confident, careful and thoughtful and accep-
tance attitudes such as credulous, cautious and skeptical [10], to examine the
effects of those features on the way in which agents determine what locutions
can be made in the progress of a dialogue. Our agents are confident in their argu-
mentation on the basis of the dialectical proof theory, but our learning policies
at the end of an argument in this paper is similar to their notions of thoughtful
and skeptical in the sense that ours are based on the set of justified arguments,
JA. However, it does not mean that our learning agents should accept or acquire
JA that include the knowledge of the other party in an unprincipled way even
if they are part of JA. Otherwise, every agent engaged in an argument would
become identical, resulting in the same knowledge base and hence the loss of its
personality. This situation is not desirable in our view. In fact, we have intended
to give three knowledge acquisition methods in such a way that knowledge base



after learning does not always coincide with JA. Put it differently, we would say
that our learning agents are much more deliberative rather than thoughtful or
skeptical. Paglieri and Casterfranchi claim that belief revision and argumenta-
tion should be grounded in cognitive processing of epistemic states and dynamics
of agents [9]. This is an important direction to learning agents, but we think that
the underlying framework EALP and LMA for ABL are comprehensive enough
to take into consideration cognitive aspects of belief revision and argumentation.
In fact, the second knowledge acquisition induced by difference of recognition
shows one evidence to direct our work to such an attempt.

7 Concluding Remarks and Future Work

We provided three basic methods of learning towards argument-based learning
(ABL). We think that they are unique in two senses. One is that they are not
concerned with learning in a single agent framework but with learning in a multi-
agents one where agents need to interact with other agents. The multi-agents
learning naturally becomes more complex. The other is that they are built on
the notions of attack relations in LMA and multiple-valuedness of knowledge
in EALP, such as undercutting of assumptions, difference of recognition, and
rebuts. Multiple-valued learning is more crucial and fruitful than two-valued
case for uncertain environments in particular.

We also pointed out a dynamic nature of argumentation and learning, and
showed a progressive argument example where the environment is dynamically
changing, and hence arguments and learning have to be done every time new
information are found, and new agents appear.

EALP is a very generic knowledge representation language for uncertain ar-
guments, and LMA built on top of it also yields a generic argumentation frame-
work so that it allows agents to construct uncertain arguments under truth values
specified depending on application domains. For example, it includes Prakken
and Sartor’s ELP-based argumentation framework [11] that is now considered
standard and well accepted, as a very simple special case of LMA. Therefore,
our learning methods of this paper could have extensive applicability to many
argumentation models [3]. Furthermore, we think that the learning methods un-
der uncertain knowledge bases based on multiple-valuedness of LMA is a novel
attempt worthy of special mention since they turn to include unique ones proper
to LMA as well.

A prototype implementation of an argument-based learning system is now go-
ing on in such a way that it is incorporated into the existing automated argument
system based on EALP and LMA (http://www.cs.ie.niigata-u.ac.jp/˜sawamura/
DEMO/aamas demo.html ).

Finally, we just mention worthy to pursuit future research directions. Our
knowledge acquisition approaches are not intended to be used in any situation.
The application of each of them is related to the type of the dialogue [15] oc-
curring among agents. The detailed analysis, however, will be left to the future
work. Learning argument structures or strategies is naturally done by us in the



daily life and an important aspect of learning related to argumentation as well.
This, in general, is called topica, a set of topos, which dates back to ancient
Greek and can be seen in Aristotle’s Rhetoric, turning our eyes to philosophy.
Argumentation is a special apparatus of dialogue. In the next stage, we will
address to learning through dialogue from a broader angle.
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Abstract. Multiagent learning can be seen as applying ML techniques
to the core issues of multiagent systems, like communication, coordi-
nation, and competition. In this paper, we address the issue of learn-
ing from communication among agents circumscribed to a scenario with
two agents that (1) work in the same domain using a shared ontology,
(2) are capable of learning from examples, and (3) communicate using
an argumentative framework. We will present a two fold approach con-
sisting of (1) an argumentation framework for learning agents, and (2)
an individual policy for agents to generate arguments and counterargu-
ments (including counterexamples). We focus on argumentation between
two agents, presenting (1) an interaction protocol (AMAL2) that allows
agents to learn from counterexamples and (2) a preference relation to
determine the joint outcome when individual predictions are in contra-
diction. We present several experiment to asses how joint predictions
based on argumentation improve over individual agent’s prediction.

1 Introduction

Argumentation frameworks for multiagent systems can be used for different pur-
poses like joint deliberation, persuasion, negotiation, and conflict resolution. In
this paper, we focus on argumentation-based joint deliberation among learning
agents. Argumentation-based joint deliberation involves discussion over the out-
come of a particular situation or the appropriate course of action for a particular
situation. Learning agents are capable of learning from experience, in the sense
that past examples (situations and their outcomes) are used to predict the out-
come for the situation at hand. However, since individual agents experience may
be limited, individual knowledge and prediction accuracy is also limited. Thus,
learning agents that are capable of arguing their individual predictions with
other agents may reach better prediction accuracy after such an argumentation
process.



In this paper we address the issue of joint deliberation among two learning
agents using an argumentation framework. Our assumptions are that these two
agents work in the same domain using a shared ontology, they are capable of
learning from examples, and they interact following a specific interaction pro-
tocol. In this paper, we will propose an argumentation framework for learning
agents, and an individual policy for agents to generate arguments and counter-
arguments.

Existing argumentation frameworks for multiagent systems are based on de-
ductive logic. An argument is seen as a logical statement, while a counterargu-
ment is an argument offered in opposition to another argument [5, 17]. However,
these argumentation frameworks are not designed for learning agents, since they
assume a fixed knowledge base. Learning agents, however may induce several
generalizations that are consistent with the examples seen at a particular mo-
ment in time; the bias of the generalization technique used determines which of
the valid generalizations is effectively hold by a learning agent.

Having learning capabilities allows agents a new form of counterargument,
namely the use of counterexamples. Counterexamples offer the possibility of
agents learning during the argumentation process, and thus improving their
performance (both individual and joint performance). Moreover, learning agents
will allow us to design individual agent policies to generate adequate arguments
and counterarguments. Existing argumentation frameworks mostly focus on how
to deal with contradicting arguments, while few address the problem of how to
generate adequate arguments (but see [17]). Thus, they focus on the issue defin-
ing a preference relation over two contradicting arguments; however for learning
agents we will need to address two issues: (1) how to define a preference rela-
tion over two conflicting arguments, and (2) how to define a policy to generate
arguments and counterarguments.

In this paper we present a case-based approach to address both issues. The
agents use case-based reasoning (CBR) to learn from past cases (where a case is
a situation and its outcome) in order to predict the outcome of a new situation;
moreover, the reasoning needed to support the argumentation process will also
be based on cases. In particular, both the preference relation among arguments
and the policy for generating arguments and counterarguments will be based
on cases. Finally, we propose an interaction protocol called AMAL2 to support
the argumentation process among two agents to reach a joint prediction over a
specific situation or problem.

In the remainder of this paper we are going to introduce the multiagent CBR
(MAC) framework in which we perform our research (Section 2). In this frame-
work, Section 2.1 introduces the idea of justified predictions. After that, Section
3 provides a specific definition of arguments and counterarguments that we will
use in the rest of the paper. Then, Section 4 defines a preference relation be-
tween contradicting arguments. Section 5 presents specific policies to generate
both arguments and counterarguments. Using the previous definitions, Section
6 presents a protocol called AMAL2 to allow two agents to solve a problem in
a collaborative way using argumentation. Finally, Section 7 presents an empir-
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Fig. 1. An example of justification generation using a decision tree.

ical evaluation of the argumentation protocol presented. The paper closes with
related work and conclusions sections.

2 Case-Based Multiagent Learning

In this section we are going to define the multiagent learning framework in which
our research is performed [14].

Definition 1. A MultiAgent Case Based Reasoning System (MAC) M = {(A1,
C1), ..., (An, Cn)} is a multiagent system composed of A = {Ai, ..., An}, a set of
CBR agents, where each agent Ai ∈ A possesses an individual case base Ci.

Each individual agent Ai in a MAC is completely autonomous and each
agent Ai has access only to its individual and private case base Ci. A case base
Ci = {c1, ..., cm} is a collection of cases. Agents in a MAC system are able to
individually solve problems, but they can also collaborate with other agents to
solve problem in a collaborative way.

In this framework, we will restrict ourselves to analytical tasks, i.e. tasks, like
classification, where the solution of a problem is achieved by selecting a solution
class from an enumerated set of solution classes. In the following we will note
the set of all the solution classes by S = {S1, ..., SK}. Therefore, a case is a
tuple c = 〈P, S〉 containing a case description P and a solution class S ∈ S. In
the following, we will use the terms problem and case description indistinctly.
Moreover, we will use the dot notation to refer to elements inside a tuple. e.g.,
to refer to the solution class of a case c, we will write c.S.

2.1 Justified Predictions

Many expert and CBR systems have an explanation component [18]. The ex-
planation component is in charge of justifying why the system has provided a
specific answer to the user. The line of reasoning of the system can then be
examined by a human expert, thus increasing the reliability of the system.



Most of the existing work on explanation generation focuses on generating
explanations to be provided to the user. However, in our approach we use expla-
nations (or justifications) as a tool for improving communication and coordina-
tion among agents. We are interested in justifications to be used as arguments.
For that purpose, we take benefit from the ability of some learning systems to
provide justifications.

Definition 2. A justification built by a CBR system to solve a problem P that
has been classified into a solution class Sk is a description that contains the
relevant information that the problem P and the retrieved cases C1, ..., Cn (all
belonging to class Sk) have in common.

For example, Figure 1 shows a justification build by a decision tree for
a toy problem. In the figure, a problem has two attributes (traffic light, and
cars crossing), after solving it using the decision tree shown, the predicted so-
lution class is Wait. Notice that to obtain the solution class, the decision tree
has just used the value of one attribute, traffic light. Therefore, the justification
must contain only the attribute/value pair shown in the figure. The values of
the rest of attributes are irrelevant, since whatever their value the solution class
would have been the same.

In general, the meaning of a justification is that all (or most of) the cases in
the case base of an agent that satisfy the justification (i.e. all the cases that are
subsumed by the justification) belong to the predicted solution class. In the rest
of the paper, we will use $ to denote the subsumption relation. In our work, we
use LID [3], a CBR method capable of building symbolic justifications. LID uses
the formalism of feature terms or ψ-terms) to represent cases [2].

We call justified prediction the justification for a prediction provided by a
learning agent :

Definition 3. A justified prediction is a tuple 〈A,P, S,D〉 containing the prob-
lem P , the solution class S found by the agent A for the problem P , and the
justification D that endorses S as the correct solution for P .

Justifications can have many uses for CBR systems [10, 13]. In this paper, we
are going to use justifications as arguments, in order to allow agents to engage
learning based argumentation processes.

3 Argumentation in Multiagent Learning

Let us start by presenting a definition of argument, that we will use in the rest
of the paper:

Definition 4. An argument α generated by an agent A is composed of a state-
ment S and some evidence D supporting that S is correct.

In the remainder of this section we will see how this general definition of
argument can be instantiated in specific kind of arguments that the agents can
generate. In the context ofMAC systems, agents argue about the correct solution
of new problems and can provide information in two forms:
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– A specific case: 〈P, S〉,
– A justified prediction: 〈A,P, S,D〉.

In other words, agents can provide specific cases or generalizations learnt
from cases. Using this information, and having in mind that agents will only
argue about the correct solution of a given problem, we can define three types
of arguments: justified predictions, counterarguments, and counterexamples.

– A justified prediction α is generated by an agent Ai to argue that Ai believes
that the correct solution for a given problem P is α.S, and the evidence
provided is the justification α.D. In the example depicted in Figure 1, an
agent Ai may generate the argument α = 〈Ai, P, Wait, (Traffic light = red)〉,
meaning that the agent Ai believes that the correct solution for P is Wait
because the attribute Traffic light equals red.

– A counterargument β is an argument offered in opposition to another ar-
gument α. In our framework, a counterargument consists of a justified pre-
diction 〈Aj , P, S′, D′〉 generated by an agent Aj with the intention to rebut
an argument α generated by another agent Ai, that endorses a different
solution class than α for the problem at hand and justifies this with a jus-
tification D′. In the example depicted in Figure 1, if an agent generates
the argument α = 〈Ai, P, Walk, (Cars crossing = no)〉, an agent that thinks
that the correct solution is Stop might answer with the counterargument
β = 〈Aj , P, Stop, (Cars crossing = no ∧ Traffic light = red)〉, meaning that
while it is true that there are no cars crossing, the traffic light is red, and
thus the street cannot be crossed.

– A counterexample c is a case that contradicts an argument α. Specifically, for
a case c to be a counterexample of an argument α, the following conditions
have to be met: α.D $ c and α.S &= c.S. Figure 2 illustrates the concept of a
counterexample: justified predictions are shown above the triangles while the
specific cases subsumed by the justified predictions are at the bottom of the
triangles. Figure 2 presents three situations: In a) c is not a counterexample
of α since the solution of c is the solution predicted by α; in b) c is not a



counterexample of α since c is not subsumed by the justification α.D; finally,
in c) c is a counterexample of α).

By exchanging arguments, counterarguments (including counterexamples),
agents can argue about the correct solution of a given problem. However, in order
to do so, they need a specific interaction protocol, a preference relation between
contradicting arguments, and a decision policy to generate counterarguments
(including counterexamples). In the following sections we will present these three
elements.

4 Preference Relation

The argument that an agent provides might not be consistent with the infor-
mation known to other agents (or even to some of the information known by
the agent that has generated the justification due to noise in training data). For
that reason, we are going to define a preference relation over contradicting jus-
tified predictions based on cases. Basically, we will define a confidence measure
for each justified prediction (that takes into account the cases known by each
agent), and the justified prediction with the highest confidence is the preferred
one.

The confidence of justified predictions is assessed by the agents via an process
of examination of justifications. The idea behind examination of justifications is
to count how many of the cases in an individual case base endorse the justified
prediction, and how many of them are counterexamples of that justified pre-
diction. The more endorsing cases, the higher the confidence; and the more the
counterexamples, the lower the confidence.

Specifically, to examine a justified prediction α, an agent obtains the set of
cases contained in its individual case base that are subsumed by α.D. The more
of these cases that belong to the same solution class α.S predicted by α, the
higher the confidence will be. After examining a justified prediction α, an agent
Ai obtains the aye and nay values:

– Y Ai
α = |{c ∈ Ci| α.D $ c.P∧α.S = c.S}| is the number of cases in the agent’s

case base subsumed by the justification α.D that belong to the solution class
α.S proposed by α,

– NAi
α = |{c ∈ Ci| α.D $ c.P ∧ α.S &= c.S}| is the number of cases in the

agent’s case base subsumed by justification α.D that do not belong to that
solution class.

When two agents A1 and A2 want to assess the confidence on a justified
prediction α made by one of them, each of them examines the arguments and
sends the aye and nay values obtained to the other agent. Then, both agents
have the same information and can assess the confidence value for the justified
prediction as follows:

C(α) =
Y A1

α + Y A2
α + 1

Y A1
α + Y A2

α + NA1
α + NA2

α + 2
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Fig. 3. Relation between arguments.

i.e. the confidence on a justified prediction is the number of endorsing cases di-
vided by the number of endorsing cases plus counterexamples found by each of
the two agents. Notice that we add 1 to the denominator, the reason is to avoid
excessively high confidences to justified predictions whose confidence has been
computed using a small number of cases (in this way, a prediction endorsed by
2 cases and with no counterexamples has a lower confidence than a prediction
endorsed by 10 cases with no counterexamples). Notice that this correction fol-
lows the same idea than the Laplace correction to estimate probabilities (only
that we are just interested on preventing overestimation of the confidence).

Thus, the preference relation used in our framework is the following one: a
justified prediction α is preferred over another one β if C(α) ≥ C(β).

5 Generation of Arguments

In our framework, arguments are generated by the agents using learning algo-
rithms. Any learning method able to provide a justified prediction can be used to
generate arguments. For instance, decision trees and LID [3] are suitable learning
methods.

Thus, when an agent wants to generate an argument endorsing that a specific
solution class is the correct solution for a given problem P , it generates a justified
prediction as explained in Section 2.1.

When an agent Ai generates a counterargument β to rebut an argument α,
Ai expects that β is preferred over α. With that purpose, in this section we are
going to present a specific policy to generate counterarguments based on the
specificity criterion [15].

The specificity criterion is widely used in deductive frameworks for argumen-
tation, and states that between two conflicting arguments, the one using most
specific information should be preferred. In our approach, counterarguments are
generated based on the specificity criterion. However, there is no guarantee such



counterarguments will always win, since we use a preference relation based on
confidence. Notice that we use the specificity criterion instead of the preference
criterion defined in Section 4 because specificity can be evaluated by an agent
alone, while the preference criterion requires the collaboration of both agents to
be evaluated. Thus, it would require to the agent to engage in collaboration with
the other one at each step of the search process, which is clearly unfeasible.

Therefore, when an agent wants to generate a counterargument β to an ar-
gument α, it will generate a counterargument that it is more specific than α.
Figure 3 illustrates this idea. In Figure 3.c) β is a counterargument of α, and is
more specific than α. However in Figure 3.a) β is not more specific than α and
in Figure 3.c) both arguments endorse the same solution, and thus β is not a
counterargument of α.

The generation of counterarguments using the specificity criterion imposes
some restrictions over the learning method, although LID or ID3 can be easily
adapted to generate counterarguments. For instance, to adapt LID we can do
the following: LID is an algorithm that generates a description starting by the
empty term and heuristically adding features to that term. Thus, at every step,
the description is more specific, and the number of cases that are subsumed by
that description is reduced. When the description only covers cases of a single
solution class, LID terminates and predicts that solution class. To generate a
counterargument to an argument α LID just has to use as starting point the
description α.D instead of the empty term. In this way, the justification provided
by LID will always be subsumed by α.D, and thus the resulting counterargument
will be more specific than α. However, notice that LID may sometimes not be
able to generate counterarguments, since the description α.D may not be able
to be specialized any further, or because the agent does not contain any cases
subsumed by α.D to run LID.

Moreover, notice that agents can also try to rebut the other agent’s arguments
using counterexamples. Specifically, in our experiments, when an agent Ai wants
to rebut an argument α, uses the following policy:

1. The agent Ai tries to generate a counterargument β more specific than α (in
our experiments agents use LID). If the Ai succeeds, β is sent to the other
agent as a counterargument of α.

2. If not, then Ai searches for a counterexample c ∈ Ci of α in its individual
case base Ci. If a case c is found, then c is sent to the other agent as a
counterexample of α.

3. If no counterexamples are found, then Ai cannot rebut the argument α.

Notice that agents only send specific cases to each other if a counterargument
cannot be found. To understand why have we done that, we must have in mind a
known result in ensemble learning stating that when aggregating the predictions
of several classifiers (i.e. agents) correlation between their predictions must be
low in order to have a good classification accuracy [12]. Therefore, since when
a counterexample is sent to the other agent the degree of correlation between
the two agents’ case bases increases, agents prefer to send a counterargument
whenever possible, and only send a counterexample only when it is not.



The next section presents the interaction protocol we propose to perform
argumentation in our learning framework.

6 Argumentation-based MultiAgent Learning

In this section we will present the Argumentation-based MultiAgent Learning
Protocol for 2 agents (AMAL2). The idea behind AMAL2 is to allow a pair
of agents to argue about the correct solution of a problem, arriving at a join
solution that is based on their past learning and the information they exchange
during argumentation.

At the beginning of the protocol, both agents will make their individual pre-
dictions for the problem at hand. Then, the protocol establishes rules allowing
one of the agents in disagreement with the prediction of the other to provide a
counterargument. Then, the other agent can respond with another counterargu-
ment, and so on.

In the remaining of this section we will present all the elements of the AMAL2
protocol. First, we will formally present the specific performatives that the in-
dividual agents will use in the AMAL2 protocol, that will allow them to state a
prediction, to rebut an argument, and to withdraw an argument that the other
agent’s arguments have rendered invalid. Then, we will present the AMAL2 pro-
tocol.

6.1 Protocol Performatives

During the AMAL2 protocol, each agent will propose arguments and counterar-
guments to argue about which is the correct solution for a specific problem P .
The AMAL2 protocol consists on a series of rounds. In the initial round, both
agents state which are their individual predictions for P . Then, at each iteration
an agent can try to rebut the prediction made by the other agent, or change
its own prediction. Therefore, at each iteration, each of the two agents holds a
prediction that it believes is the correct one.

We will use Ht = 〈αt
1,α

t
2〉 to note the pair of predictions that each agent

holds at a round t. When at a certain iteration an agent changes its mind and
changes the prediction it is holding (because it has been convinced by the coun-
terarguments of the other agent), it has to inform the other agent using the
withdraw performative.

At each iteration, agents can send the following performatives to the other
agent:

– assert(α): meaning that the justified prediction that the agent is holding for
the next round will be α.

– rebut(α, β): meaning that the agent has found a counterargument or a coun-
terexample α to the prediction β.

– withdraw(α): meaning that the agent is removing a justified prediction α,
since the counterarguments presented by the other agent have rendered it
invalid.



In the next section the AMAL2 protocol is presented that uses the perfor-
matives presented in this section.

6.2 Argumentation Protocol

The AMAL2 protocol among two agents A1 and A2 to solve a problem P works
in a series of rounds. We will use t to denote the current round (initially t = 0).
The idea behind protocol is the following one: initially, each agent makes its
individual prediction. Then, the confidence of each prediction is assessed, and
the prediction with the highest confidence is considered the winner. However, if
the agent that has provided the prediction with lower confidence doesn’t agree,
it has the opportunity to provide a counterargument. Agents keep exchanging
arguments and counterarguments until they reach an agreement or until no agent
is able to generate more counterarguments. At the end of the argumentation, if
the agents have not reached an agreement, then the prediction with the highest
confidence is considered the joint prediction.

Notice that the protocol starts because one of the two agents receives a
problem to be solved, and that agent sends that problem to the other agent
requesting requesting to engage in an argumentation process. Thus, after both
agents know the problem P to solve, round t = 0 of the protocol starts:

1. Initially, each one of the agents individually solves P , and builds a justified
prediction (A1 builds α0

1, and A2 builds α0
1). Then, each agent Ai sends

the performative assert(α0
i ) to the other agent. Thus, both agents know

H0 = 〈α0
1,α

0
2〉.

2. At each round t, the agents check whether their arguments in Ht agree. If
they do the protocol moves to step 4, otherwise the agents compute the
confidence for each argument and use the preference relation (presented in
Section 4) to determine which argument in Ht is preferred. After that, the
agent that has provided the non preferred argument may try to rebut the
other agent’s argument. Each individual agent uses its own policy to rebut
arguments:
– If an agent Ai generates a counterargument αt+1

i , then it sends the
following performatives to the other agent, Aj , in a single message:
rebut(αt+1

i ,αt
j), withdraw(αt

i), assert(αt+1
i ). This message starts a new

round t + 1, and the protocol moves back to step 2.
– If an agent Ai selects c as a counterexample of the other agent’s justified

prediction, then Ai sends the following performative to the other agent,
Aj : rebut(c,αt

j). The protocol moves to step 3.
– If no agent provides any argument the protocol moves to step 4.

3. The agent Aj that has received the counterexample c retains it and generates
a new argument αt+1

j that takes into account c. To inform Ai of the new argu-
ment, Aj sends Ai the following performatives: withdraw(αt

j), assert(αt+1
j ).

This message starts a new round t + 1, and the protocol moves back to step
2.



4. The protocol ends yielding a joint prediction, as follows: if both arguments in
Ht agree then their prediction is the joint prediction, otherwise the prediction
in Ht with the higher confidence is considered the joint prediction.

Moreover, in order to avoid infinite iterations, if an agent sends twice the
same argument or counterargument, the protocol also terminates.

Finally notice that when an agent Ai submits a counterargument α that
defeats the other agent’s argument, then α becomes Ai’s argument, and thus
the other agent may try to rebut it using another counterexample.

7 Experimental Evaluation

In this section we empirically evaluate the AMAL2 argumentation protocol. We
have made experiments in two different data sets: sponge, and soybean. The
sponge data set is a marine sponge classification problem, contains 280 marine
sponges represented in a relational way and pertaining to three different orders
of the Demospongiae class. The soybean data set is a standard data sets from the
UCI machine learning repository, with 307 examples pertaining to 19 different
solution classes.

In an experimental run, training cases are distributed among the agents with-
out replication, i.e. there is no case shared by two agents. In the testing stage
problems arrive randomly to one of the agents. The goal of the agent receiving
a problem is to identify the correct solution class of the problem received.

Each experiment consists of a 10-fold cross validation run. An experiment
consists of training and test phases as usual; during the training phase the train-
ing cases are distributed among the two agents in different ways, as we will see
later. During the test phase learning is disabled, i.e. the agents cannot learn
from one test case to the next (in order to evaluate all test cases uniformly).
This is relevant here because the agents solving a test case can also learn from
other cases (the counterexamples in the argumentation process). To keep test
case uniformity the agents discard the cases learnt during the argumentation of
a test case before moving to argue about the next test case.

Moreover, we have made experiments in four different scenarios: in the first
scenario, a 100% of the cases of the training set are distributed among the agents;
in the second scenario, the agents only receive a 75% of the training cases; in
the third scenario, they only receive a 50%; finally in the fourth scenario agents
only receive a 25% of the training cases. We have made those experiments to
see how the argumentation protocol (and how the argument generation policies)
work when the agents have different amount of data.

Figures 4.a and 4.b show the classification accuracy achieved by agents us-
ing the AMAL2 argumentation protocol in the sponge and soybean data sets.
For each of the 4 scenarios (100%, 75%, 50% and 25%) three bars are shown:
individual, maxconf and AMAL2. The individual bar represents the classifica-
tion accuracy achieved by agents solving problems individually, the maxconf bar
represents classification accuracy of the two agents using the following simple
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Fig. 4. Classification accuracy results in the Sponge and Soybean domains.

strategy: both agents solve the problem individually, then they evaluate the
confidence of both predictions, and the prediction with the highest confidence
is selected (notice that this is equivalent to using the AMAL2 protocol without
any agent providing any counterargument). Finally, the AMAL2 bar represents
the classification accuracy of the two agents using the AMAL2 protocol.

Figures 4.a and 4.b show several things. First, that using collaboration is al-
ways beneficial, since both maxconf and AMAL2 systematically outperform the
individual agents in terms of accuracy. Moreover, both figures also show that the
accuracy achieved by AMAL2 is higher than that of maxconf (in fact, AMAL2
is better or equal than maxconf in all the experiments except in the 100% sce-
nario of the sponge data set). Moreover, the less data the individual agents have
the greater the benefits of AMAL2 are. When each individual agent has enough
data, then predictions and confidence estimations are reliable, and thus little or
nothing is gained form the argumentation. However, when agents have access to
limited data, the argumentation process helps them finding predictions that take
into account more information, thus making the joint prediction more accurate.

To show that our approach is proficient we can compare our results with that
of a single agent owning all the cases. In this “centralized” scenario the accuracy
is 89.64% for the sponge data set, and 89.12% for the soybean data set. These
results should be compared with the 100% scenarios, where individual agents
achieve a much lower accuracy but using AMAL2 they achieve a comparable
performance to that of the centralized approach. Specifically, in the sponges data
set the accuracy of 89.64% goes down to 87.43% for individual agents, and using
AMAL2 the accuracy is 90.86%, that recovers and even surpasses the centralized
accuracy. In the soybean data set the accuracy of 89.12% goes down drastically
to 78.63% for individual agents, and using AMAL2 the accuracy is 86.25%, that
significantly recovers but not surpasses the centralized accuracy. The difference
between these two data sets is that the soybean data set has a large number of
classes and thus performance drastically diminishes when dividing the data set
among two agents (since the likelihood of an agent having cases of each specific
class diminishes). In practical terms this accuracy can be recovered by adding



redundancy to the case bases of the agents, i.e. allowing some duplicated cases
(cases that are present in both case bases) [11].

Summarizing, collaborating agents (either using argumentation or the sim-
ple maxconf method) always increase their performance with respect to their
individual performance. Similarly, using argumentation generally improves with
respect to just using the simple maxconf aggregation function. However, when
each individual agent has enough data, little is gained form the argumentation
with respect to using maxconf aggregation function. Finally, when agents have
access to limited data, there is ample opportunity for them to learn from commu-
nicating with another agent; the experiments reflect this hypothesis by the fact
that argumentation in this situations increases performance to a larger degree.

8 Related Work

Research on MAS argumentation focus on several issues like a) logics, proto-
cols and languages that support argumentation, b) argument selection and c)
argument interpretation. Approaches for logic and languages that support ar-
gumentation include defeasible logic [5] and BDI models [17]. An overview of
logical models of reasoning can be found at [6]. Moreover, the most related area
of research is case-based argumentation. Combining cases and generalizations for
argumentation has been already used in the HYPO system [4], where an argu-
ment can contain both specific cases or generalizations. Moreover, generalization
in HYPO was limited to selecting a set of predefined dimensions in the system
while our framework presents a more flexible way of providing generalizations.
Furthermore, HYPO was designed to provide arguments to human users, while
we focus on agent to agent argumentation. Case-based argumentation has also
been implemented in the CATO system [1], that models ways in which experts
compare and contrast cases to generate multi-case arguments to be presented
to law students. Moreover, the goal of CATO differs from the goal of our work,
since it is designed to allow law students to learn basic case-based argumentation
law skills.

Concerning CBR in a multiagent setting, the first research was on “negotiated
case retrieval” [16] among groups of agents. Our work on multiagent case-based
learning started in 1999 [8]; later Mc Ginty and Smyth [9] presented a multiagent
collaborative CBR approach (CCBR) for planning. Finally, another interesting
approach is multi-case-base reasoning (MCBR) [7], that deals with distributed
systems where there are several case bases available for the same task and ad-
dresses the problems of cross-case base adaptation. The main difference is that
our MAC approach is a way to distribute the Reuse process of CBR (using a
voting system) while Retrieve is performed individually by each agent; the other
multiagent CBR approaches, however, focus on distributing the Retrieve process.



9 Conclusions and Future Work

In this paper we have presented a learning framework for argumentation. Specif-
ically, we have presented AMAL2, a protocol that allows two agents to argue
about the solution of a given problem. Finally, we have empirically evaluated it
showing that the increased amount of information that the agents use to solve
problems thanks to the argumentation process increases their problem solving
performance, and specially when the individual agents have access to a limited
amount of information. Clearly, an agent that knows all it needs does not need
external help (nor, by the way, needs to continue learning if there is no room for
improvement).

The main contributions of this work are: a) an argumentation framework for
learning agents; b) a case based preference relation over arguments, based on
computing a joint confidence estimation of arguments (this preference relation
has sense in this learning framework since arguments are learnt from examples);
c) a specific and efficient policy to generate arguments and counterarguments
based on the specificity relation (commonly used in argumentation frameworks);
d) a principled usage of counterexamples in the argumentation process, and e)
a specific argumentation protocol for pairs of agents that collaborate to decide
the joint solution of a given problem.

Moreover, the work presented in this paper concerns only pairs of agents.
However, as future work we plan to generalize the AMAL2 protocol to work with
a larger number of agents. A possibility to do that is a token based protocol
where the agent owner of the token engages in a 1-to-1 argumentation dialog
with every other agent that disagrees with its prediction. When all these 1-to-1
argumentation dialogs have finished, the token passes to the next agent. This
process continues until no agent engages in any new 1-to-1 argumentation. Then,
from the outcome of all the 1-to-1 argumentation processes, a joint prediction
will be achieved just as now on step 4 of the AMAL2 protocol: either the agreed
prediction or the one with higher conficence.
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Abstract. This paper presents a coherentist approach to argumenta-
tion that extends previous proposals on cognitive coherence based agent
communication pragmatics (inspired from social psychology) and pro-
pose (1) an alternative view on argumentation that is (2) part of a more
general model of communication. In this approach, the cognitive aspects
associated to both the production, the evaluation and the integration of
arguments are driven by calculus on a formal characterization of cogni-
tive coherence.

1 Introduction

“Argumentation is a verbal, social and rational activity aimed at convincing [. . . ]
of the acceptability of a standpoint by putting forward a constellation of propo-
sition justifying or refuting the proposition expressed in the standpoint.” [26,
page 1].

In AI and MAS, argumentation frameworks have been put forward for mod-
elling inference, non-monotonic reasoning, decision making and argumentation-
based communication has been introduced has a way to refine multiagent com-
munication [17, 11, 4, 3]. The syntax and semantics of argumentation have been
extensively studied, but the pragmatics of argumentation (theory of its use in
context) has not been inquired. While the conventional aspects of pragmatics
have been taken into account in the formalisms proposed for argumentation dia-
logues, the cognitive aspects of argumentation have been less studied: when does
an agent argue, with whom, on what topic? What are the cognitive effects of
arguments (in terms of persuasion and integration)? What is the utility of the
argumentation? Are the agents satisfied with their dialogue?

Cognitive coherence theory [14, 15, 12] has been put forward as a way to
model the cognitive aspects of agent communication pragmatics (section 2). In-
spired from social psychology theories, cognitive coherence provides a native
yet realistic modelling of the cognitive aspects of communication through the
concept of attitude change which captures the persuasive aspect inherent to
all communications (section 3). In this paper, we extend the cognitive coher-
ence approach to argumentation and show how this extension allows to model
the generative aspect of argumentation communication as well as the cognitive



response to persuasive arguments using a single set of principles (section 4).
Finally, the coverage of the proposed approach is discussed (section 5).

While at the beginning of this ongoing research work, this paper extends the
state of the art by (1) proposing an alternative (coherentist) view on argumen-
tation that is (2) part of a more general model of communication (including the
cognitive aspect of pragmatics) and (3) giving a fully computational characteri-
zation of this new model.

2 The cognitive coherence framework

In cognitive sciences, cognitions gather together all cognitive elements: percep-
tions, propositional attitudes such as beliefs, desires and intentions, feelings and
emotional constituents as well as social commitments.

In cognitive or social psychology, most cognitive theories appeal to the con-
cept of homeostasis, i.e. the human faculty to maintain or restore some physio-
logical or psychological constants despite the outside environment variations. All
these theories share as a premise the coherence principle which puts coherence as
the main organizing mechanism: the individual is more satisfied with coherence
than with incoherence. The individual forms an opened system whose purpose is
to maintain coherence as much as possible.

The core of our theoretical model is the unification of the dissonance theory
from Festinger [7] and the coherence theory from Thagard [23]. In that context,
our main and original theoretical contribution has been to extend that model
to communication (which has not been treated by those two theorists) and to
develop a formalism suited to MAS.

2.1 Formal characterization of cognitive coherence

While several formal characterizations of cognitive coherence have been made
(logic-based [18], neural network or activation network based [20], probabilistic
network [24], decision-theoretic, . . . ), we present one that is constraint satis-
faction based resulting in a simple symbolic-connexionist hybrid formalism (we
refer the reader to [22] for an introduction to this family of formalisms).

In this approach, cognitions are represented through the notion of elements.
We denote E the set of all elements. Elements (i.e. cognitions) are divided in
two sets: the set A of accepted elements and the set R of rejected elements. A
closed world assumption which states that every non-explicitly accepted element
is rejected holds. Since all the cognitions are not equally modifiable, a resistance
to change is associated to each element of cognition. In line with Festinger [7], a
cognition’s resistance to change depends on its type, age, as well as the way in
which it was acquired: perception, reasoning or communication. Resistances to
change allow to differentiate between beliefs that came from perception, beliefs
that came from reasoning and beliefs that came from communication as well
as to represent the individual commitment strategies associated with individual
intention. Resistance to change can be accessed through the function Res : E −→
R.



Those elements can be cognitively related or unrelated. For elements that
are directly related, two types of non-ordered binary constraints represent the
relations that hold between them in the agent’s cognitive model:

– Positive constraints: positive constraints represent positive relations like fa-
cilitation, entailment or explanatory relations.

– Negative constraints: negative constraints stand for negative relations like
mutual exclusion and incompatibility relations.

We note C+ (resp. C−) the set of positive (resp. negative) constraints and C =
C+∪C− the set of all constraints. For each of these constraints, a weight reflecting
the importance degree for the underlying relation can be attributed5. Those
weights can be accessed through the function Weight : C −→ R. Constraints
can be satisfied or not.

Definition 1. (Cognitive Constraint Satisfaction) A positive constraint is
satisfied if and only if the two elements that it binds are both accepted or both
rejected, noted Sat+(x, y) ≡ (x, y) ∈ C+ ∧ [(x ∈ A ∧ y ∈ A) ∨ (x ∈ R ∧ y ∈ R)].
On the contrary, a negative constraint is satisfied if and only if one of the two
elements that it binds is accepted and the other one rejected, noted Sat−(x, y) ≡
(x, y) ∈ C− ∧ [(x ∈ A∧ y ∈ R)∨ (x ∈ R∧ y ∈ A)]. Satisfied constraints within a
set of elements E are accessed through the function Sat : E ⊆ E −→ {(x, y)|x, y ∈
E ∧ (Sat+(x, y) ∨ Sat−(x, y))}

In that context, two elements are said to be coherent if they are connected
by a relation to which a satisfied constraint corresponds. And conversely, two
elements are said to be incoherent if and only if they are connected by a non-
satisfied constraint. These relations map exactly those of dissonance and con-
sonance in Festinger’s psychological theory. The main interest of this type of
modelling is to allow defining a metric of cognitive coherence that permits the
reification of the coherence principle in a computational calculus.

Given a partition of elements among A and R, one can measure the coherence
degree of a non-empty set of elements E . We note Con() the function that gives
the constraints associated with a set of elements E . Con : E ⊆ E −→ {(x, y) |
x, y ∈ E , (x, y) ∈ C}.

Definition 2. (Cognitive Coherence Degree) The coherence degree C(E),
of a non-empty set of elements, E is obtained by adding the weights of constraints
linking elements of E which are satisfied divided by the total weight of concerned
constraints. Formally:

C(E) =

∑
(x,y)∈Sat(E) Weight(x, y)

∑
(x,y)∈Con(E) Weight(x, y)

(1)

The general coherence problem is then:

5 This is a way of prioritizing some cognitive constraints as it is done in the BOID
architecture [1].



Definition 3. (Cognitive Coherence Problem) The general coherence prob-
lem is to find a partition of the set of elements into the set of accepted elements
A and the set of rejected elements R that maximize the cognitive coherence degree
of the considered set of elements.

It is a constraint optimization problem shown to be NP-complete in [25]. An
agent can be partially defined as follows:

Definition 4. (Agent’s State) An agent’s state is characterized by a tuple
W = {P,B, I, SC, C+, C−,A,R}, where:

– P,B,I are sets of elements that stand for perceptions, beliefs and individual
intentions respectively, SC is a set of elements that stand for the agent’s
agenda, that stores all the social commitments from which the agent is either
the debtor or the creditor;

– C+ (resp. C−) is a set of non-ordered positive (resp. negative) binary con-
straints over P ∪ B ∪ I ∪ SC such that ∀(x, y) ∈ C+ ∪ C−, x *= y;

– A is the set of accepted elements and R the set of rejected elements and
A ∩R = ∅ and A ∪R = P ∪ B ∪ I ∪ SC.

Beliefs coming from perception (P) or from reasoning (B) as well as intentions
(I) constitute the private cognitions of the agent, while public or social cognitive
elements are captured through the notion of social commitments (as defined
in [16]). Social commitment has proven to be a powerful concept to capture
the interdependencies between agents [21]. In particular, it allows to represent
the semantics of agents’ communications while respecting the principle of the
asymmetry of information that indicates that in the general case what an agent
say does not tell anything about what he thinks (but still socially commits him).

This agent model differs from classical agent modelling in that motivational
attributes are not statically defined but will emerge from the cognitive coherence
calculus. Concretely, this means that we don’t have to specify the agent’s desires
(the coherence principle allows to compute them) but only potential intentions
or goals. Examples to be given in this paper will highlight the motivational drive
associated with cognitive coherence.

Incoherence being conceptually close to the notion of conflict, we use a ty-
pology borrowed from works on conflicts [5].

Definition 5. (Internal vs. External Incoherences) An incoherence is said
to be internal iff all the elements involved belong to the private cognitions of
the agent, else it is said to be external.

2.2 Local search algorithm

Decision theories as well as micro-economical theories define utility as a property
of some valuation functions. A function is a utility function if and only if it
reflects the agent’s preferences. In the cognitive coherence theory, according to



the afore-mentioned coherence principle, coherence is preferred to incoherence
which allows to define the following expected utility function6.

Definition 6. (Expected Utility Function) The expected utility for an agent
to attempt to reach the state W ′ from the state W (which only differ by the
acceptance state of a subset E of the agent’s elements) is expressed as the dif-
ference between the incoherence before and after this change minus the cost of
the dialogue moves (expressed in term of the resistance to change of the modified
elements): G(W ′) = C(W ′) − C(W ) −

∑
X∈E Res(X).

At each step of his reasoning, an agent will search for a cognition acceptance
state change which maximizes this expected utility. If this cognition is a commit-
ment, the agent will attempt to change it through dialogue and if it is a private
cognition (perceptions, beliefs or intentions), it will be changed through attitude
change.

A recursive version of the local search algorithm the agents use to maximize
their cognitive coherence is presented in Figure 1 and consists of four phases:

1. For each element e in the agent state, calculate the expected utility and the
gain (or loss) in coherence that would result from flipping e, i.e. moving it
from A to R if it is in A, or moving it from R to A otherwise.

2. Produce a new solution by flipping the element that most increases coher-
ence, or with the biggest positive expected utility if coherence cannot be
improved. Update the resistance to change of the modified element to avoid
looping.

3. Repeat 1 and 2 until either a social commitment is encountered (a dialogue
is needed as an attempt to flip it) or until there is no flip that increases
coherence and no flip with positive expected utility.

4. Return result. The solution will be applied if and only if the cumulated
expected utility is positive.

Since it does not make any backtracking, the complexity of this algorithm is
polynomial: O(mn2), where n is the number of elements considered and m the
number of constraints that bind them7. We don’t have a proof of correctness
of this greedy algorithm in regards to the general coherence problem but, it
behaved optimally on tested examples. We refer the interested reader to [12]
for full justification and discussion of this algorithm. Traces of execution will be
provided along with the examples in this paper.

6 Note that our expected utility function does not include any probabilities. This re-
flects the case of equiprobability in which the agent has no information about other’s
behavior. Notice that integrating algorithms to progressively learn such probabilities
is an obvious perspective of the presented model.

7 n coherence calculus (sum over m constraints) for each level and a maximum of n
levels to be searched.



Function LocalSearch(W )

1: Inputs: W = {P,B, I, SC, C+, C−,A,R}; // current agent state
2: Outputs: List, Change; // ordered list of elements (change(s) to attempt).
3: Global:

4: Local:

5: Float, G, Gval, C, Cval; // Expected utility value of the best move;
6: Elements set, A′, R′;
7: Elements, y, x;
8: Agent, J ; // Agent state buffer
9: Body:

10: for all x ∈ P ∪ B ∪ I ∪ SC do

11: if x ∈ A then

12: A′ := A− {x}; R′ := R ∪ {x};
13: else

14: R′ := R− {x}; A′ := A ∪ {x};
15: end if

16: W ′ := {P,B, I, SC, C+, C−,A′,R′};
17: G := C(W ′) − C(W ) − Res(x); // Expected utility of flipping x
18: C := C(W ′) − C(W ); // Pure coherence gain
19: if G > Gval then

20: J := W ′; y := x; Gval := G; Cval := C;
21: end if

22: end for// Ends when (coherence is not raising anymore and the expected utility
is not positive) or a social commitment need to be changed.

23: if (Cval < 0 and Gval < 0) or y ∈ SC then

24: Return Change;
25: else

26: Update (Res(y)); Add (J ,Change);
27: LocalSearch(J);
28: end if

Fig. 1. Recursive specification of the local search algorithm.

2.3 Cognitive coherence applied to agent communication

Applied to agent communication, the cognitive coherence theory supplies the-
oretical and practical elements for automating agent communication. The cog-
nitive coherence framework provides the necessary mechanisms to answer (even
partially) the following questions which are usually poorly treated in the AI and
MAS literature:

1. Why and when should agents converse? Agents dialogue in order to try
reducing incoherences they cannot reduce alone.

2. When should an agent take a dialogue initiative, on which subject and with
whom? An agent engages in a dialogue when an incoherence appears that
he cannot reduce alone. Whether because it is an external incoherence and
he cannot accept or reject external cognitions on his own, or because it is
an internal incoherence he fails to reduce alone. The subject of this dialogue



should thus focus on the elements which constitute the incoherence. The
dialogue partners are the other agents involved in the incoherence if it is an
external one or an agent he thinks could help him in the case of a merely
internal incoherence.

3. By which type of dialogue? Even if we gave a general mapping of incoherence
types toward dialogue types using Walton and Krabble typology in [14], the
theory is generic enough to be applied to any conventional communicational
framework. In [15], we gave the procedural scheme for this choice using
DIAGAL [2] dialogue games as primitive dialogue types.

4. How to define and measure the utility of a conversation? As defined in sec-
tion 2.2, the utility of a dialogue is the difference between the incoherence
before and after this dialogue minus the cost of the dialogue moves.

5. When to stop dialogue or, how to pursue it? The dialogue stops when the
incoherence is reduced8 or, either it continues with a structuration according
to the incoherence reductions chain. As dialogues are attempts to reduce
incoherence, expected utility is used to choose between different competing
dialogues moves (including dialogue initiative and dialogue ending).

6. What are the impacts of the dialogue on agents’ private cognitions? In cases
where dialogue, considered as an attempt to reduce an incoherence by work-
ing on the external world, definitively fails, the agent reduces the incoherence
by changing his own mental attitudes in order to recover coherence (this is
the attitude change process to be described in section 3).

7. Which intensity to give to illocutionary forces of dialogue acts? Evidently,
the intensities of the illocutionary forces of dialogue/speech acts generated
are influenced9 by the incoherence magnitude. The more important the in-
coherence magnitude is, the more intense the illocutionary forces are.

8. What are the impacts of the dialogue on agents’ moods? The general scheme
is that: following the coherence principle, coherence is a source of satisfaction
and incoherence is a source of dissatisfaction. We deduce emotional attitudes
from internal coherence dynamic (happiness arises from successful reduction,
sadness from failed attempt of reduction, fear from a future important re-
duction attempt, stress and anxiety from an incoherence persistence,. . . ).

9. What are the consequences of the dialogue on social relations between agents?
Since agents can compute and store dialogue utility, they can build and
modify their relations with other agents in regard to their past dialogues.
For example, they can strengthen relations with agents with whom past
dialogues were useful, . . .

All those dimensions of our theory - except 7, 8 and 9 - have been imple-
mented and exemplified as presented and discussed in [13] and [15]. The pre-
sented practical framework relies on our dialogue games based agent communi-
cation language (DIAGAL) and our dialogue game simulator toolbox (DGS)[2].

8 Note that this ending criterium is to be tempered with other external factors like
time, resources and social norms. Those resources can be taken into account in the
update of the resistance to change of various discussed elements.

9 Actually, this is not the only factor, other factors could also matter: social role,
hierarchical positions,. . .



3 Attitude change and persuasion.

From the set of all private cognitions result attitudes which are positive or nega-
tive psychological dispositions towards a concrete or abstract object or behavior.

For contemporary psychologists, attitudes are the main components of cog-
nition. These are the subjective preliminary to rational action [6]. Theoretically,
an agent’s behavior is determined by his attitudes. The basic scheme highlighted
by those researches is that beliefs (cognition) and desires (affect) lead to inten-
tions which could lead to actual behaviors or dialogical attempts to get the
corresponding social commitments depending on their nature.

From another point of view, it could happen (due to hierarchies, power re-
lations, value-based negotiation, argumentation,. . . ) that an agent comes to ac-
cept a counter-attitudinal course of action or proposition. In that case, attitude
change might occur. Since cognitive coherence theory is built over five decades
of research on attitude change in social psychology, it provides a native yet re-
alistic modelling of the cognitive aspects of persuasion through this concept of
attitude change. Within our characterization of cognitive coherence, attitude
change refers to the change of acceptance states of some private element of cog-
nition in order to restore coherence with external interdependencies, i.e. social
commitments.

4 Argumentation in the cognitive coherence theory

Argumentation has not been introduced in the cognitive coherence approach yet.
However, this extension follows naturally from previous work by saying that ar-
gumentation, explanation and justification are the processes by which an agent
shows to the other agents why his (or a given) position is coherent. In that
context, we do not distinguish between argumentation, explanation and justifi-
cation which all aim to convince in some way. More specifically, the idea behind
argumentation is that agents can construct, exchange and weigh up arguments
relevant to conflicting issues, in the context of an explicit external incoherence.

The argumentation process can be modelled using three steps: (1) argument
generation, (2) argument evaluation and (3) argument integration. The next
sections present and exemplify how cognitive processes associated with those
steps are computed in the cognitive coherence framework.

4.1 Argument generation

Argumentation is a type of information disclosure. While in cooperative systems
this information might be useful to help solving conflicts, or by making the ne-
gotiation and the convergence to a deal more efficient, it has been shown in [10]
that argumentation and full cooperation is not necessarily always the best strat-
egy for negotiation convergence. More generally, it is unclear if such information
disclosure is worth in open system where heterogeneous and competitive (even
malicious) agents can use this information to endorse non-cooperative behavior.
In this paper, we won’t address strategic issues related to argumentation.



In our framework, argumentation can be achieved by constraint propagation
by introducing a syntactic facility that will allow the agents to send to one
another parts of their elements and constraints networks. Previous work has
been done around that idea in the field of distributed constraint satisfaction [9,
10].

Definition 7. (Argument) An argument for an element acceptance or rejec-
tion is a set of elements (along with their acceptance states and resistances to
change) and constraints (along with their weights) that form a connected com-
ponent in the network of cognitions of the agent. More formally, an argument w
is a pair w = 〈H,h〉 such that:

1. H ⊆ E, h ∈ E;H ∩ {h} = ∅;
2. ∀x, y ∈ H ∪ {h},∃z1, ..., zn ∈ H ∪ {h}, (x, z1), ..., (zn, y) ⊆ C (connexity con-

dition);

H is called the support of the argument while h is the conclusion of the argument.

Definition 8. (Argument types)
ArgX stands for the set of all possible arguments that can be generated from

the agent’s bases included in X. It is useful to differentiate between:

– belief arguments: 〈H,h〉 is a belief argument iff (H ∪ {h}) ⊂ ArgP∪B;
– practical arguments: 〈H,h〉 is a practical argument iff (H∪{h}) ⊂ ArgP∪B∧

h ∈ I;
– social arguments: 〈H,h〉 is a social argument iff (H ∪ {h}) ⊂ ArgI∪SC ∧

(H ∪ {h}) ∩ SC *= ∅;

In the cognitive coherence framework, argumentation will be used when an
explicit external incoherence is not solved otherwise (for example by referring
to an authority relation or a social norm). When this precondition will be met,
the agents will disclose the private part of the connected component related to
the discussed issue. Let’s take an example to illustrate this argument generation
systematics and illustrate previous definitions.

Two agents W and J are driving a car (it is a joint activity and the agents
have complementary access to the necessary resources). The car is at a stop and
the agents have to decide which way to go. Suppose that the initial states of
agents W and J are the ones presented by Figure 2. Since W wants to go left
(he has the corresponding intention accepted), he wants the corresponding social
commitment to be accepted (see Figure 3). W will thus make an offer to J10:

W : I would turn left.

10 More precisely, he will propose to enter an offer game (see [2] for details about the
DIAGAL agent language) which is the only game which entry and success conditions
unify with the current and wanted state respectively. Using the current framework
and algorithms this will result automatically from the situation described by Figure 2
as described in [12]. This is what the cognitive coherence framework is made for:
automatizing agent communications.
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Fig. 2. Initial states sW and sJ for W and J . Here, all the resistances to change
are initialized as shown in order to indicate that perceptions are more resistant than
beliefs, that are more resistant than intentions that are more resistant than social
commitments. Other choices may be made.

If agent J also would had wanted to turn left (W ’s proposal would have been
coherent with her views), she would have then accepted the proposal and the
corresponding social commitment would have been accepted:

J : Ok.

However, as depicted by Figure 2 agent J wants to turn right (i.e. the cor-
responding intention is accepted), W ’s proposal acceptance would entail a loss
in coherence for J (see Figure 3). J will then embed a counter-proposal11 as at-

11 In the form of a DIAGAL request game.
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indicates the full state of the agent, the others nodes just indicate the change they imply.
Arcs are labelled with the value of the expected utility function (presented section 2.2).
The black path indicates the change(s) returned by the local search algorithm.

tempt to get a result that would be more coherent with her view. Her argument
for this choice (j) will be attached to her proposal:

J : There ’s a lot of lights on the left road, that will slow us down. Can’t
we turn right instead?

Notice that, this makes the external incoherence explicit for W 12. In order
to complete the argumentation dialogue initiated by J , W will disclose his own
argument (w).

W : Yes, but there is a rugby match today, so there will be a lot of traffic
on the right road, we should avoid going this way and turn left.

During that process, the agents eventually communicate each other the entire
connected component attached to the discussed issues. However, this doesn’t
tell anything about the way they will evaluate and integrate the exchanged
arguments. Next sections discuss and propose a modelling of those dimensions.

12 See [15] and [12] for a discussion about the importance of the explicitation phase of
dialogue that is usually neglected.



4.2 Issues in argument evaluation and integration

Argument evaluation and integration are complex issues, and social psychology
(which has studied that problem on experimental basis for half a century now)
indicates that there is a large number of aspects to be considered [6]. Here is a
simplified listing of those:

– evaluation of the source: authority, trust, credibility, attractiveness;
– evaluation of the message: comprehension and quality of argument, number

and order of arguments, one- and two-sided messages, confidence, fear;
– characteristics of the audience: intelligence and self-esteem, psychological

reactance, initial attitudes, heterogeneity, sex differences;
– characteristics of the medium: media and channel of communication, media

functions, temporality of the communication.

Furthermore, many studies indicate that the regularities in that area are diffi-
cult to find and that argumentation evaluation and integration are also linked to
cognitive learning and thus depend on the dynamics of the learner [8]. However,
a characterization of rational agent argumentation may not take all of these into
consideration. We thus restrict the discussion to the salient elements that are
already considered in cognitive agent modelling and MAS:

– trust and credibility : the levels of trust and credibility associated with the
protagonist influence the argument evaluation and integration process. The
model presented in [18] (inspired by cognitive coherence approach) has in-
quired this link further. For the sake of simplicity, in this paper, we will
consider that the levels of trust and credibility are the highest possible;

– initial attitude toward the standpoint defended by the argument : it is clear
that the initial attitude of the antagonist agent will intervene in argument
evaluation and integration especially in conjunction with trust and credibil-
ity. Social psychology, in particular the theory of social judgment [19], showed
that each agent maintains some acceptability intervals in which arguments
may be taken into account while arguments falling out of those intervals
will be considered too extreme and won’t be taken into account. However,
because we model rational agents that usually operate in quite precise and
well known domains, we will make the assumption that all arguments will
be considered;

– initial attitude toward the protagonist of the argument : this issue is related
to the level of trust and cooperativeness that the antagonist shows toward
the protagonist. Will the agents integrate the other’s point of view in their
own cognitive model and act accordingly (which would be very cooperative)
or will they compare their point of view with the other’s and then substitute
those two if their is weaker or reject the other’s one if it is (subjectively)
evaluated as weaker? In this paper, we make the assumption that the agents
will fully integrate the other argument in their mental states;

– Heterogeneity of the participants: we call objective evaluation the case where
all the participants share the same evaluation function and we name sub-
jective evaluation the case in which they all have their own. This aspect



depends on the type of system addressed. While objective evaluation might
be possible in cooperative systems, open system where agents may be hetero-
geneous will most probably rest on subjective evaluation. In this paper, we
will make the assumption that the agents share the same evaluation function
to be described.

– number and quality of arguments: in this paper, we will focus on cognitive
factors which will tend to reduce argument evaluation to this last category.

4.3 Argument evaluation

Argument evaluation will be done by comparing (using a shared measure) the
strengths of the arguments provided by both sides in order to decide whose stand-
point will be chosen as the more rational one. We use the following argument
evaluation measure:

Definition 9. (Strength of an argument)
The strength of a given argument 〈H,h〉 is the sum of the weights of the satis-

fied constraints minus the sum of the weights of the non-satisfied ones. Formally:

Strengh(〈H,h〉) = 2 ∗
∑

(x,y)∈Sat(H∪h)

Weight(x, y)−
∑

(x,y)∈Con(H∪h)

Weight(x, y)

The issue of the dispute will depend fully on the comparison between the
strength of the considered arguments. In our example, that means that because
the strength of W ’s argument (Weight(w) = 4.2) for going through the left
road is stronger than the strength of J ’s argument (Weight(j) = 4) for going
by the right road, J will concede. The social commitment proposed by W will
be accepted and the one advocated by J rejected.

J : Ok, we will go through the left way.13

4.4 Argument integration

Here, we make the hypothesis that each agent fully integrates the other’s point
of view in his own cognitive coherence calculus. This means that the perceptions
and beliefs as well as goals and social commitments supporting the other’s point
of view are integrated in the cognitive model of the agent regardless to their
strength. This corresponds to a fully cooperative and trustful cognitive behav-
ior. Many other integration strategies are possible and will be discussed and
compared as part of our future work.

Cooperation in cognitive coherence theory results from the fact that once an
agent is aware (even partially) about the other’s cognitive constraints, he will
be able to take them into account in his own coherence seeking. This argument

13 Concretely, this means that J ’s embedded request will be refused by W and W ’s
offer finally accepted by J . All the opened games will thus be closed.
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Fig. 4. W and J states after their argumentation dialogue.

integration procedure is fully cooperative since the others’ arguments will be
fully taken into account in future reasoning. In the current model integration is
done after the argument evaluation, thus being a post-evaluation memorization
of arguments. Note that different choices may have been possible that will be
inquired in future work.

In our example, argument evaluation and integration result in the cognitive
models depicted by Figure 4. While W cannot improve his cognitive coherence
anymore, Figure 5 shows J ’s reasoning which embeds an attitude change. Fig-
ure 6 presents the final state of the agents which is an equilibrium (no element
acceptance change can improve cognitive coherence). Notice that the agent co-
herence is not maximal (i.e. 1) because of the integration of J ’s argument which
is against the chosen issue (and is valuable).

Finally, it is probable that W will turn left in order to fulfill the corresponding
social commitment and advance the state of the environment. . .
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5 Coverage of the presented approach

Our approach allows to cover a variety of argumentation dialogues. For example,
argumentations that rely on element types (cognitions types and their related
resistance to change). For example, the following dialogue involves perception as
an argument:

W : Google can answer a request in less than 2 seconds and gives you
pertinent pages out of several millions ones.
J : No!
W : Yes.
J : How do you know?
W : I have seen it.

Also, while social arguments have not been considered in the literature yet,
we think they are crucial in multi-agents settings. Here is an example, that can be
captured by our approach, where J justifies his decision using a social argument:

Q: Do you want to go to the cinema tonight?
J : No, I can’t.
Q: Why?
J : I promised my boss to finish a paper tonight.

More generally, the treatment of the cognitive aspects of pragmatics models
the persuasion process that allow to capture a variety of persuasive dialogues
including those that do not involve argumentation. Here is an example of such
dialogue:

Boss: You have to finish that paper tonight.
J : Yes.

In DIAGAL [2], an order given by an agent that has authority over his inter-
locutor results in a social commitment being accepted by definition. However,
J ’s behavior will still be guided by his coherence calculus and J will either enter
an attitude change and accept the corresponding intention or cancel or violate
this social commitment while coping the sanctions (which are taken into ac-
count in the agent reasoning through the resistance to change of the accepted
commitment).

This shows how our approach integrates argumentation with other agent com-
munication behavior through the modelling of the cognitive aspect of pragmat-
ics that emphasizes the persuasive dimension of every communication. The limit
case of argumentation dialogue being the one in which each argument consists of
a single element, our approach can be seen as an attempt to unify argumentation-
based frameworks with previous agent communication frameworks (specifically
social commitment based communication) through some higher level concepts
from cognitive sciences.



6 Conclusion

In this paper, we have highlighted the persuasive aspects inherent to every com-
munication (thus including argumentation) by providing a model in which the
cognitive response to persuasive message was modelled (by reifying the concept
of attitude change when necessary). The strength of the proposed approach re-
sides in the facts that: (1) all the steps of argumentation are computed using a
single set of measures, i.e. the cognitive coherence metrics, (2) the approach is
grounded in behavioral cognitive sciences rather than in dialectics and is part of
a more general theory of mind, which covers many dimensions of the cognitive
aspects of pragmatics and (3) our characterization is computational.

The presented framework has been developed in order to fill the need (that
is not covered by previous approaches) of implementable argumentation based
frameworks that are integrated to a more general agent architecture and com-
munication framework. While promising, this alternative approach to argumen-
tation requires more work. In particular, studying how this framework differs
from and complements previous (dialectic based) proposals is in our future work
list.
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Université Paul Sabatier, 118 route de Narbonne,

31062 Toulouse Cedex 4, France
amgoud@irit.fr

LIUPPA, Université de Pau
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Abstract. Modeling different types of dialog between autonomous agents is be-
coming an important research issue. Several proposals exist with a clear definition
of the dialog protocol, which is the set of rules governing the high level behavior
of the dialog. However, things seem different with the notion of strategy. There is
no consensus on the definition of a strategy and on the parameters necessary for
its definition. Consequently, there are no methodology and no formal models for
strategies.
This paper argues that a strategy is a decision problem that consists of: i) selecting
the type of act to utter at a given step of a dialog, and ii) selecting the content that
will accompany the act. The first kind of decision amounts to select among all the
acts allowed by the protocol, the best option which according to some strategic
beliefs of the agent will at least satisfy the most important strategic goals of the
agent. The second kind of decision consists of selecting among different alterna-
tives (eg. different offers), the best one that, according to some basic beliefs of
the agent, will satisfy the functional goals of the agent. The paper proposes then
a formal model based on argumentation for computing on the basis of the above
kinds of mental states, the best move (act + content) to play at a given step of the
dialog. The model is illustrated through an example of auctions.

1 Introduction

An increasing number of software applications are being conceived, designed, and im-
plemented using the notion of autonomous agents. These applications vary from email
filtering [10], through electronic commerce [12, 16], to large industrial applications [6].
In all of these disparate cases, however, the agents are autonomous in the sense that they
have the ability to decide for themselves which goals they should adopt and how these
goals should be achieved [17]. In most agent applications, the autonomous components
need to interact with one another because of the inherent interdependencies which exist
between them. They need to communicate in order to resolve differences of opinion and
conflicts of interest that result from differences in preferences, work together to find so-
lutions to dilemmas and to construct proofs that they cannot manage alone, or simply to



inform each other of pertinent facts. Many of these communication requirements can-
not be fulfilled by the exchange of single messages. Instead, the agents concerned need
to be able to exchange a sequence of messages which all bear upon the same subject.
In other words they need the ability to engage in dialogs. In [15] different categories
of dialogs have been distinguished including persuasion and negotiation. Work in the
literature has focused on defining formal models for these dialog types. Generally, a di-
alog system contains the following three components: the agents involved in the dialog
(i.e their mental states), a dialog protocol and a set of strategies. The dialog protocol is
the set of rules of encounter governing the high-level behavior of interacting agents. A
protocol defines among other things:

– the set of permissible acts (eg. asking questions, making offers, presenting argu-
ments, etc.);

– the legal replies for each act.

A dialog protocol identifies the different possible replies after a given act. However, the
exact act to utter at a given step of the dialog is a strategy matter. While the protocol is
a public notion, strategy is crucially an individualistic matter. A strategy can be seen as
a two steps decision process:

1. among all the possible replies allowed by the protocol, to choose the move to play.
For instance, in a negotiation dialog, the protocol may allow after an offer act the
following moves: accepting/rejecting the offer or making a new offer.

2. to choose the content of the move if any. In the above example, if the agent chooses
to make a new offer, it may decide among different alternatives the best one to
propose.

In most works on modeling dialogs, the definition of a protocol poses no problems.
However, the situation is different for dialog strategies. There is no methodology and
no formal models for defining them. There is even no consensus on the different ingre-
dients involved when defining a strategy. Regarding persuasion dialogs, there are very
few works devoted to the notion of strategy in the literature if we except the work done
in [2, 7]. In these works, different criteria have been proposed for the argument selec-
tion. As for negotiation dialogs, it has been argued that the game-theoretic approaches
characterize correctly optimal strategies [8, 13]. However, another line of research [5,
9, 11, 14] has emphasized the limits of game-theoretic approaches for negotiation, and
has shown the interest of arguing during a negotiation. Consequently, the optimal strate-
gies given by game theory are no longer valid and not suitable. In [3], the authors have
studied the problem of choosing the best offer to propose during a dialog and several
criteria have been suggested. However, in that framework, the act offer is supposed to
be chosen by the agent. Thus, this work has focused only on the second step of the
decision process.

This paper argues that the strategy is a decision problem in which an agent tries to
choose among different alternatives the best option, which according to its beliefs, will
satisfy at least its most important goals. Two kinds of goals (resp. of beliefs) are dis-
tinguished: the strategic and the functional goals (resp. the strategic and basic beliefs).



The strategic goals are the meta level goals of the agent. Such goals will help an agent,
on the basis of the strategic beliefs, to select the type of act to utter. Regarding func-
tional goals, they will help an agent to select, on the basis of the basic beliefs to select
the content of a move.

We propose a formal model for defining strategies. The model takes as input two sets
of goals: the strategic and the functional goals together with the strategic and basic be-
liefs and returns among the possible replies allowed by the protocol after a given act, the
next move (act + its content) to play. The model is an extension of the argument-based
decision framework proposed in [1]. The basic idea behind this model is to construct for
each alternative the different arguments (reasons) supporting it, then to compare pairs
of alternatives on the basis of the quality of their supporting arguments.

The paper is organized as follows: Section 2 presents the different classes of goals
and beliefs maintained by an agent. Section 3 introduces the logical language which
will be used throughout the paper. Section 4 introduces an abstract argumentation-
based decision model which forms the backbone of our approach. Section 5 presents
an instantiation of that abstract model for computing the best move to play among the
different replies allowed by the protocol. Section 6 introduces a second instantiation of
the abstract model for computing the content of the move selected by the first instantia-
tion. The whole framework is then illustrated in section 8. Section 9 is devoted to some
concluding remarks and some perspectives.

2 Agents’ mental states

During a dialog, an agent makes two decisions: it first selects the type of act to utter,
for instance making a new offer, asking a question or arguing. Once the act chosen, the
agent should select the content of the act if necessary. We say if necessary because some
acts such as “withdrawal” from a dialog does not need a content. However, for an act
“offer”, it is important to accompany the act with an appropriate content. If the agents
are negotiating the “price” of a car, then the act offer should contain a given price. The
two above decision problems involve two different kinds of goals:

Strategic goals: For choosing the type of act to utter, an agent refers to what we call
strategic goals. By strategic goals we mean the meta-level goals of the agent such as
“minimizing the dialog time”, “selling at the end of the dialog”, etc. Suppose that at
a given step of a negotiation dialog, an agent has to choose between making an offer
and asking a question. If the agent wants to minimize the dialog time then it would
choose to make an offer instead of spending more time in questions. However, if
the agent wants to get a maximum of information about the wishes of the other
agent, then the agent would decide to ask a question.
Strategic goals are generally independent of the subject of the dialog. If the agents
are negotiating the place of a next meeting, then those goals are not related to the
place.

Functional goals: The goals of the agent which are directly related to the subject of the
dialog are called functional goals. They represent what an agent wants to achieve
or to get regarding the subject of the dialog. Let us take the example of the agent



negotiation the place of a meeting. The agent may prefer a place which is not warm
and not expensive. The agent may also prefer a place with an international airport.
These functional goals are involved when selecting the content of a move. In a
negotiation, an agent proposes offers that satisfy such goals.

As for goals, the beliefs involved in the two decision problems are also of different
nature:

Strategic beliefs that are the meta-level beliefs of the agent. They may represent the
beliefs of the agent about the dialog, and about the other agents involved in the
dialog. In negotiation dialogs where agents are trying to find a common agreement,
agents may intend to simulate the reasoning of the other agents. Thus it is important
for each agent to consider the beliefs that it has on the other agents’goals and be-
liefs. Indeed, a common agreement can be more easily reached if the agents check
that their offers may be consistent with what they believe are the goals of the others.

Basic beliefs represent the beliefs of the agent about the environment and the subject of
the dialog. Let us consider again the example of the agent negotiating the place of a
meeting. Basic beliefs of the agent may include for instance the fact that “London
is not warm”, “Tunisia is hot”, “London is very expensive”, etc. This base may also
contain some integrity constraints related to the dialog subject such as “the meeting
cannot be at the same time in London and in Algeria”.

3 The logical language

Let L be a propositional language, and Wff(L) be the set of well-formed formulas
built from L. Each agent has the following bases:

Bb = {(kp, ρp), p = 1, . . . , s}, where kp ∈ Wff(L), is the basic beliefs base. The
beliefs can be less or more certain. They are associated with certainty levels ρp. A
pair (kp, ρp) means that kp is at least certain at a degree ρp.

Bs = {(lj , δj), j = 1, . . . ,m}, where lj ∈ Wff(L), is the strategic beliefs base. Each
of these beliefs has a certainty level δj .

Gs = {(gq,λq), q = 1, . . . , t}, where gq ∈ Wff(L), is a base of strategic goals.
The strategic goals can have different priority degrees, represented by λq. A pair
(gq,λq) means that the goal gq is important for the agent at least to a degree λq.

Gf = {(gor, γr), r = 1, . . . , v}, where gor ∈ Wff(L), is the base of the functional
goals of the agent. Each functional goal has a degree of importance denoted by γr.

The different certainty levels and priority degrees are assumed to belong to a unique
linearly ordered scale T with maximal element denoted by 1 (corresponding to total
certainty and full priority) and a minimal element denoted by 0 corresponding to the
complete absence of certainty or priority.
We shall denote by B∗

b , B∗
s , G∗

s and G∗
f the corresponding sets of propositional formulas

when weights are ignored.

Let S be the set of speech acts allowed by the protocol. S may contain acts such as



“’Offer’ for making offers in negotiation dialogs, “Question” for asking questions, “As-
sert” for asserting information such as “the weather is beautiful”, “Argue” for present-
ing arguments in persuasion dialogs, etc. The protocol precises for each act the possible
replies to it. Let us suppose that the function Replies returns for each act, all the legal
replies to it.

Replies: S "−→ 2S

Some acts may have a content. For instance, an act “Offer” should be accompanied with
a content such as a price, a town, etc. However, the act “Withdraw” does not need any
content. Such acts will then have an empty content, denoted by the symbol “?”. In what
follows, the function Content returns for a given act, the set of its possible contents.
Formally:

Content: S "−→ 2Wff(L)∪{?}

For instance, Content(Withdraw) = {?}, Content(Offer) = {London,Algeria}.
During a dialog, agents exchange moves which are pairs: a speech act and its con-

tent. Formally:

Definition 1 (Moves). A move is a pair (a, x), where a ∈ S and x ∈ Content(a).

The strategy problem is formalized as follows:

Definition 2 (The strategy problem). Let (a, x) be the current move in a dialog. What
is the next move (a′, x′) to utter such that a′ ∈ Replies(a) ?

To answer this question, one should find both a′ and x′. Indeed, a′ is the “best” element
in Replies(a) that satisfies G∗

s according to B∗
s . This will be denoted by: B∗

s , a′ → G∗
s .

Here by “best” we mean the act that satisfies as much important goals as possible.

Concerning x′, this is also the “best” element among X ⊆ Wff(L) that satisfies G∗
f

according to B∗
b . This will be denoted by: B∗

b , x′→ G∗
f . Here the set X is exactly the set

of different alternatives concerning the content of a move. This set may contain differ-
ent offers (eg. different town) if we have to choose the content of the act “offer”, it may
contain a set of formulas if we have to choose the content of the act “Assert”, it may
also contain a set of arguments if one has to select the content of the move “Argue”, etc.

The solution to the strategy problem is the pair (a′, x′) such that (B∗
s , a′ → G∗

s ) ∧
(B∗

b , x′ → G∗
f ).

4 The abstract argumentation-based decision model

Recently, Amgoud [1] has proposed a formal framework for making decisions under
uncertainty on the basis of arguments that can be built in favor of and against a possible
choice. Such an approach has two obvious merits. First, decisions can be more easily
explained. Moreover, argumentation-based decision is maybe closer to the way humans
make decisions than approaches requiring explicit utility functions and uncertainty dis-
tributions.



Solving a decision problem amounts to defining a pre-ordering, usually a complete
one, on a set X of possible choices (or decisions), on the basis of the different con-
sequences of each decision. In our case, the set X may be either the set Replies(a)
of the possible replies to a move, or the set Content(a). The basic idea behind an
argumentation-based model is to construct arguments in favor of and against each de-
cision, to evaluate such arguments, and finally to apply some principle for comparing
the decisions on the basis of the arguments and their quality or strengths. Thus, an
argumentation-based decision process can be decomposed into the following steps:

1. Constructing arguments in favor of /against each decision in X .
2. Evaluating the strength of each argument.
3. Comparing decisions on the basis of their arguments.
4. Defining a pre-ordering on X .

Definition 3 (Argumentation-based decision framework). An argumentation-based
decision framework is a tuple <X , A, ', %Princ> where:

– X is a set of all possible decisions.
– A is a set of arguments.
– ' is a (partial or complete) pre-ordering on A.
– %Princ (for principle for comparing decisions), defines a (partial or complete) pre-

ordering on X , defined on the basis of arguments.

The output of the framework is a (complete or partial) pre-ordering %Princ, on X . x1

%Princ x2 means that the decision x1 is at least as preferred as the decision x2 w.r.t. the
principle Princ.

Notation: Let A, B be two arguments of A. If ' is a pre-order, then A ' B means that
A is at least as ‘strong’ as B.
( and ≈ will denote respectively the strict ordering and the relation of equivalence as-
sociated with the preference between arguments. Hence, A(B means that A is strictly
preferred to B. A ≈ B means that A is preferred to B and B is preferred to A.

Different definitions of ' or different definitions of %Princ may lead to different de-
cision frameworks which may not return the same results.

In what follows, Arg(x) denotes the set of arguments in A which are in favor of x.
At the core of our framework is the use of a principle that allows for an argument-based
comparison of decisions. Indeed, these principles capture different profiles of agents
regarding decision making. Below we present one intuitive principle Princ, i.e agent
profile. This principle, called promotion focus principle (Prom), prefers a choice that has
at least one supporting argument which is preferred to (or stronger than) any supporting
argument of the other choice. Formally:

Definition 4 (Promotion focus). Let <X , A, ', &Prom> be an argumentation-based
decision framework, and Let x1, x2 ∈ X .
x1 %Prom x2 w.r.t Prom iff ∃ A ∈ Arg(x1) such that ∀ B ∈ Arg(x2), A ' B.

Obviously, this is a sample of the many principles that we may consider. Human de-
ciders may actually use more complicated principles.



5 The strategic decision model

This section presents an instantiation of the above model in order to select the next
move to utter. Let us recall the strategy problem. Let (a, x) be the current move in a
dialog. What is the next move (a′, x′) to utter such that a′ ∈ Replies(a) and x′ ∈
Content(a)? The strategic decision model will select among Replies(a) the best act
to utter, say a′. Thus, the set Replies(a) will play the role of X .
Let us now define the arguments in favor of each d ∈ Replies(a). Those arguments
are built from the strategic beliefs base Bs of the agent and its strategic goals base Gs.

The idea is that a decision is justified and supported if it leads to the satisfaction of
at least the most important goals of the agent, taking into account the most certain part
of knowledge. Formally:

Definition 5 (Argument). An argument in favor of a choice d is a triple A = <S, g,
d> such that:

- d ∈ Replies(a)
- S ⊆ B∗

s and g ∈ G∗
s

- S ∪ {d} is consistent
- S ∪ {d} - g
- S is minimal (for set inclusion) among the sets satisfying the above conditions.

S is the support of the argument, g is the goal which is reached by the choice d, and d
is the conclusion of the argument. The set As gathers all the arguments which can be
constructed from <Bs, Gs, Replies(a)>.

Since the bases Bs and Gs are weighted, arguments in favor of a decision are more or
less strong.

Definition 6 (Strength of an Argument). Let A = <S, g, d> be an argument in As.
The strength of A is a pair <Levels(A), Weights(A)> such that:

- The certainty level of the argument is Levels(A) = min{ρi | ki ∈ S and (ki, ρi) ∈
Bs}. If S = ∅ then Levels(A) = 1.

- The degree of satisfaction of the argument is Weights(A) = λ with (g,λ) ∈ Gs.

Then, strengths of arguments make it possible to compare pairs of arguments as follows:

Definition 7. Let A and B be two arguments in As. A is preferred to B, denoted A 's

B, iff min(Levels(A), Weights(A)) ≥ min(Levels(B), Weights(B)).

Property 1. The relation 's is a complete preorder ('s is reflexive and transitive).

Now that the arguments defined, we are able to present the strategic decision model
which will be used to return the best reply a′ at each step of a dialog.

Definition 8 (Strategic decision model). A strategic decision model is a tuple <Replies(a),
As, 's, %Princ>.



According to the agent profile, a principle %Princ will be chosen to compare deci-
sions. If for instance, an agent is pessimistic then it will select the Prom priciple and
thus the decisions are compared as follows:

Definition 9. Let a1, a2 ∈ Replies(a). a1 %Prom a2 w.r.t Prom iff ∃ A ∈ Arg(a1)
such that ∀ B ∈ Arg(a2), A 's B.

Property 2. The relation %Prom is a complete preorder.

Since the above relation is a complete preorder, it may be the case that several choices
will be equally preferred. The most preferred ones will be returned by the function
Best.

Definition 10 (Best decisions). The set of best decisions is Best(Replies(a)) = {ai ∈
Replies(a), s.t.∀ aj ∈ Replies(a), ai %Prom aj}.

Property 3. If As = ∅, then Best(Replies(a)) = ∅.

Note that when the set of arguments is empty, then the set of best decisions is also
empty. This means that all the decisions are equally preferred, and there is no way to
choose between them. In such a situation, the decision maker chooses one randomly.

Definition 11 (Best move). The best move to play (or the next reply in a dialog) is a′

∈ Best(Replies(a)).

6 The functional decision model

Once the speech act to utter selected by the previous strategic decision model, say a′

∈ Best(Replies(a)), one should select its content if necessary among the elements
of Content(a′). Here Content(a′) depends on the nature of the selected speech act.
For instance, if the selected speech act is an “Offer”, then Content(a′) will contain
different objects such as prices if the agents are negotiating a price of a product, different
towns if they are negotiating a place of the next holidays. Now, if the selected speech act
is “Argue” which allows the exchange of arguments, then the content of this act should
be an argument, thus Content(a′) will contain the possible arguments. In any case, we
suppose that Content(a′) contains a set of propositional formulas. Even in the case of
a set of arguments, every argument will be refered to it by a propositional formula.
Arguments in favor of each element in Content(a′) are built from the basic beliefs
base and the functional goals base.

Definition 12 (Argument). An argument in favor of a choice d is a triple A = <S, g,
d> such that:

- d ∈ Content(a′)
- S ⊆ B∗

b and g ∈ G∗
f

- S ∪ {d} is consistent
- S ∪ {d} - g
- S is minimal (for set inclusion) among the sets satisfying the above conditions.



S = Support(A) is the support of the argument, C = Consequences(A) its conse-
quences (the goals which are reached by the decision d) and d = Conclusion(A) is
the conclusion of the argument. The set Af gathers all the arguments which can be
constructed from <Bb, Gf , X>.

The strength of these arguments is defined exactly as in the previous section by replac-
ing the corresponding bases.

Definition 13 (Strength of an Argument). Let A = <S, g, d> be an argument in Af .
The strength of A is a pair <Levelf (A), Weightf (A)> such that:

- The certainty level of the argument is Levelf (A) = min{ρi | ki ∈ S and (ki, ρi) ∈
Bb}. If S = ∅ then Levelf (A) = 1.

- The degree of satisfaction of the argument is Weightf (A) = λ with (g,λ) ∈ Gf .

Then, strengths of arguments make it possible to compare pairs of arguments as follows:

Definition 14. Let A and B be two arguments in Af . A is preferred to B, denoted
A 'f B, iff min(Levelf (A), Weightf (A)) ≥ min(Levelf (B), Weightf (B)).

The arguments against decisions in X are defined in the same way as in the previous
section. We have just to replace the base Bs by Bb, Gs by Gf and Replies(a) by X .
The functional model which computes the best content of a move is defined as follows:

Definition 15 (Functional decision model). A functional decision model is a tuple
<Content(a′), Af , 'f , %Princ>.

Again according to the agent profile, a principle %Princ will be chosen to compare
decisions. If for instance, an agent is pessimistic then it will select the Prom principle
and thus the decisions are compared as follows:

Definition 16. Let x1, x2 ∈ X . x1 %Prom x2 w.r.t Prom iff ∃ A ∈ Arg(x1) such that ∀
B ∈ ArgP (x2), A 'f B.

Here again, the above relation is a complete preorder, and consequently several options
may be equally preferred.

Definition 17 (Best decisions). The set of best decisions is Best(Content(a′)) =
{xi ∈ Content(a′), s.t.∀ xj ∈ Content(a′), xi %Prom xj}.

The content x′ to utter is an element of Best(Content(a′)) chosen randomly. For-
mally:

Definition 18 (Best move). The best content is x′ such that x′ ∈ Best(Content(a′)).

7 Computing the next move in a dialogue

In the previous section, we have presented a formal framework for explaining, oredering
and making decisions. In what follows, we will show how that framework can be used
for move selection. Let (a, x) be the current move of the dialogue, and an agent has to



choose the next one, say (a′, x′). The act a′ is returned as a best option by the framework
<Replies(a), As, 's, %Prom> (i.e a′ ∈ Best(Replies(a))), whereas the content x′

is among the best options returned by the framework <Content(a′),Af ,'f , %Prom>,
i.e. x′ ∈ Best(Content(a′)).

The basic idea is to look for the best replies for an act a. In case there is no solution,
the answer will be (?, ?) meaning that there is no rational solution. This in fact corre-
sponds either to the situation the set of strategic goals is empty, or the case where no
alternative among the allowed replies satisfies the strategic goals of the agent.

In case there is at least one preferred solution, one should look for a possible content.
If there is no possible content, then the chosen act is removed and the same process is
repeated with the remaining acts. Note that the case of the existence of a preferred
act but no its content is explained by the fact that the strategic goals of the agent are
not compatible with its functional goals. Moreover, two forms of incompatibilities are
distinguished: strong incompatibility in which there is no act which can be accompanied
with a content, and a weak incompatibility in which only some acts can be associated
with contents. The above idea of computing the next move is skeched in the following
algorithm:

Function 1 Computing the best move
Parameters: a current move (a, x), a theory 〈X ,Bs,Bf ,Gs,Gf 〉
1: X ← Replies(a);
2: failure ← ⊥;
3: while X %= ∅ and ¬ failure do
4: if Best(X ) = ∅ then

5: failure ← ';
return (?, ?);

6: 7: else a′ ∈ Best(Replies(a)) of the argumentation system 〈Replies(a),As,)s, !Prom〉
(a’ is chosen randomly);

8: if Content(a′) =? then
9: failure ← ';

return (a′, ?);
10:11: else

12: if Best(Content(a′)) = ∅ (best decisions of the argumentation system
〈Content(a′),Af ,)f , !Prom〉); then

13: X ← X − {a′};
14: else
15: failure ← ';
16: return (a′, x′) with x′ ∈ Content(a′);

The following properties can be shown:

Property 4. If Gs = ∅, or Bs = ∅, then the next move is (?, ?).



8 Illustrative example

To illustrate the formal model, we will present an example of auction protocols, the
Dutch auction, which is used in the implementation of the fish market interaction pro-
tocol [4].

The idea here is that seller S wants to sell an item using an auction. A number
of potential buyers B1, . . . , Bn, called also bidders, participate in rounds of auctions.
There is at least one round for each item during, which the auctioneer counts down the
price for the item and buyers simply send a signal to say if they want to bid at the current
price or not.

In the context of fish market, the protocol is indeed, organized in terms of rounds.
At each round, the seller proposes a price for the item. If there is no bidder then the
price is lowered by a set amount until a bid is received. However, if the item reaches
its reserve price the seller declares the item withdrawn and closes the round. If there is
more than one bid, the item is not sold to any buyer, and the seller restarts the round
at a higher price. Otherwise, if there is only one bid submitted at the current price, the
seller atributes the item to that buyer. In this protocol, the set of allowed moves is then:

S = {Offer,Accept, Pass,Attribute, Withdraw}

The first move allows the seller to propose prices, the second move allows buyers
to bid i.e to accept current price, the move Pass allows also the buyers to pass their
turn by saying nothing, the move Attribute allows the seller to attibute the item to the
selected buyer, and the last move Withdraw allows the seller to withdraw the item
from the auction. The following possible replies are also given by the protocol:

Replies(Offer) ⊆ {Accept, Pass}
Replies(Accept) ⊆ {Offer,Attribute}
Replies(Pass) ⊆ {Offer,Withdraw}
The dialog starts always by a move Offer uttered by the seller.

The seller has a strategic goal which consists of minimizing the auction time. This goal
is stored in the strategic goal base of the agent.

GS
s = {(min time, 0.8)}

This agent has some strategic beliefs such as: if the time spent in the round is higher
than a certain bound time bound then it should stop the auction.

BS
s = {(time spent > time bound ∧Withdraw → min time, 1), (time spent <

time bound ∧Offer → min time, 1), (time spent < time bound ∧Attribute →
min time, 1)(time spent > time bound ∧Offer → ¬min time, 1)}

The seller has also some functional goals. The first one consist of maximizing its gain
max − gain. Moreover, a seller has a starting price and also a reserve price which
represents the minimum amount that it will accept for the item. Thus a functional goal
of this agent would be to have a price at least equal to the reserve price, good− price.

GS
f = {(good price, 1)}



The functional beliefs of the seller are given in its beliefs base:

BS
f = {(current price > reserve price ∧Offer(current price) →

good price, 1), (current price > reserve price ∧Attribute(current price) →
good price, 1), (current price < reserve price ∧Offer(current price) →

¬good price, 1)}

Regarding the buyers, the aim of B1 is to get the item for the lowest possible price
cheap at most at bound price, and the aim of B2 is to get the item for the lowest
possible price max profit at most at bound price/2, that is the agent B2 bid for the
current price only when he could make at least 100% profit on the item. These last are
functional goals of the buyers since it concerns the subject of the negotiation. For the
sake of simplicity, these agents do not have strategic beliefs and goals.

GB1
f ={(cheap, 0.8), (buy, 0.7)}

GB2
f ={(max profit, 0.8), (buy, 0.7)}

The buyers are supposed to have the following beliefs.

BB1
f = {(current price < bound price ∧Accept(current price) →

cheap, 1), (current price < bound price ∧Accept(current price) →
buy, 1), (current price > bound price ∧Accept(current price) →
¬buy, 1), (current price > bound price ∧Accept(current price) →
¬cheap, 1), (current price > bound price ∧ Pass → ¬buy, 1)}

BB2
f = {(current price < bound price/2 ∧Accept(current price) →

max profit, 1), (current price < bound price/2 ∧Accept(current price) →
buy, 1), (current price > bound price/2 ∧Accept(current price) →
¬buy, 1), (current price > bound price/2 ∧Accept(current price) →
¬max profit, 1), (current price > bound price/2 ∧ Pass → ¬buy, 1)}

Let us now consider the following dialog between the seller S and the two buyers B1

and B2:

S : Offer(current price) . In this case, the only possible move to the agent is Offer.
Indeed, this is required by the protocol. An agent should select the content of that
move. Here again, the agent has a starting price so it will present it. At this stage,
the agent does not need its decision model in order to select the move.

B1andB2 : Accept(current price) . In this case, the current price is lower than
bound price/2 for the agents. The agents have an argument in favor of Accept.
In this case, they will choose Accept.

S : Offer(current price) . In this case, the item is not sold to any buyer since there
is more than one bid. The seller restarts the round at a higher price. Indeed, this is
required by the protocol. The only possible move to the agent is Offer. An agent
should select the content of that move. Here again, the agent has a higher price so
it will present it as the cuurent price. At this stage, the agent does not need its deci-
sion model in order to select the move. Let’us suppose that the bound price/2 <
current price < bound price.



B1 : Accept(current price) . In this case, the current price current price is lower
than the price bound of the agent. In this case the agent has an argument in favor of
Accept because this will support its important goal cheap. In this case, the agent
will choose Accept.

B2 : Pass . In this case, the current price current price is higher than bound price/2,
and then the agent could not make 100% profit on the item. In this case the agent
has a counter argument again Accept because this will violate its important goal
max profit, and no arguments in favor of it. However, it has an argument in fa-
vor of Pass since it will not violate the important goal. In this case, the agent will
choose Pass.

S : Attribute(current price) . The only possible move of the agent is Attribute.
Inded this is required by the protocol since there is only one bidder submitted at the
current price. Moreover, the current price is higher than the reserve price. In this
case the seller has an argument in favor of the content current price since this will
support its important goal good price. The seller decides then to attribute the item
to the bidder B1 and closes the round.

9 Conclusion

A considerable amount of work has been devoted to the study of dialogs between au-
tonomous agents and to development of formal models of dialog. In most works, the
definition of a protocol poses no problems and several dialog protocols have been
defined even for particular applications. However, the situation is different for dia-
log strategies. There are very few attemps for modeling strategies. Indeed, there is no
methodology and no formal models for defining them. There is even no consensus on
the different parameters involved when defining a strategy.

This paper claims that during a dialog, a strategy is used only for defining the next
move to play at each step of the dialog. This amounts to define the speech act to utter and
its content if necessary. The strategy is then regarded as a two steps decision process:
among all the replies allowed by the protocol, an agent should select the best speech act
to play, then it should select the best content for that speech act.

The idea behind a decision problem is to define an ordering on a set of choices
on the basis of the beliefs and the goals of the agent. We have argued in this paper that
selecting a speech act and selecting a content of a speech act involve two different kinds
of goals and two different kinds of beliefs. Indeed, an agent may have strategic goals
which represent the meta-level goals of the agents about the whole dialog. An agent
may have also functional goals which are directly related to the subject of the dialog.
Similarly, an agent may have strategic beliefs which are meta-level beliefs about the
dialog, the other agents, etc. It may also have some basic beliefs about the subject of
the dialog. We have shown that the choice of the next speech is based on the strategic
beliefs and the strategic goals, whereas the choice of the content is based on the basic
beliefs and the functional goals.

We have then proposed a formal framework for defining strategies. This framework
can be regarded as two separate systems: one of them take as input the possible replies
allowed by a protocol, a set of strategic beliefs and a set of strategic goals and returns



the best speech act, and the second system takes as input a set of alternatives, a set of
basic beliefs and a set of functional goals and returns the best content of a speech act.
The two systems are grounded on argumentation theory. The basic idea behind each
system is to construct the arguments in favour and against each choice, to compute the
strength of each argument and finally to compare pairs of choices on the basis of the
quality of their supporting arguments. We have shown also the agents profiles play a
key role in defining principles for comparing decisions. In this paper we have presented
two examples: pessimistic agents which represent very cautious agents and optimistic
agents which are adventurous ones.

An extension of this work would be to study more deeply the links between the
strategic and the functional goals of an agent. In this paper, we suppose implicitly that
there are coherent. However, in reality it may be the case that an agent has a strategic
goal which is incompatible with a functional one. Let us take the example of an agent
negotiating the price of a car. This agent may have as a strategic goal to sell at the end
of the dialog. It may have also the goal of selling his car with highest price. These two
goals are not compatible since if the agent wants really to sell at the end its car, it should
reduce the price.
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Abstract. While researchers have looked at many aspects of argumen-
tation, an area often neglected is that of argumentation strategies. That
is, given multiple possible arguments that an agent can put forth, which
should be selected in what circumstances. In this paper, we propose a
heuristic that implements one such strategy, namely revealing as little
information as possible to other dialogue participants. After formalising
the concept and presenting a simple argumentation framework in which
it can be used, we show a sample dialogue utilising the heuristic. We
conclude by exploring ways in which this heuristic can be employed and
a discussion of future work is made which will allow for the use of our
approach in more complicated, realistic dialogues.

1 Introduction

Argumentation has emerged as a powerful reasoning mechanism in many do-
mains. One common dialogue goal is to persuade, where one or more participants
attempt to convince the others of their point of view. This type of dialogue can
be found in many areas including distributed planning and conflict resolution,
education and in models of legal argument.

At the same time that the breadth of applications of argumentation has
expanded, so has the sophistication of formal models designed to capture the
characteristics of the domain. In particular, Prakken [1] has focused on legal
argumentation, and has identified four layers with which such an argumentation
framework must concern itself. These are:

– The logical layer, which allows for the representation of basic concepts such
as facts about the world. Most commonly, this layer consists of some form
of non–monotonic logic.

– The dialectic layer, in which argument specific concepts such as the ability
of an argument to defeat another are represented.

– The procedural layer governs the way in which argument takes place. Com-
monly, a dialogue game [2] is used to allow agents to interact with each
other.

! This was a motto used in World War II to remind people not to inadvertently reveal
possibly secret information.



– The heuristic layer contains the remaining parts of the system. Depending
on the underlying layers, these may include methods for deciding which
arguments to put forth and techniques for adjudicating arguments.

While many researchers have focused on the lowest two levels (excellent sur-
veys can be found in [3, 1, 4]), and investigation into various aspects of the pro-
cedural layer is ongoing (for example, [5, 6]), many open questions remain at the
heuristic level.

In this paper, we propose a decision heuristic for an agent allowing it to decide
which argument to put forth. The basis for our idea is very simple; an agent
should, while attempting to win a dispute, reveal as little of what it knows as
possible. This heuristic has seen use in many real world situations. For example,
it has long been speculated [7] that certain government spying organisations are
easily able to break most forms of encryption. However, when required to present
evidence in a court of law, these organisations first pose all possible arguments
that avoid revealing this information, since, if it became public knowledge that
current algorithms are vulnerable, stronger algorithms will be developed that
they would be unable to break.

Such a heuristic can be useful in arguments between computer agents too.
Revealing too much information in a current dialogue might damage an agent’s
chances of winning a future argument.

In the next section, we examine existing approaches to strategy selection,
after which we provide the required theoretical foundations for our approach and
informally describe it. Section 3 presents our heuristic in a more formal manner.
After presenting an illustrative example, we conclude the paper by looking at
possible directions in which this work can be extended.

2 Background and Related Research

Argumentation researchers have recognised the need for argument selection strate-
gies for a long time. However, the field has only recently started receiving more
attention. Moore, in his work with the DC dialectical system [8], suggested that
an agent’s argumentation strategy should take three things into account:

– Maintaining the focus of the dispute.
– Building its point of view or attacking the opponent’s one.
– Selecting an argument that fulfils the previous two objectives.

The first two items correspond to the military concept of a strategy, i.e. a
high level direction and goals for the argumentation process. The third item
corresponds to an agent’s tactics. Tactics allow an agent to select a concrete
action that fulfils its higher level goals. While Moore’s work focused on natural
language argument, these requirements formed the basis of most other research
into agent argumentation strategies.

In 2002, Amgoud and Maudet [9] proposed a computational system which
would capture some of the heuristics for argumentation suggested by Moore.



Their system requires very little from the argumentation framework. A pref-
erence ordering is needed over all possible arguments, and a level of prudence
is assigned to each agent. An argument is assigned a strength based on how
convoluted a chain of arguments is required to defend it from attacks by other
arguments. An agent can then have a “build” or “destroy” strategy. When using
the build strategy, an agent asserts arguments with a strength below its pru-
dence level. If it cannot build, it switches to a destroy strategy. In this mode, it
attacks an opponent’s arguments whenever it can. While the authors note other
strategies are reasonable, they make no mention of them. Shortcomings of their
approach include its basis on classical propositional logic and the assumption
of unbounded rationality; computational limits may affect the arguments agents
decide to put forth. Finally, no attempt is made to capture the intuition that a
fact defended by multiple arguments is more acceptable than one defended by
fewer (the so called “accrual of evidence” argument scheme [10]).

Using some ideas from Amgoud’s work, Kakas et al. [11] proposed a three
layer system for agent strategies in argumentation. The first layer contains “de-
fault” rules, of the form utterance ← condition, while the two higher layers
provide preference orderings over the rules. Assuming certain restrictions on the
rules, they show that only one utterance will be selected using their system,
a trait they refer to as determinism. While their approach is able to represent
strategies proposed by a number of other techniques, it does require hand craft-
ing of the rules. No suggestions are made regarding what a “good” set of rules
would be.

In [12], Amgoud and Prade examined negotiation dialogues in a possibilistic
logic setting. An agent has a set of goals it attempts to pursue, a knowledge base
representing its knowledge about the environment, and another knowledge base
which is used to keep track of what it believes the other agent’s goals are. The
authors then present a framework in which these agents interact which incorpo-
rates heuristics for suggesting the form and contents of an utterance, a dialogue
game allowing agents to undertake argumentation, and a decision procedure to
determine the status of the dialogue. Their heuristics are of particular interest as
they are somewhat similar to the work we investigate here. One of their heuris-
tics, referred to as the criterion of partial size, uses as much of an opponent’s
knowledge as possible, while the heuristic referred to as the criterion of total size
attempts to minimise the length of an argument. Apart from operating in a ne-
gotiation rather persuasion setting, their heuristics do not consider the amount
of information revealed from one’s own knowledge base.

Cayrol et al. [13] have investigated a heuristic which, in some respects, is sim-
ilar to ours. In their work, an agent has two types of arguments in its knowledge
base. The first, referred to as unrestricted arguments, is used as necessary. The
second type, consisting of so called restricted arguments, is only used when nec-
essary to defend unrestricted arguments. They provide an extension of Dung’s
argumentation framework which allows one to determine extensions in which a
minimal amount of restricted knowledge is exposed, thus providing a reasoning
procedure representing minimum information exposure. As we discuss in Section



5, argumentation frameworks based on Dung’s work leave arguments as very ab-
stract entities, making it difficult to apply the framework to some situations.
Furthermore, unlike the work detailed in this paper, Cayrol et al. do not present
a dialogical setting in which the heuristic can operate. Also, since their restricted
arguments can only be used to defend unrestricted arguments, it is not clear how
their heuristic will function in situations where all knowledge is restricted.

In [14], Bench-Capon describes a dialogue game based on Toulmin’s work.
He identifies a number of stages in the dialogue in which an agent might be
faced with a choice, and provides some heuristics as to what argument should be
advanced in each of these cases. Only an informal justification for his heuristics
is provided.

Apart from guiding strategy, heuristics have seen other uses in dialogue
games. Recent work by Chesñevar et al. [15] has seen heuristics being used to
minimise the search space when analysing argument trees. Argument schemes
[16] are well used tools in argumentation research, and can be viewed as a form
of heuristic that guides the reasoning procedure.

3 The Framework and Heuristic

In many realms of argument, auxiliary considerations (apart from simply winning
or losing the argument) come into play. In many scenarios, one such consideration
is to minimise the information provided to other parties. For example, in a court
case between a government and some alleged terrorists, the government might
not be willing to reveal the sources of some of its evidence. We thus propose a
simple heuristic to guide an agent in a dialogue: when faced with a number of
possible arguments to put forth, the one that should be advanced is the one that
exposes as little of the agent’s internal knowledge as possible. Many extensions
and refinements to this heuristic are possible, some of which are discussed in
Section 5. However, in this paper we focus on the most simple form of the
heuristic for the sake of perspicaciousness.

In formalising our heuristic, we borrow many ideas from other formal argu-
mentation systems (e.g. [17–20]).

We formalise our system in two parts. First we specify the argumentation sys-
tem itself, and then the heuristic is described, on the basis of this argumentation
system.

3.1 The Argumentation Framework

Argumentation takes place over the language Σ, which contains propositional
literals and their negation.

Definition 1. Argument An argument is a pair (P, c), where P ⊆ Σ ∪ {$}
and c ∈ Σ such that if x ∈ P then ¬x /∈ P . We define Args(Σ) to be the set of
all possible arguments in our language.



P represents the premises of an argument (also referred to as an argument’s
support), while c stands for an argument’s conclusion. Informally, we can read
an argument as stating “if the conjunction of its premises holds, the conclusion
holds”. Facts can be represented using the form ($, a).

Arguments interact by supporting and attacking each other. Informally, when
an argument attacks another, it renders the latter’s conclusions invalid.

Definition 2. Attack An argument A = (Pa, ca) attacks B = (Pb, cb) if ca =
¬cb or ∃f ∈ Pb such that f ≡ ¬ca. For convenience, we write this as attacks(A, B).

An argument is only relevant to an instance of argumentation if its premises
are true. We call such an argument justified. However, a simple definition of this
concept can cause problems when it comes to self attacking (or self defending)
arguments, as well as circular reasoning, and care must thus be taken when
describing this concept. Before doing so, we must (informally) describe the proof
theory used to determine which literals and arguments are in effect at any time.

The idea behind determining what arguments and literals are admissible
at any time is as follows. We start by looking at the facts, and determining
what knowledge can be derived from them by following chains of argument.
Whenever a conflict occurs (i.e. we are able to derive both x and ¬x), we remove
these literals from our derived set. Care must be taken to also get rid of any
arguments (and further facts) derived from any conflicting literals. To do this,
we keep track of the conflicting literals in a separate set, whenever a new conflict
arises, we begin the knowledge determination process afresh, never adding any
arguments whose conclusions are in the conflicting set to the knowledge set. The
philosophical and practical ramifications of this approach will be discussed in
Section 5.

More formally, an instance of the framework creates two sets J ⊆ Args(Σ)
and C ⊆ Σ representing justified arguments and conflicts respectively.

Definition 3. Derivation An argument A = (Pa, ca) is derivable from a set S
given a conflict set C (written S, C ( A) iff ca /∈ C and (∀p ∈ Pa : (∃s ∈ S such
that s = (Ps, p) and p /∈ C) or Pa = {$}).

Clearly, we need to know what elements are in C. Given a knowledge base
of arguments κ ⊆ Args(Σ), this can be done with the following reasoning pro-
cedure:

J0 = {A|A ∈ κ such that {}, {} ( A}

C0 = {}

Then, for i > 0, j = 1 . . . i, we have:

Ci = Ci−1 ∪ {cA,¬cA|∃A = (PA, cA), B = (PB ,¬cA) ∈ Ji−1 such that attacks(A, B)}

Xi0 = {A|A ∈ κ and {}, Ci ( A}



Xij = {A|A ∈ κ and Xi(j−1), Ci ( A}

Ji = Xii

The set X allows us to recompute all derivable arguments from scratch after
every increment of i1. Since i represents the length of a chain of arguments,
when i = j our set will be consistent to the depth of our reasoning, and we
may assign all of these arguments to J . Eventually, Ji = Ji−1 (and Ci = Ci−1)
which means there are no further arguments to find. We can thus define the
conclusions reached by a knowledge base κ as K = {c|A = (P, c) ∈ Ji}, for the
smallest i such that Ji = Ji+1. We will use the shorthand K(κ) and C(κ) to
represent those literals which are respectively derivable from, or in conflict with
a knowledge base κ.

We illustrate this algorithm with two examples (not all steps are shown):

Example 1. κ = {($, s), (s, t), (t,¬s)}
J0 = {($, s)}, C1 = {}, J1 = X11 = {($, s), (s, t)}
. . .
J2 = ($, s), (s, t), (t,¬s)
C3 = {s,¬s}
X30 = {} . . . J4 = J3 = {}

Example 2. κ = {($, a), ($, b), (a, c), (b, d), (c,¬d)}
J0 = {($, a), ($, b)}
X10 = J0, J1 = X11 = {($, a), ($, b), (a, c), (b, d)}
. . .
J2 = X22 = {($, a), ($, b), (a, c), (b, d), (c,¬d)}
. . .
C3 = {(d,¬d)},
J4 = J3 = X33 = X32 = {($, a), ($, b), (a, c)}

3.2 The Dialogue Game and Heuristic

Agents engage in a dialogue using the argumentation framework described above
in an attempt to persuade each other of certain facts. An agent has a private
knowledge base (KB) as well as a goal literal g. The environment, apart from
containing agents, contains a public knowledge base which takes on a role similar
to a global commitment store[2], and is thus referred to as CS.

Definition 4. Environment and agents An Agent α ∈ Agents is a triple
(Name, KB, g) where KB ⊆ Args(Σ) and g ∈ Σ. Name is a unique label
assigned to the agent. Given n agents in the system, we assume they are labelled
Agent0 . . . Agentn−1.

The environment is a pair (Agents, CS) where Agents is the set of agents
participating in the dialogue and CS ⊆ Args(Σ)

1 This allows us to get rid of long invalid chains of arguments, as well as detect and
eliminate arbitrary loops.



Agents take turns to put forward a line of argument consisting of a num-
ber of individual arguments. For example, an agent could make the utterance
{($, a), (a, b)}. Alternatively, an agent may pass. The dialogue ends when CS
has remained unchanged for n turns i.e. after all players have had a chance to
modify it, but didn’t (this is normally caused by all agents having passed consec-
utively). Once this has happened, the acceptable set of arguments is computed
over the CS, and the status of each agent’s goal can be determined, allowing
one to compute the winners of the game.

Definition 5. Turns and utterances The function

turn : Environment × Name → Environment

takes an environment and an agent label, and returns a new environment con-
taining the result of the utterance (utterance : Environment×Name → 2Args(Σ))
made by the labelled agent during its turn.

turn(Environment, α) = (Agents, {CS ∪ utterance(Environment, α)})

During turn i, we will set α = Agent
i mod n

, where n is the number of agents
taking part in the dialogue. We will detail the utterance function for a rational
agent below. Before doing so, we define the dialogue game itself. Each turn in
the dialogue game results in a new public commitment store, which can be used
by the agents in later turns.

Definition 6. Dialogue game The dialogue game is defined as
turn0 = turn((Agents, CS0), Agent0)
turni = turn(turni−1, Agent

i mod n
) for i = 1, 2, . . .

The game ends when turni . . . turni−n+1 = turni−n.

CS0 is dependent on the system, and contains any arguments that are deemed
to be common knowledge. Also, note that the null utterance {} is defined to be
a pass.

By using the derivation procedure described in the previous section, agents
can

– Determine, by looking at CS, what literals are in force and in conflict.
– Determine, by combining CS with parts of their own knowledge base, what

literals they can prove (or cause to conflict).

By doing the latter, together with looking at the number of literals introduced
into K and C, an agent can both determine how much information it reveals by
putting forth an argument, and narrowing down the range of possible arguments
it will submit (though possibly not to a unique argument).

An agent’s first goal is to win the argument by proving its point. If it cannot
do so, it will try to obtain a draw. Winning an argument requires that g ∈
K(CS), while a draw results if no conclusions can be reached regarding the
status of g, i.e. g ∈ C(CS) or {g,¬g} ∩ K(CS) = {}.



Definition 7. Winning arguments An agent α = (Name, KB, g) has a set
of winning arguments defined as
Win = {A ∈ 2KB| g ∈ K(A ∪ CS) and if A -= {}, {} /∈ A}

Definition 8. Drawing arguments An agent α = (Name, KB, g) has a set
of drawing arguments defined as
Draw = {A ∈ 2KB| (g ∈ C(A ∪ CS) or {g,¬g} ∩ K(A ∪ CS) = {}) and if
A -= {}, {} /∈ A}

An information aware agent is one that attempts to win an argument while
minimising the amount of information it exposes.

Definition 9. Information exposure The information exposed by an agent
α = (Name, KB, g) making an utterance A ∈ 2KB can be defined as follows:

Inf = |K(A ∪ CS) + C(A ∪ CS)|− |K(CS) + C(CS)|

Where K(X) and C(X) are the sets of literals obtained by running the reasoning
process over the set of arguments X.

An agent prefers a winning strategy over one which leads to a draw, and
orders its winning strategies by the amount of information they reveal. This
may still lead to multiple possible arguments, in which case other heuristics
(such as choosing the shortest possible chain of arguments) may be employed to
select a unique argument. We do not discuss these other heuristics in this paper.
This preference over arguments can be captured in the following definition:

Definition 10. Possible arguments The set of possible arguments an agent
would utter is defined as

PA =







































A ∈ Win s.t. Inf (A) = min(Inf (B)), B ∈ Win. Win -= {}

A ∈ Draw s.t. Inf (A) = min(Inf (B)), B ∈ Draw Win = {},
Draw -= {}

{} Win = {},
Draw = {}

The utterance an agent makes is one of these possible arguments: utterance ∈
PA

It should be noted that a “pass”, i.e. {} might still be uttered as part of the
Win or Draw strategy.

When the game is over, all that remains to be done is determine who (if
anyone) won the argument:

Definition 11. Victory conditions The set of winning agents is Agentswin =
{α = (Name, KB, g) ∈ Agents| g ∈ K(CS)}. Similarly, the set of drawing
agents is Agentsdraw = {α = (Name, KB, g) ∈ Agents| g ∈ C(CS) or ¬g /∈
K(CS) and α /∈ Agentswin}. All other agents are in the losing set: Agentslose =
{α ∈ Agents|α /∈ (Agentswin ∪ Agentsdraw)}



Literals in K(CS) at the end of the game are those agreed to be in force by
all the agents.

In this section, we have defined an argument framework which allows an
agent to determine which arguments are in force by performing forward chain-
ing on a knowledge base of arguments, beginning with those arguments which
have no premises. We then described a simple dialogue together with a reason-
ing procedure which allows an agent to put forth arguments revealing as little
information as possible. During each move, an agent picks which arguments to
reveal from its private knowledge base by computing what literals are in conflict
(via C(CS)) and which literals would be deemed accepted (by using K(CS)) for
the new CS containing the arguments it would put forth. If it determines that
there are a number of possible arguments it could submit that would win (or,
if no winning arguments exist, draw) it the game, it chooses to utter the set of
arguments which minimise the amount of information it reveals2.

Having defined our system, we can now look at its features. In the next
section we provide a small example of a dialogue, after which we provide a more
in-depth discussion of the framework, heuristic, and features that emerge by
studying the example.

4 Example

To increase readability, we present our example in a somewhat informal manner.
The argument focuses on the case for, or against, the possibility of weapons of
mass destruction (WMDs) existing at some location.

We assume a two party dialogue (with Agent0 = α, Agent1 = β), and
describe only one agent’s knowledge base. At the start of the game, our agent
has the following facts in its private knowledge base KB:

($, Chemicals) Chemicals exist
($, Photo) Photos exist
($, Newspaper) Newspaper articles exist
($, Factory) Factories exist
($,¬Medicine) Medicine is not being produced
(Newspaper, WMD) If newspapers say so, then WMDs exist
({Photo, Factory},¬WMD) Pictures of factories mean WMDs don’t exist
(Chemicals,¬Medicine) Chemicals mean medicine isn’t being produced
({Chemicals, Factory}, WMD) Chemicals and factories mean WMDs exist

2 A Prolog implementation of the argumentation framework, dialogue game and
heuristic is available at http://www.csd.abdn.ac.uk/~noren



Then the following dialogue takes place (α’s goal is the literal WMD):

(α) ($, Newspaper), (Newspaper, WMD) 1
(β) ($,¬Newspaper), ($, Factory), (Factory, Medicine),

(Medicine,¬WMD) 2
(α) ($, Chemicals), (Chemicals,¬Medicine),

({Chemicals, Factory}, WMD) 3
(β) {} 4
(α) {} 5

Informally, agent α claims that since newspaper articles about the subject
exist, WMDs must exist (as per the newspaper’s claims). β responds by saying
that it has not seen any articles, but that since he knows that factories exist, and
that these factories produce medicines, WMDs are not present (possibly implying
that any evidence found is due to these medicines). α counters that chemicals
were found, and that the finding of these is incongruent with the presence of
medicines, also stating that the presence of the factories and the chemicals is
proof regarding the existence of WMDs. β has no response to this, and after α
stays silent, the game ends with α successfully proving his goal.

Before examining the dialogue in detail, we can discuss a few interesting,
global properties of the heuristic:

– An agent that knows it will lose an argument is still able to win it by assuming
that its opponent does not have access to the same information it does. It
could be argued that passing to draw (or win) a game when it has not
revealed all its information is tantamount to lying.

– The heuristic is different to the “Occam’s razor” heuristic that has often
appeared in the literature. The latter proposes that the shortest argument
be put forth first, while we are able to present longer arguments if they reveal
less information. In many cases however, the two heuristics can coincide
regarding what utterance should be made next.

Let us examine line 3 in more detail. Before this line, our public knowledge
base, CS, contained the following arguments:

($, Newspaper) (Newspaper, WMD) ($,¬Newspaper)
($, Factory) (Factory, Medicine) (Medicine,¬WMD)

Clearly, apart from having an information exposure value (Inf in Definition
9) of one, an argument such as ($, Photo) will not be considered as it is not
part of the winning or drawing set. The argument chosen has an information
exposure value of two (as the literals Chemicals and ¬Medicine are added to
CS), but was chosen as it is part of the winning set. Note that an argument
such as

(Chemicals,¬Medicine), ($, Chemicals)
({Chemicals, Factory}, WMD), ($, Photo)

is also part of the winning set, but has a higher information exposure value.



The argument (Chemicals,¬Medicine), ($, Chemicals) Belongs to the draw-
ing set, and has an information exposure value of one.

The argument ($, Photo), ({Photo, Factory},¬WMD) has an information
exposure value of 2, and, if suggested after line 3 of the dialogue, is part of the
drawing set. It will thus not be selected as an utterance.

Since our winning set is non-empty, our agent was forced to pick an argument
from there. By modifying Definition 10, we could define a number of different
classes of agents with a range of preferences based on winning, drawing or losing
an argument and revealing different amounts of information.

5 Discussion

This section examines the argumentation framework and the heuristic, tying it
back to the concept of an argumentation strategy as proposed by Moore. We
also examine some of the novel features of argument that emerge when dialogue
takes place in the framework using the heuristic, and propose avenues for future
research.

Our approach seems to share much in common with the “sceptical” approach
to argumentation. When arguments conflict, we refuse to decide between them,
instead ruling them both invalid. This means that our reasoning procedure is
not complete, given the (rather convoluted) set of arguments

($, A), ($, B), (A,¬B), (B,¬A), (A, C), (B, C), (¬A, C), (¬B, C)

we see that C should hold, but doesn’t. Other argumentation systems (namely
those utilising the unique–status–assignment approach [4]) are similarly incom-
plete, leaving this an open area for future research. Our sceptical approach does
yield a consistent system, as no conflicting arguments will remain in the final
set of arguments.

The simplicity of our approach means that only specific types of arguments
can be represented (namely, those whose premises are a conjunction of literals,
and whose conclusion is a single literal). However, as seen in the example, even
with this limitation, useful arguments can still emerge.

We developed our own argumentation framework rather than using an exist-
ing one for a number of reasons, including:

– The abstract nature of many frameworks (e.g. [17]) makes arguments atomic
concepts. We needed a finer level of granularity so as to be able to talk about
which facts are exposed (allowing us to measure the amount of information
revealed during the dialogue process). Less abstract frameworks (e.g. [21,
18]), while looking at concepts such as derivability of arguments still pri-
marily focus on the interactions between arguments.

– Almost all other frameworks define higher level concepts in terms of argu-
ments attacking, defeating and defending one another. For us, the concept
of one argument justifying another is critical, together with the concept of
attack.



– Other argumentation systems contain concepts which we do not require, such
as a preference ordering over arguments.

– Approaches such as [18] divide their argument constructs into defeasible
and indefeasible sets, with a consistency requirement on the indefeasible
set, and then provide for default reasoning over the defeasible arguments.
Our framework only takes the defeasible nature of arguments into account,
ignoring default reasoning.

While representing the heuristic using one of the other approaches is (prob-
ably) not impossible, it appears to be more difficult than by using our own
system.

Looking at Moore’s three criteria for an agent argumentation strategy, we see
that our heuristic fulfils its requirements. If the focus of the argument were not
maintained, more information would be given than is strictly necessary to win,
thus fulfilling the first requirement. Both the second and third requirements are
clearly met by the decision procedure for which argument to advance described
in Definition 10.

Investigating the use of the heuristic in more complex settings (by either
increasing the representational power of the framework, or by representing the
heuristic in another argumentation framework) is one possible direction of future
work.

One disadvantage of our approach is that at each move, we evaluate possible
arguments from the powerset of an agent’s private knowledge. This leads to
an exponential complexity in our algorithm. While simple techniques can be
applied to shrink the size of the powerset, more complicated approaches which
can further reduce the algorithm’s running costs need to be examined.

Making the heuristic more realistic is another area we are investigating. For
example, rather than treating all information equally, we could assign a nu-
merical cost to each literal, and attempt to minimise this cost while winning
the argument. Another avenue for future research involves determining how this
heuristic can best be combined with techniques for resource bounded reasoning.
Allowing agents to communicate with each other privately, rather than with all
dialogue participants allows for a number of knowledge bases to exist. An agent
might have certain information it is willing to reveal to some, but not all par-
ticipants, and investigating strategies for such dialogues is another rich research
area.

6 Conclusions

In this paper we proposed a heuristic for argumentation based on revealing as
little information as possible to the other dialogue participants. While such an
argumentation strategy arises in many real world situations, we are not familiar
with any application that explicitly makes use of this technique. To study the
heuristic, we proposed an argumentation framework that allowed us to focus on it
in detail. Several novel features emerged from the interplay between the heuristic
and the framework, including the the ability of an agent to win an argument that



it should (given all possible information) not be able to win. While we have only
examined a very abstract model utilising the heuristic, we believe that many
interesting extensions are possible, and many unanswered questions remain.
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Abstract. The purpose of this paper is to address the strategic and
tactic issues in agent communication. Strategic reasoning enables agents
to decide about the global communication plan in terms of the macro-
actions to perform in order to achieve the main conversational goal.
Tactic reasoning, on the other hand, allows agents to locally select, at
each moment, the most appropriate argument according to the adopted
strategy. Previous efforts at defining and formalizing strategies for argu-
mentative agents have often neglected the tactic level and the relation
between strategic and tactic levels. In this paper, we propose a formal
framework for strategic and tactic reasoning for rational communicat-
ing agents and the relation between these two kinds of reasoning. This
framework is based on our social commitment and argument approach
for agent communication.

1 Introduction

Recent years have seen an increasing interest in agent communication. Using
argumentation theories in this domain seems a promising way to develop more
flexible and efficient agent communication mechanisms [1, 3, 4, 14, 16, 26]. The
idea is to provide agents with reasoning capabilities allowing them to decide
about the appropriate communicative acts to perform in order to achieve some
conversational goals in different dialogue types [18, 19, 21, 22, 24].

In order to improve the agent communication efficiency, we propose in this
paper a formal framework addressing strategic and tactic issues. A strategy is
defined as a global cognitive representation of the means of reaching some goals
[31]. Tactic is basically the mean to reach the aims fixed at the strategic level
[20]. For example, according to Moore [20], maintaining focus of the dispute in
a persuasive dialogue, and building a point of view or destroying the opponent’s
one refer to strategy, whereas selecting methods to fulfill these two objectives
refers to tactic. In our framework, the agents’ strategic and tactic reasoning
is based upon their argumentative capabilities. Agents use this reasoning in
order to achieve their conversational goals. Strategic reasoning allows agents
to plan the global line of communication in terms of the sub-goals to achieve,
whereas tactic reasoning allows them to locally select, at each moment, the
most appropriate argument according to the adopted strategy. In other words,
strategy is considered at the global level (in which direction the communication
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can advance) and the tactics are considered at the local level (which move to be
selected next).

In recent years, some significant proposals have explored the strategic rea-
soning of argumentative agents [2, 15, 25, 27]. However, the tactical reasoning has
often been neglected or simplified to a private preference policy like in [15]. In
addition, as outlined in [10], the problem of coming up with an optimal communi-
cation strategy that ensures beneficial interaction outcomes for the participating
agents is still an open problem. We think that an efficient agent communica-
tion requires to address both the strategic and tactic levels and the relation
between these two levels. The objective of this paper is to investigate this is-
sue for argumentative-based agent communication. Our contribution starts by
formalizing strategic and tactic reasoning and the relation between them us-
ing a management theory. At the tactical level, we develop a theory allowing
agents to select the most relevant argument at each moment according to the
adopted strategy. In addition, our approach enables agents to take into account
the context of conversation and to be able to backtrack if some choices are not
appropriate.

Paper overview. In Section 2, we introduce the fundamental ideas of our
agent communication approach based on social commitments and arguments. In
Section 3, we present the strategic level of our framework and its relation with
the tactic level. In Section 4, we present the tactic reasoning. In Section 5, we
illustrates our ideas by an example. In Section 6, we compare our framework to
related work and conclude the paper.

2 Agent Communication Approach

Our agent communication approach is based on the philosophical notion of so-
cial commitments (SCs) [30]. A SC is an engagement made by an agent (called
the debtor), that some fact is true or that some action will be performed. This
commitment is directed to a set of agents (called creditors). A SC is an obliga-
tion in the sense that the debtor must respect and behave in accordance with
this commitment. Commitments are social in the sense that they are expressed
publicly and governed by some rules. This means that they are observable by
all the participants. The main idea is that a speaker is committed to a state-
ment when he made this statement or when he agreed upon this statement
made by another participant and acts accordingly. For simplification reasons,
we suppose that we have only one creditor. Thus, we denote a SC as follows:
SC(Ag1, Ag2, t,ϕ) where Ag1 is the debtor, Ag2 is the creditor, t is the time
associated with the commitment, and ϕ its content. Logically speaking, a SC
is a public propositional attitude. The content of a SC can be a proposition or
an action. A detailed taxonomy of the SCs is presented in [5] and their logical
semantics is developed in [6].

In order to model the dynamics of conversations in our framework, we inter-
pret a speech act as an action performed on a SC or on a SC content. A speech
act is an abstract act that an agent, the speaker, performs when producing an
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utterance U and addressing it to another agent, the addressee [29]. According to
speech act theory [29], the primary units of meaning in the use of language are
not isolated propositions but rather speech acts of the type called illocutionary
acts. Assertions, questions, orders and declarations are examples of these illocu-
tionary acts. In our framework, a speech act can be defined using BNF notation
as follows.

Definition 1 (Speech Acts). SA(ik, Ag1, Ag2, tu, U) =def

Act(Ag1, tu, SC(Ag1, Ag2, t, ϕ))
|Act−cont(Ag1, tu, SC(Agi, Agj , t, ϕ))
|Act(Ag1, tu, SC(Ag1, Ag2, t,ϕ)) &
Act−cont(Ag1, tu, SC(Agi, Agj , t,ϕ))

where SA is the abbreviation of ”Speech Act”, ik is the identifier of the speech
act, Ag1 is the speaker, Ag2 is the addressee, tu is the utterance time, U is
the utterance, Act indicates the action performed by the speaker on the commit-
ment: Act ∈ {Create,Withdraw, V iolate, Satisfy}, Act−cont indicates the ac-
tion performed by the speaker on the commitment content: Act−cont ∈ {Accept−
cont,Refuse−cont, Challenge−cont, Justify−cont,Defend−cont,Attack−cont},
i, j ∈ {1, 2}, i #= j, the meta-symbol ”&” indicates the logical conjunction between
actions performed on social commitments and social commitment contents.

The definiendum SA(ik, Ag1, Ag2, tu, U) is defined by the definiens
Act(Ag1, tu, SC(Ag1, Ag2, t, ϕ)) as an action performed by the speaker on its SC.
The definiendum is defined by the definiens Act−cont(Ag1, tu, SC(Agi, Agj , t,ϕ))
as an action performed by the speaker on the content of its SC (i = 1, j = 2)
or on the content of the addressee’s SC (i = 2, j = 1). Finally, the definiendum
is defined as an action performed by the speaker on its SC and as an action
performed by the speaker on the content of its SC or on the content of the
addressee’s SC. These actions are similar to the moves proposed in [28].

We notice here that using a social (public) approach as a theoretical founda-
tion does not mean that agents do not reason on their private mental states or on
the addressees’ mental states (beliefs, intention, etc.). According to Definition 1,
this public approach is used at the semantical level in order to interpret commu-
nicative acts as social commitments and not as mental states (see [6, 7] for more
details about the public semantics). Public and mental (private) approaches are
not contradictory, but rather, they are complementary. In our framework, agents
reason on SCs and on their beliefs about the addressees’ beliefs and preferences
(see Section 4.2). These beliefs are not public, but they can, for example, be
inferred from past interactions.

Our approach is also based on argumentation. Several argumentation theories
and frameworks have been proposed in the literature (see for example [9, 17, 23]).
An argumentation system essentially includes a logical language £, a definition
of the argument concept, a definition of the attack relation between arguments,
and finally a definition of acceptability. We use the following definitions from
[1]. Here Γ indicates a possibly inconsistent knowledge base with no deductive
closure, and $ stands for classical inference.
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Definition 2 (Argument). An argument is a pair (H,h) where h is a formula
of £ and H a subset of Γ such that: i) H is consistent, ii) H $ h and iii) H is
minimal, so that no subset of H satisfying both i and ii exists. H is called the
support of the argument and h its conclusion.

Definition 3 (Attack). Let (H1, h1), (H2, h2) be two arguments. (H1, h1) at-
tacks (H2, h2) iff H2 $ ¬h1. In other words, an argument is attacked if and only
if there exists an argument for the negation of its conclusion.

The link between commitments and arguments enables us to capture both
the public and reasoning aspects of agent communication. This link is explained
as follows. Before committing to some fact h being true (i.e. before creating a
commitment whose content is h), the speaker agent must use its argumenta-
tion system to build an argument (H, h). On the other side, the addressee agent
must use its own argumentation system to select the answer it will give (i.e. to
decide about the appropriate manipulation of the content of an existing commit-
ment). For example, an agent Ag1 accepts the commitment content h proposed
by another agent Ag2 if it is able to build an argument supporting this content
from its knowledge base. If Ag1 has an argument (H ′,¬h), then it refuses the
commitment content proposed by Ag2. However, how agents can select the most
appropriate argument at a given moment depends on its tactic. This aspect is
detailed in Section 4. The social relationship that exists between agents, their
reputations and trusts also influence the acceptance of the arguments by agents.
However, this aspect will not be dealt with in this paper. The argumentation re-
lations that we use in our model are thought of as actions applied to commitment
contents. The set of these relations is: {Justify, Defend, Attack}.

In order to implement this communication model, we use an agent archi-
tecture composed of three layers: the mental layer, the social layer, and the
reasoning layer. The mental layer includes beliefs, desires, goals, etc. The social
layer captures social concepts such as SCs, conventions, roles, etc. Agents must
use their reasoning capabilities to reason about their mental states before act-
ing on SCs. The agent’s reasoning capabilities are represented by the reasoning
layer using an argumentation system. Our conversational agent architecture also
involves general knowledge, such as knowledge about the conversation subject.
Agents can also reason about their preferences in relation to beliefs. The idea is
to capture the fact that some facts are more strongly believed. For this reason,
we assume, like in [1], that any set of facts has a preference order over it. We
suppose that this ordering derives from the fact that the agent’s knowledge base
denoted by Γ is stratified into non-overlapping sets Γ1, . . . , Γn such that facts in
Γi are all equally preferred and are more preferred than those in Γj where i < j.
We can also define the preference level of a subset of Γ whose elements belong
to different non-overlapping sets as follows.

Definition 4 (Preference Level). The preference level of a nonempty subset
γ of Γ denoted by level(γ) is the number of the highest numbered layer which
has a member in γ.
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Example 1. Let Γ = Γ1 ∪ Γ2 with Γ1 = {a, b} and Γ2 = {c, d} and γ = {a} and
γ′ = {a, d}. We have: level(γ) = 1 and level(γ′) = 2.

3 Strategic Reasoning

According to the theory of constraints proposed by Goldratt [13], the common
view about strategy is that of setting the high objectives of an initiative. The
strategy dictates the direction of all activities. Tactics, on the other hand, are the
chosen types of activities needed to achieve the objectives. Indeed, tactics allow
us to implement and accomplish the strategy. In management, a strategic plan
defines the mission, vision and value statements of an enterprize. Once objectives
are defined, alternative strategies can be evaluated. While a goal or an objective
indicates ”what” is to be achieved, a strategy indicates ”how” that achievement
will be realized. Strategies, therefore, depend on goals and objectives. Tactics
are the steps involved in the execution of the strategy.

Our strategic and tactic framework for agent communication is based on
this vision. In this framework, the dialogue strategy is defined in terms of the
sub-goals to be achieved in order to achieve the final conversational goal. The
sub-goals represents the macro-actions to be performed. This reflects the global
vision and the direction of the dialogue. The strategy has a dynamic nature
in the sense that the sub-goals can be elaborated while the dialogue advance.
The strategy can also be adjusted when more information becomes available.
The tactics represent the micro-actions to be performed in order to achieve each
elaborate (elementary) sub-goal. This reflects the local vision of the dialogue. A
tactic is succeeded when the sub-goal is achieved, and the strategy is succeeded
when all the involved tactics are succeeded, which means that the final goal is
achieved. Fig. 1 illustrates the strategic and tactic levels in our framework.

Indeed, in multi-agent systems, agents are designed to accomplish particular
tasks. Each agent has its own domain and a certain goals to achieve. We call this
kind of goals: operational goals. These agents often have to interact with each
other in order to achieve some sub-goals of the operational goals. These sub-goals
generate what we call conversational goals. In our framework, we distinguish be-
tween these two types of goals. In the same way, we distinguish between domain
constraints, called operational constraints, and conversational constraints called
criterions. Time and budget constraints are examples of operational constraints,
and respecting the religious and ideological believes of the addressee is an exam-
ple of criterions. In our framework, a dialogue strategy depends on the conversa-
tional goal, operational constraints and criterions. Operational constraints and
criterions also reflect the factors that may influence the strategy design: goals,
domain, agents’ capabilities, agents’ values, protocol, counterparts, agents’ re-
sources, and alternatives [25]. Domain, agents’ capabilities, and agents’ values
are operational constraints. Protocol, counterparts, agents’ resources, and alter-
natives are criterions.

The initiative agent must build a global and initial strategy before starting
the conversation. A strategy allows an agent to decide about the main sub-goals
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Fig. 1. Strategy and tactics in our framework

to be fixed in order to achieve the conversational goal according to a set of op-
erational constraints and conversational criterions. To achieve the same conver-
sational goal, an agent can have several alternative strategies depending on the
sub-set of operational constraints and the sub-set of criterions the agent decide
to satisfy. The conversational goal, sub-goals, operational constraints and crite-
rions can be expressed in a logical language. The set of operational constraints
and the set of criterions can be inconsistent. However, the sub-set of operational
constraints and the sub-set of criterions the agent decide to satisfy should be con-
sistent. We define a strategy as a function that associates to a goal and a sub-set
of operational constraints and a sub-set of criterions a set of goals (sub-goals).

Definition 5 (Strategy). Let B be a set of goals, Ctr be a set of operational
constraints, and Cr be a set of conversational criterions. A strategy is a function:
Str : B × 2Ctr × 2Cr → 2B

Strategies are dynamic in nature. Agents should adjust the adopted dialogue
strategy while the conversation progresses. This can be achieved by taking into
account the new constraints and criterions that can appear during the conver-
sation. In this case, the new constraints and criterions to be satisfied should
be consistent with the initial sub-set of constraints and criterions selected to
be satisfied. Thus, agents can apply the strategy function (Str) each time new
constraints and criterions are added. This enables agents to decide about the
sub-goals to be achieved of each already fixed sub-goal. In Fig. 1, this is illus-
trated by the different levels: from a level i to a level i + 1 (we suppose that
the level in which we have the main or final goal is the lower one). We notice
here that the set of criterions can progress with the dialogue, whereas the set of
operational constraints is generally more stable.
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Example 2. Let us suppose that: Ctr = {x0, x1, x2} and Cr = {y0, y1}. Let
B ∈ B be the conversational goal, and SCtr and SCr be two sub-sets of Ctr
and Cr representing the constraints and criterions selected to be satisfied. We
suppose that: SCtr = {x0, x1} and SCr = {y1}. We can have at a first time
(level 0): Str(B, SCtr, SCr) = {B1, B2, B3}. At a second time (level 1), we
suppose that: SCr = SCr∪ {y2}. Thus, by applying the Str function on B1, we
can obtain: Str(B1, SCtr, SCr) = {B11, B12, B13}.

This example illustrates how the strategy can influence the dialogue by deciding
about the sub-goals to achieve in order to achieve the main conversational goal.
The dialogue advance, on the other hand, influences the strategy by taking into
account the new operational constraints and criterions. In the case where the
new constraints and criterions are inconsistent with the initial selected ones, the
adopted strategy should be completely or partially changed. The strategy should
be completely changed if the main goal is changed. However, if only one of the
sub-goals is changed, the strategy should be partially changed.

In our framework, agents start by using the strategic reasoning to build the
general line of communication. This is reflected by applying the function Str on
the main conversational goal. Thereafter, strategic reasoning and tactic reasoning
are used in parallel. The link between strategy and tactics is that each tactic
is related to a sub-goal fixed by the strategy. The execution of a tactic allows
the execution, the evolution, and the adaptation of the strategy. For example, if
the tactic does not allow the achievement of a sub-goal, the strategy should be
adapted to fix another sub-goal.

4 Tactic Reasoning

In this section, we present our theory of the tactical reasoning for argumentation-
based communicative agents. As illustrated in Fig. 1, tactics allow agents to
select from a set of actions, one action in order to achieve a sub-goal fixed
by the adopted strategy. The purpose of our theory is to guarantee that the
selected action is the most appropriate one according to the current context. In
the rest of this paper, the actions we consider are arguments that agents use to
support their points of view or attack the opponent’s point of view. The most
appropriate action is then the most relevant argument. This enables agents to
be more efficient in their argumentation. Our theory is based on the relevance
of arguments.

4.1 Relevance of Arguments

The most significant attempts to formalize relevance have been done by van Rooy
[32] and Fleger [12]. van Rooy supposes that the relevance of a communication
act in purely competitive dialogues depends on its argumentative force in a given
context. The argumentative force of a proposition with respect to a hypothesis
is defined by a probability function, which assigns a value to a proposition. This
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value represents the probability that this proposition is true. However, van Rooy
does not specify how we can assign probabilities to different propositions. Fleger’s
proposal is based on the proof theory of minimality. It considers that an argument
is irrelevant if it is not in relation to the conversation subject (or problem to
be solved) or if it contains useless premises. This notion of relevance takes into
account only the agent’s knowledge base without considering the context of
conversation. In addition, the minimality concept is not related to the notion of
relevance, but it is a part of arguments definition.

In our framework, we define the relevance of an argument according to the
context of conversation. Our objective is to allow agents to select the most
relevant argument at a given moment by taking into account not only the last
communicative act, but also the previous acts. The idea is to provide a solution
allowing backtracking. This means that, an agent selects one among a set of
possible arguments represented as a tree. If the choice proves to be incorrect
because the selected argument is not accepted by the addressee agent and cannot
be defended, the agent can backtrack or restart at the last point of choice and
can try another argument, which is represented by trying another path in the
tree. The arguments are ordered according to their relevance. We call this process
arguments selection mechanism.

4.2 Arguments Selection Mechanism

Let L be a logical language. The context of conversation for an agent Ag1 com-
mitted in a conversation with another agent Ag2 is defined as follows.

Definition 6 (Context). The context of conversation for an agent Ag1 (the
speaker) committed in a conversation with an agent Ag2 (the addressee) is a
5-tuple CAg1,Ag2 = 〈S, s,PAg1,Ag2 ,KD〉 where:

• S is a formula of L representing the conversation subject that corresponds
to the conversational goal,

• s is a formula of L representing the argument on which the speaker should
act,

• PAg1,Ag2 is the set of Ag1’s beliefs about Ag2’s beliefs Pbel
Ag1,Ag2

and about
Ag2’s preferences Ppref

Ag1,Ag2
. Thus PAg1,Ag2 = Pbel

Ag1,Ag2
∪ Ppref

Ag1,Ag2
,

• KD is the knowledge that the two agents share about the conversation.

KD can contain results or laws related to the domain that are already proved.
In addition, all information on which the two agents agree during the current
conversation is added to KD. For example, the accepted arguments are added
to KD. We also assume that KD ∩ PAg1,Ag2 = ∅.

In the context CAg1,Ag2 , formula s should be relevant for subject S in the
sense that there is a logical relation between the two formulas. This relation
represents the link between tactic and strategy. The idea is that the current
action (at the tactic level) is related to a sub-goal, which is fixed by the strategy.
The current argument can attack or support the formula representing the sub-
goal. In order to define this logical relation between S and s, we introduce the
notion of argumentation tree and the notion of path that we define as follows.
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Definition 7 (Argumentation Tree). Let A be the set of participating agents
and AR be the set of arguments used by the agents in the dialogue. An argumen-
tation tree T is a 2-tuple T = 〈N,→〉 where:

• N = {(Agi, (H, h))|Agi ∈ A, (H, h) ∈ AR} is the set of nodes. Each node is
described as a pair (Agi, (H, h)), which indicates that the argument (H, h) is
used by the agent Agi,

• →⊆ N × N is a relation between nodes. We write n0 → n1 instead of
(n0, n1) ∈→ where {n0, n1} ⊆ N . The relation → is defined as follows:
(Ag1, (H, h)) → (Ag2, (H ′, h′)) iff Ag1 #= Ag2 and (H ′, h′) attacks (H,h)
(see definition 3).

This notion of argumentation tree is close to the notion of argument tree
introduced in [8] and to the notion of abstract dispute tree used in [11]. The main
difference between our argumentation tree notion and these two notions is that
the first one is used to formalize the logical relation between the conversation
subject S and the current argument s and not to illustrate the dialectical proof
and the acceptance of arguments. In addition, our argumentation tree is used to
illustrate the backtracking process which is not dealt with in [8] and in [11].

We associate each (argumentative) conversation to an argumentation tree.
The root of such an argumentation tree is the initial node n0 = (Agi, (H, S))
where Agi is the initiating agent (Agi ∈ A) and (H, S) is the argument support-
ing the conversation subject (or the conversation goal).

Definition 8 (Path). Let T = 〈N,→〉 be an argumentation tree. A path in T
is a finite sequence of nodes n0, n1, . . . , nm such that ∀i 0 ≤ i < m : ni → ni+1.

Proposition 1. Let CAg1,Ag2 = 〈S, s,PAg1,Ag2 , KD〉 be a context of conversa-
tion and A = {Ag1, Ag2} be the set of participating agents. There is a logical
relation between S and s in the context CAg1,Ag2 iff there is a path in the argu-
mentation tree associated with the conversation between the root and the current
node nm = (Agi, (H ′, s)) where i ∈ {1, 2} and (H ′, s) is the argument supporting
s.

The existence of a path in the tree between the root and the current ar-
gument means that this argument defends or attacks directly or indirectly the
conversation subject. Thus, independently on the path, there is a logical relation
between S and s.

In our approach, we first distinguish between relevant and irrelevant argu-
ments in a given context. This distinction allows agents to eliminate at each
argumentation step irrelevant arguments before ordering the relevant arguments
in order to select the most relevant one.

Definition 9 (Irrelevant Argument). Let CAg1,Ag2 = 〈S, s,PAg1,Ag2 , KD〉
be a context of conversation, A be the set of participating agents, T = 〈N,→〉
be the argumentation tree associated to the conversation, and (Agi, (H, h)) be a
node in T where i ∈ {1, 2}. (H,h) is irrelevant in the context CAg1,Ag2 iff:
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1. There is no path between the node (Agi, (H, h)) and the root of T or;
2. ∃x : H $ x ∧ ¬x ∈ KD.

The first clause states that the argument does not address the conversa-
tion subject. The second clause states that the argument contradicts the shared
knowledge. We notice here that KD is a knowledge base that changes during
the conversation. Thus, an argument built at a step ti can become irrelevant
at a later step tj if it contradicts the new information accepted by the agent.
In these two cases, the argument is irrelevant and the agent can not use it. Ir-
relevant arguments must be removed from the set of arguments that the agent
can use at a given step of the conversation. This set, called the set of potential
arguments, is denoted by PA.

In Section 2, we emphasized the fact that agents can have private preferences
about different knowledge (see definition 4). Therefore, they can have private
preferences about arguments. This preference relation denoted by (H,h) 0Agi

pref
(H ′, h′) means that agent Agi prefers the argument (H ′, h′) to the argument
(H, h). We define this relation as follows.

Definition 10 (Preference). Let (H, h) and (H ′, h′) be two arguments.
(H, h) 0Agi

pref (H ′, h′) iff level(H ′) ≤ level(H).

Because ≤ is an ordering relation, the preference relation 0Agi

pref is reflex-
ive, antisymmetric, and transitive. Agents may also have favorites among their
arguments. How an agent favors an argument over others depends on the dia-
logue type. For example, in a persuasive dialogue, an agent can favor arguments
having more chances to be accepted by the addressee. In order to character-
ize this notion, we introduce the notion of weight of an argument. The weight
of an argument (H, h) compared to another argument (H ′, h′) in the context
CAg1,Ag2 = 〈S, s,PAg1,Ag2 , KD〉 is denoted by W

PAg1,Ag2
(H,h)/(H′,h′) and is evaluated

according to the following algorithm:

Algorithm 1 (Evaluation of an Argument compared to Another One).

Step 1: W
PAg1,Ag2
(H,h)/(H′,h′) = 0.

Step 2: (∀x ∈ H), (∀x′ ∈ H ′) :
(pref(x, x′) ∈ Ppref

Ag1,Ag2
) ⇒ W

PAg1,Ag2
(H,h)/(H′,h′) = W

PAg1,Ag2
(H,h)/(H′,h′) +1.

pref(x, x′) ∈ Ppref
Ag1,Ag2

means that Ag1 believes that Ag2 prefers x to x’.

According to this algorithm, the weight of an argument (H,h) compared
to another argument (H ′, h′) is incremented by 1 each time Ag1 believes that
Ag2 prefers a knowledge in H to a knowledge in H ′. Indeed, each element of
H is compered once to each element of H ′according to the preference relation.
Consequently, the weight of an argument is finite because H and H ′ are finite
sets.
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The favorite relation is denoted by 2PAg1,Ag2
fav and the strict favorite relation

is denoted by ≺PAg1,Ag2
fav . (H, h) 2PAg1,Ag2

fav (H ′, h′) means that agent Ag1 favors
the argument (H ′, h′) over the argument (H, h) according to PAg1,Ag2 . This
relation is defined as follows.

Definition 11 (Favorite Argument). Let CAg1,Ag2 = 〈S, s,PAg1,Ag2 ,KD〉 be
a context of conversation and (H,h) and (H ′, h′) be two arguments in the context
CAg1,Ag2 . We have :

(H, h) 2PAg1,Ag2
fav (H ′, h′) iff W

PAg1,Ag2
(H,h)/(H′,h′) ≤ W

PAg1,Ag2
(H′,h′)/(H,h),

(H, h) ≺PAg1,Ag2
fav (H ′, h′) iff W

PAg1,Ag2
(H,h)/(H′,h′) < W

PAg1,Ag2
(H′,h′)/(H,h).

In order to allow agents to select the most relevant argument in a conversation
context, we introduce an ordering relation between relevant arguments. This
ordering relation depends on the adopted strategy and is based on the notion
of the risk of failure of an argument. This notion of risk is subjective and there
are several heuristics to evaluate the risk of an argument. In this paper we use
a heuristic based on the fact that KD contains certain knowledge and PAg1,Ag2

contains uncertain beliefs. We formally define this notion as follows.

Definition 12 (Risk of Failure of an Argument). Let CAg1,Ag2 =
〈S, s,PAg1,Ag2 ,KD〉 be a context of conversation and (H,h) be a relevant argu-
ment in the context CAg1,Ag2 . The risk of failure of (H,h) denoted by risk((H, h))
is the sum of the risks of failure of all the formulas included in H. The risk of
failure of a formula q denoted by risk(q) is defined as follows:

• if q ∈ KD then risk(q) = v1.
• if q ∈ PAg1,Ag2 then risk(q) = v2.
• otherwise risk(q) = v3.

Where v1 < v2 < v3 and v1, v2, v3 ∈ R.

Values v1, v2 and v3 should be instantiated according to the dialogue type
and the confidence level of the beliefs included in PAg1,Ag2 . For example, in a
persuasive dialogue and if we consider that KD contains certain knowledge, we
may have v1 = 0, v2 = 0.25, v3 = 0.5. If the confidence level of PAg1,Ag2 is weak,
it is possible to increase v2. However, if this confidence level is high, it is possible
to decrease v2. In a persuasive dialogue, the idea behind the risk of failure is to
promote arguments whose hypotheses have more chance to be accepted. Other
approaches like those used in fuzzy systems to reason with uncertainty (using
for example probabilities) can also be used to evaluate the risk of an argument.
The advantage of our approach is that it is easy to implement and it reflects the
intuitive idea that adding uncertain hypotheses increases the risk of failure of
an argument.

The relevance ordering relation denoted by 2r can be defined as follows.
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Definition 13 (Relevance Ordering Relation). Let CAg1,Ag2 =
〈S, s,PAg1,Ag2 ,KD〉 be a conversation context and (H,h) and (H ′, h′) be
two relevant arguments in the context CAg1,Ag2 . (H ′, h′) is more relevant than
(H, h) denoted by (H, h) 2r (H ′, h′) iff:

• risk((H ′, h′)) < risk((H ′, h′)) or
• risk((H ′, h′)) = risk((H ′, h′)) and (H, h) ≺PAg1,Ag2

fav (H ′, h′) or

• risk((H ′, h′)) = risk((H ′, h′)) and (H, h) 2PAg1,Ag2
fav (H ′, h′) and

(H ′, h′) 2PAg1,Ag2
fav (H, h) and (H,h) 0Ag1

pref (H ′, h′).

According to this definition, (H ′, h′) is more relevant than (H,h) if the risk
of (H, h) is greater that the risk of (H ′, h′). If the two arguments have the
same risk, the more relevant argument is the more favourable one according to
the favourite relation ≺PAg1,Ag2

fav . If the two arguments have the same risk and
they are equal according to the favourite relation, the more relevant argument
is the more preferable one according to the preference relation 0Agi

pref where
i ∈ {1, 2}. The two arguments have the same relevance if in addition they are
equal according to the preference relation. The ordering relation 2r is reflexive,
antisymmetric, and transitive. The proof is straightforward from the definition
and from the fact that 0Agi

pref is an ordering relation (see Definition 10).
Computationally speaking, the arguments selection mechanism is based on:

(1) the elimination of irrelevant arguments; (2) the construction of new relevant
arguments; (3) the ordering of the relevant arguments using the relevance order-
ing relation; and (4) the selection of one of the most relevant arguments. This
process is executed by each participating agent at each argumentation step at
the tactical level. The relevant arguments that are not selected at a step ti, are
recorded and added to the set of potential arguments PA because they can be
used at a subsequent step. The set of potential arguments can be viewed as a
stack in which the higher level argument is the most relevant one. A relevant
argument constructed at a step ti and used latter at a step tj simulates the back-
tracking towards a previous node in the argumentation tree and the construction
of a new path. The following example illustrates this idea.

5 Example

In this example, we present only a part of the argumentation tree, which
is sufficient to illustrate the arguments selection mechanism. To simplify
the notation, arguments are denoted by ai and a′

i (1 ≤ i ≤ n). We assume
that the conversation subject is S, A = {Ag1, Ag2}, KD = {f, l, q}, and
PAg2,Ag1 = {p, d, r} ∪ {pref(q, p)} where f, l, q, p, d and r are formulas of
the language L. The part of the argumentation tree we are interested in starts
from a node ni = (Ag1, a1) where a1 = ({s,¬s′, s ∧ ¬s′ → u}, u) and s, s′, u
are formulas of the language L. We also assume that from its knowledge base,
agent Ag2 produces four arguments taking into account the current context
CAg1,Ag2 = 〈S, s,PAg1,Ag2 , KD〉. These arguments are:
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a′
1 = ({p, k, p ∧ k → ¬s},¬s), a′

2 = ({q, r, c, q ∧ r ∧ c → ¬s},¬s),
a′
3 = ({¬d,m,¬d ∧m → s′}, s′), and a′

4 = ({e, c, e ∧ c → s′}, s′).

Where p, k, q, r, c, d,m and e are formulas of the language L. Hence:
PA(Ag2) = {a′

1, a
′
2, a

′
3, a

′
4} (PA(Ag2) is the set of Ag2’s potential argu-

ments).
At this step (step 1), Ag2 should select the most relevant argument using

our relevance ordering relation. In order to do that, Ag2 should evaluate the
risk of failure of these arguments. We assume that v1 = 0, v2 = 0.3, v3 = 0.5.
Consequently: risk(a′

1) = 0.3 + 0.5 = 0.8, risk(a′
2) = 0 + 0.3 + 0.5 = 0.8,

risk(a′
3) = 0.7 + 0.5 = 1.2, risk(a′

4) = 0.5 + 0.5 = 1.
The arguments a′

1 and a′
2 have the same risk of failure. However, because

pref(q, p) ∈ PAg2,Ag1 and according to our evaluation algorithm (algorithm 1),
we obtain: W

PAg2,Ag1
a′
1/a′

2
= 0 and W

PAg2,Ag1
a′
2/a′

1
= 1.

Therefore, according to definitions 11 and 13, the four arguments are or-
dered as follows: a′

1 2r a′
2 2r a′

3 2r a′
4. Consequently, Ag2 selects a′

2. Then
(step 2), Ag1 should take position on a′

2. For that we assume that Ag1 has
only one argument a2 = ({f, l, f ∧ l → ¬c},¬c) attacking a′

2 in the new context
CAg1,Ag2 = 〈S,¬s,PAg1,Ag2 , KD〉. Because f, l ∈ KD, Ag1 accepts this argu-
ment. Thereafter, ¬c is added to KD and according to definition 9, a′

4 becomes
irrelevant. This argument is removed from the set of Ag1’s potential arguments.
We then obtain PA(Ag2) = {a′

1, a
′
3}. According to the arguments selection mech-

anism, Ag2 selects a′
1 (step 3). Selecting this argument at this step simulates a

backtracking towards a lower level node (previous node) in the argumentation
tree. This example is illustrated in Fig. 2.

6 Related Work and Conclusion

Recently, some interesting proposals have addressed the strategic reasoning of
argumentative agents. In [25], Rahwan et al. propose a set of factors that may
influence the strategy design. These factors are considered in our framework as
operational constraints and criterions. In [2], Amgoud and Maudet define the
strategy as a function allowing agents to select a communicative act from the
permitted acts. This definition does not take into account the underlying fac-
tors and the operational selection mechanism. The more complete framework in
the literature addressing tactic and strategic issues of agent communication was
developed by Kakas et al. [15]. The authors propose an argumentation-based
framework encompassing private tactics of the individual agents and strategies
that reflect different classes of agent attitudes. This framework uses sceptical
and credulous forms of argumentative reasoning. Private strategies specify the
dialogue moves an agent is willing to utter, according to its own objectives and
other personal characteristics. Unlike our proposal, this work does not specify
the relation between strategy and tactic. In addition, strategies and tactics are
mainly represented using a preference policy on the dialogue moves. However,
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Fig. 2. A part of argumentation tree with the arguments selection mechanism

our strategy and tactic theory is based on the goals and sub-goals agents want
to achieve. The context notion we use in our framework that reflects the conver-
sational goal and the different agents’ beliefs is different from the one used by
the authors, which is generally defined on the basis of some priority rules.

The different proposals that have considered the strategic level, have ne-
glected the important relation between strategy and tactics. The contribution of
this paper is the proposition of an approach allowing agents to combine strategic
and tactic reasoning in order to be more efficient in their communications. The
link between strategic and tactic levels enables agents to have global and local vi-
sions of the dialogue. In addition, our tactic theory provides a strong mechanism
to select the most appropriate argument depending on the strategy adopted by
the agent. The mechanism uses our relevance principle that takes into account
the context of conversation. This selection mechanism is implemented in the
case of persuasion dialogues using logical programming and an agent-oriented
platform (Jack Intelligent Agents). In addition, an important advantage of our
approach is the fact that it allows backtracking.

The approach presented in this paper is general and can be implemented
for other dialogue types. As future work, we plan to define in a systematic way
the relevance ordering for each dialogue type. In addition, we intend to enhance
protocols based on dialogue games with our strategic and tactic approach. This
will allows us to develop more flexible and efficient argument-based agent con-
versations. We also intend to analyze and evaluate the behavior of the proposed
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heuristics (e.g. the notion of risk of failure). On the other hand, our framework
is operational in its design. Thus, if it is different from the one developed by
Sadri et al. [28], which is more declarative. Considering the declarative meaning
and investigating the formal properties of our argumentation setting is another
key issue for future work.
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Abstract. Recent years have witnessed growing interest in the area of
argumentation strategies but there is little work done in the area of
learning how to argue. This paper aims to explore how agents can im-
prove their argumentation strategies using machine learning. This in-
cludes both learning about other agent’s strategies as well as learning
general heuristics for argumentation strategies. This framework will al-
low agents to build flexible and adaptive strategies for arguing, based
on previous experiences with other agents. We intend to apply this to
agents in information seeking domains whereby agents seek to optimise
their strategy by achieving their goals with minimal information revealed.

1 Interest

In a multi-agent system, comprising of agents representing different interests
from different vendors and consumers, agents interact with other agents in order
to complete a specified task. These interactions may result in conflicting views
and disputes in which case argumentation can be employed as a mechanism for
achieving cooperation and agreements. Argumentation is an iterative process
emerging from exchanges among agents to persuade each other and bring about
a change in intentions (Kraus et al. [7]).

Optimal strategies could be learned from a series of interactions with a view
to winning future arguments, getting better results (e.g. getting the work done
without revealing too much information), reducing the length of time and re-
sources involved in future encounters, and so on. The framework proposed in
this work will be applied to an information seeking domain where agents may
have privacy policies and are reluctant to reveal information unless an acceptable
justification is put forward.

Using this framework, an Agent could build a model of the argumentation
strategy of other agents from a series of interactions and attempt to refine its
own strategy as the argumentation progresses. In other words, the agent will be
able to group other agents into categories based on behavioural characteristics
(e.g. helpful, indifferent, etc) or organisational relationships (e.g. boss, subordi-
nate, contemporary, etc) and seek to refine its strategy with a view to achieving



preferable outcomes (for instance, agent A could persuade another agent B to
get some work done without revealing much information, which is a preferable
outcome for A).

In our model, agents could adopt several strategies in the argumentation. An
agent’s strategy may be to continue to argue for as long as possible; another may
adopt the strategy of always pushing the burden of proof onto the opponent, and
so on.

The central idea of this work is captured in three stages:

1. During agent interactions, the behavioural characteristics and/or organisa-
tional relationship of the agents involved is/are evident, and a model of the
privacy policy for those agents could be learnt. For instance, during the in-
teractions between agent A and B, there may be some information that A
requires from B in order to complete a task. Agent B may have a (conflict-
ing) policy that does not give out such information unless an acceptable
justification is put forward. In the course of the exchange (Kraus et al. [7]),
agent A will have a better perception of agent B’s policy.

2. Over time, agent A builds a model of the argumentation strategy of agent
B based on previous encounters with B and can more easily predict what
arguments are likely to get B to perform the task (in this case, to give up
the information that agent A requires).

3. After agent A has built models of some agents (say, B, C, D) then agent A
begins to generalise (and possibly categorise) other agents with respect to
some peculiar (or related) characteristics (e.g. behavioural characteristics or
organisational relationships). This means agent A begins to get better in the
way it argues by learning over encounters with other agents and using this
acquired intelligence to relate with similar agents. Based on the outcomes of
these generalisations, agent A refines and adapts its argumentation strategy
to enable it to argue better.

2 Questions

1. How do we represent an agent’s strategy?
2. At what point should agent A change its argumentation strategy?
3. What is the yardstick for measuring the effectiveness of that strategy?
4. How should agent A select a strategy from a pool of strategies with a view

to optimising the result?
5. What is the rationale for generalising?
6. How do we evaluate the outcomes of the generalisation?

3 Discussion

Dung [2] studied the fundamental mechanism humans use in argumentation, and
explored ways to implement this mechanism on computers. The notion of ac-
ceptability of arguments is central to our work. Also Dung [2] proposed abstract



argumentation frameworks on which many works on argumentation are based.
The argumentation framework proposed in our work uses the fundamentals of
Dung’s abstract argumentation framework (see Dung[2]).

Sycara’s work [6] led to the subsequent research by Kraus et al. [7] which
identified five different types of arguments that can be used in argumentation.
We note that our work will utilize these five argument types (threats, promise of
future rewards, appeals to precedent, appeals to prevailing practice, and appeals
to self-interest) in determining the behavioural characteristics of agents in the
domain (see Kraus et al. [7]).

The work done by Leila Amgoud and Nicolas Maudet [1] on the exploration
of strategies for move selection in persuasive dialogue conducted by argumen-
tative agents is very relevant to our work. The work presented a three-layered
approach to strategy, and heuristics that are based on some human strategies
issued from natural dialogues were proposed. Our work will leverage the three-
layered approach to strategy and will build a framework that allows agents to
learn and refine their argumentation strategies.

Prakken [5] holds that interactions between autonomous agents are not proof
theory, therefore, the outcome of a dialogue is expectedly non-deterministic (de-
pendent on the Commitment Store and the profile of the agent Amgoud and
Parsons [4]), and so if an agent is not wise it might lose an argument which
otherwise could have been won. We find this standpoint interesting, as it shows
that there is much scope to explore different strategies and learning.

To the best of our knowledge, there is very little work done so far (except
Rovatsos et al. [8]) that focuses on the intersection between learning and argu-
mentation strategies. This work aims to explore this research gap.
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