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Satisficing Negotiations
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Abstract—Negotiation procedures that are founded on the doc-
trine of individual rationality, where each participant is committed
to maximizing its own satisfaction, are limited in their ability to
accommodate the interests of others, and therefore, may unneces-
sarily constrain the negotiability of a decision maker, particularly
in cooperative environments. Satisficing game theory provides a
distinct alternative to the hyperrationality of conventional rational
choice by waiving reliance on the individual rationality premise
and offering an approach to negotiatory decision making that is
based on a well-defined mathematical notion of satisficing, or be-
ing good enough, that permits the modeling of complex interrela-
tionships between agents. This approach provides a mechanism to
compute the attitude, or degree of conflict or contentedness, of the
negotiators. Examples illustrate both single-round and multiround
satisficing negotiation protocols.

Index Terms—Altruism, Bayesian networks, game theory, nego-
tiations, rationality, satisficing, sociology.

I. INTRODUCTION

EGOTIATION is an iterative decision-making process
between independent decision-making entities as they
attempt to reach a joint decision that is acceptable to all par-
ticipants. Game theory, as developed by von Neumann and
Morgenstern [1], provides a mathematical framework within
which multi-agent decision problems can be represented and
by which negotiatory processes can be evaluated. The standard
application of this theory requires each player to form a util-
ity function that quantifies the benefit that accrues to it as a
consequence of the actions that it and all other players may
take. A strategic-form game is created by juxtaposing the util-
ities of all players into an array that is available to all players.
Each player then may assess the opportunities for cooperation
and conflict. A solution concept is a rule that defines what it
means for a decision vector to be acceptable to all players in the
light of the conflict/cooperation environment. A negotiation is
a solution concept whereby the players iteratively modify their
proposed solutions in an attempt to reach a mutually accept-
able decision vector. Such an agreement, if reached, is called a
compromise. One way in which negotiation differs from other
solution concepts such as Nash equilibria is that a compromise
is not guaranteed to exist. If one is not achieved, then the nego-
tiation defaults to an impasse. To avoid vacuous situations, we
assume that, once a compromise is reached, all participants will
enact the negotiated solution.
Many negotiation concepts have been devised within the gen-
eral game-theoretic framework, including voting, auctions, bar-
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TABLE I
PAYOFF MATRIX IN ORDINAL FORM FOR (a) THE PRISONER’S DILEMMA AND
(b) THE BATTLE OF THE SEXES GAME

P> S
Py C D H D B
C 3,3) (1,4 D 4.3 (2,2
D “4 1) 2,2 B 1,1 @G, 49

(a) (b)

Key: 4 = best; 3 = next best; 2 = next worst; 1 = worst

gaining, arbitration, and market equilibrium mechanisms [2],
[3]. While these concepts are all very different from each other
and each has its own natural application domain, they share one
important feature: by virtue of being couched under the rubric
of game theory, they are all consistent with the classical eco-
nomics hypothesis advanced by Bergson and Samuelson, which
asserts that individual interests are fundamental, i.e., that social
welfare is a function of individual welfare [4], [5]. This is the
doctrine of individual rationality, that is, each individual should
act in its own self-interest. Under this doctrine, all other agents
are viewed, to varying degrees depending on the context, as
competitors that act to constrain one’s actions. The injunction
to each agent is very simple—it should optimize (unconstrained
if possible, constrained if necessary). Individual rationality is
certainly an appropriate paradigm for decision makers who are
primarily competitive. Negotiators operating in such scenar-
ios would be inclined to use various posturing devices such as
exaggerations, threats, and even outright deception. Much of
negotiation theory is designed to deal with such tendencies.

Many negotiation scenarios, however, possess a stronger co-
operative than competitive nature, and in such cases, notions
of collaboration, compromise, and altruism are more applica-
ble descriptors than competition, exploitation, and avarice. To
illustrate the difference, let us compare two well-known games
that are often used as prototypes of social situations: the Pris-
oner’s Dilemma (PD) and the Battle of the Sexes (BOS). Pay-
off arrays in ordinal form for these two games are illustrated
in Table I.

PD is a ubiquitous model of economic behavior, and has been
applied to a wide variety of situations ranging from arms races to
oligopoly pricing. The most common instantiation of the game
involves two players (P; and P,) who may either cooperate (C)
or defect (D). If one player cooperates and the other defects,
the one who defects receives the best payoff while the one who
cooperates receives the worst payoff. If both defect, they both
receive the next-to-worst payoff, and if both cooperate, they both
receive the next-to-best payoff. The game has one Nash equilib-
rium, (D, D), resulting in the next-to-worst outcome for both.

BOS involves a man (H) and a woman (.S) who plan to meet
in town for a social function. She prefers to go to the ballet
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(B), while he prefers the dog races (D). Each also prefers
to be with the other, however, regardless of venue. This game
is a prototype for economic scenarios where decision makers
(e.g., firms) are trying to choose between competing standards.
Although each firm has its own preferences, both firms would
sell more products if they were to adopt a common standard.
Resorting to such tactics as threats, bluffs, and deception is
likely only to exacerbate the problem. To avoid an impasse,
it will be necessary for some form of compromise to occur,
and the question is, what could be the basis for cooperation?
Classical game theory offers two Nash equilibria, namely,
(D, D) and (B, B), but does not provide a unique resolution,
hence is completely ineffective in resolving the impasse.

PD is a game of mixed motive and serves as an appropri-
ate model of behavior when the opportunity for exploitation
exists. Cooperation, though possible, incurs great risk, while
defection, even though it offers diminished rewards, protects
the participant from catastrophe. By contrast, BOS is largely
a game of coordination, in which the interests of the agents
largely coincide. With this game, there is little (though not zero)
opportunity for exploitation; either both players win (although
not to the same degree) or both lose. While individual rational-
ity may be an appropriate paradigm with which to analyze PD,
that paradigm loses much of its instrumentality as an effective
way to analyze BOS. Both games have a significant opportunity
for cooperation, but failure to do so, while detrimental to PD,
can be catastrophic for BOS. These games also differ in their
amenability to negotiation. Negotiation with PD is conceptually
trivial, since both players receive a greater reward by cooperat-
ing than by defecting. Negotiation with BOS, however, is not so
straightforward, since the rewards for cooperating are unequal.
It seems that more must be taken into account when negotiating
than the payoff array.

One concept that must be taken into account is altruism. An
altruistic agent takes into consideration the preferences of others
when defining its preferences (benevolently or malevolently—
altruism is deontologically neutral—Taylor [6] calls this positive
and negative altruism). An agent is categorically altruistic if it
relinquishes its demand to optimize its own benefit, without re-
gard for others, in all circumstances. A classical way to do this
is to form one’s utility as a linear combination of the utilities of
all players [6]. The player then proceeds to invoke the usual so-
lution concept, such as Nash equilibrium. The key feature of this
approach is that the player’s preferences are unconditional. It
has irrevocably re-defined its preferences in a way that obviates
its narrow self-interest. For example, consider the BOS game. If
both H and S were categorically altruistic, they would each pre-
fer to go to the venue that is more appealing to the other. Unfortu-
nately, the results would be the worst possible outcome for both.

An alternative to the categorical approach is situational al-
truism, where the player conditionally relinquishes its narrow
self-interest if, but only if, the other wishes to take advantage
of the offered largesse. Otherwise, the agent would be governed
by its egoistic preferences and would avoid needless sacrifice.
In the BOS game, suppose that H is not a stereotypical ma-
choistic male who has little consideration for the feelings of
his partner. Although he prefers dog races to ballet, let us cast

him as a somewhat sensitive fellow who wants his friend to
enjoy herself. He feels this way strongly enough to be willing
to moderate his preference for the dog races if, but only if, .S
really hates that environment. He may express this attitude by
defining two utility functions, one under the assumption that S
detests dog races, and the other under the assumption that she
tolerates them. Such preferences are conditional for H, in that
he does not commit to either preference independently of S°s
attitude. These utilities can be defined without H even knowing
S’s attitude about dog races. Notice, also, that it is possible for
H to make these conditional evaluations without knowledge of
S’s attitude about ballet.

Conditional preferences are difficult to express via the
utilities that are conventionally used in game theory. The reason
for this difficulty is that, with von Neumann—Morgenstern
game theory, each agent defines its preferences as a function of
the possible actions of itself and other players, and orders these
preferences by considering only the effect that the outcomes
have on its own level of satisfaction. It is not until the payoffs
are juxtaposed in the payoff array that opportunities for conflict
or cooperation are revealed. If, on the other hand, preferences
were formed as functions of other players’ preferences as well
as one’s narrow self-interest, then the players would possess the
capability of forming their preferences selfishly, benevolently,
malevolently, or indifferently with respect to the preferences
of others.

Optimization (constrained or unconstrained) is a seemingly
incontrovertible solution concept, especially in a single-agent
context. In a multi-agent context, however, optimization is not
always a well-defined concept. On the one hand, the play-
ers can adopt a “bottom-up” approach, where each optimizes
its own behavior. However, such behavior may not generate
optimal group performance. As Arrow’s impossibility theo-
rem establishes, it is generally not possible simultaneously
to optimize both individual and group performance [7]. Al-
ternatively, the group could adopt a “top-down” approach,
whereby, acting as a single entity, each player’s actions are
specified so as to optimize group behavior. So doing, how-
ever, may require unacceptable degradations of individual per-
formance and will not generally result in an enforceable solu-
tion concept. Essentially, optimization is an individual activity.
As observed by Luce and Raiffa, “the notion of group ratio-
nality is neither a postulate of the model nor does it appear
to follow as a logical consequence of individual rationality”
([8], p- 193).

This paper presents a theory of negotiation that is not based
on the doctrine of individual rationality. Rather, it is based on
a mathematically precise notion of being “good enough” that is
fundamentally different from, and not an approximation to, be-
ing “best.” Key attributes of this approach include the following:

e it naturally accommodates sophisticated social behaviors
such as cooperation, compromise, and negotiation;

e it does not depend on optimization as the criterion
for defining quality; alternative criteria for quality are
introduced;

e it leads to well-defined solutions procedures and is
amenable to a precise mathematical characterization.
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II. SATISFICING GAMES

The term “satisficing” was first appropriated by Simon [9],
[10] as a species of “bounded rationality.” Under his usage,
a decision maker searches for the optimal solution but termi-
nates the search when an option is deemed to be good enough.
The concept of being “good enough,” in this context, is that
the performance attributed to the option met or exceeded the
decision maker’s heuristic “aspiration level.” This usage takes
into consideration exigencies of practical decision making such
as the informational and computational constraints that exist in
real-world situations. It is similar in philosophy to individual
rationality since, if a decision maker could optimize, it surely
should do so. Only the real-world constraints on its capabil-
ities prevent it from achieving the optimum, but the ideal of
optimality remains intact.

For single-agent low-dimensional problems, it may be
straightforward to specify the aspiration levels. But, with
multiple-agent systems, it may be difficult to define a notion
of group aspirations, and perhaps even more difficult to recon-
cile group aspirations with individual aspirations. Even if this
were possible, interdependence between decision makers can
be complex and aspiration levels can be conditional (what is
good enough for me may depend upon what is good enough for
you). It seems that Simon’s notion of satisficing cannot be easily
extended in a systematic way to the multi-agent case.

This paper also employs satisficing to mean good enough, but
not in the sense of bounded rationality. There are two significant
differences between satisficing @ la Simon and satisficing as
used here.

1) Simon’s usage is an approximation to being best (con-

strained from achieving that ideal by practical limitations).
By contrast, satisficing as used here treats being good
enough as the ideal (rather than an approximation). Thus,
satisficing, as employed in this paper, is not a species of
bounded rationality, in the sense of being an approxima-
tion to being optimal.

2) Simon’s standard for being good enough is extrinsic, that
is, as with optimization, options are evaluated with respect
to attributes that are not part of the option. In the case
of optimization, evaluations are made relative to other
options. In the case of aspiration levels, evaluations are
made relative to an externally supplied aspiration level.
By contrast, satisficing as defined here involves intrinsic
evaluations, that is, intra-option evaluations of multiple
attributes of each option without reference to sources of
information outside the option.

One way to form intrinsic comparisons is to form di-
chotomies, that is, to define two distinct sets of attributes for
each option and either to reject or fail to reject the option on
the basis of comparing these attributes. Such dichotomous com-
parisons are intrinsic since they do not reference anything not
directly relating to the option. Dichotomies are the fundamen-
tal building blocks of everyday personal choices. Attached to
virtually every nontrivial option are attributes that are desirable
and attributes that are not desirable. People are naturally wont
to evaluate the upside versus the downside, the pros versus the

cons, the pluses versus the minuses, the benefits versus the costs.
One simply evaluates tradeoffs option by option—putting the
gains and the losses on the balance to see which way it tips.
The result of evaluating dichotomies in this way is that the ben-
efits must be at least as great as the costs. In this sense, such
evaluations provide a distinct notion of being good enough.

By separating the positive (benefit) and negative (cost) at-
tributes of an option, we explicitly raise the issue of commensu-
rability. However, this issue is also implicitly present with con-
ventional utilities, since they also typically involve both benefits
and costs, and the decision maker must somehow determine the
relative significance of these attributes. A typical conventional
procedure is to form a linear combination of the positive and
negative attributes, with the weighting coefficients being cho-
sen to correspond to significance. The distinction between the
traditional approach and our approach is that we do not aggre-
gate the different attributes into a single function, but instead
keep them separate. At the end of the day, both approaches re-
quire the subjective evaluation of significance by the designer,
who must formulate some rational notion of commensurability
by appropriating or inventing a system of units. The issue was
put succinctly by Hardin: “Comparing one good with another
is, we usually say, impossible because goods are incommen-
surable. Incommensurables cannot be compared. Theoretically,
this may be true; but in real life incommensurables are commen-
surable. Only a criterion of judgment and a system of weighing
are needed” ([11], emphasis in original). To make dichotomous
comparisons meaningful, we must express the benefit and cost
in the same units by insisting that they be normalized (as will
be developed subsequently).

We define an option as being satisficingly rational if the gains
obtained by adopting it are at least as great as the losses so
incurred. This notion of rationality is weaker than individual
rationality (which involves extrinsic comparisons); it provides
an explicit definition of what it means to be “good enough.”
Whereas individual rationality may be characterized as an at-
titude of “nothing but the best will do,” satisficing rationality
may be characterized as an attitude of “getting what you pay
for.” Individual rationality is rigid and demanding; satisficing
rationality is ameliorative and flexible. There can be only one
individually rational option (or an equivalence class of them)
for a given optimality criterion, but there can be several sat-
isficingly rational options for a given satisficing criterion. It
is easy to show, however, that, if computed by the same per-
formance criteria, an optimal decision will also be satisficing.
Both notions fit Nozick’s definition of instrumental rationality
as “the effective and efficient pursuit of given goals” [12]. Fur-
thermore, as Arrow observed: “Among the classical economists,
such as Smith and Ricardo, rationality had the limited meaning
of preferring more to less” [13]. Individual rationality has taken
this rather primitive injunction to its extreme instantiation as
optimization, but that does not imply the impossibility of other
notions of rational behavior. As we will show, satisficing is de-
signed to permit the agents to extend their spheres of interest
beyond the self, thereby facilitating negotiation. We introduce
the mathematical concepts first for the individual, then extend
to the multi-agent case.
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A. Single-Agent Satisficing

Definition 1: Let U denote a finite set of options. A mass
function p is a mapping of U onto the unit interval such that

p(u) > 0Vu € U, Zp(u) =1

uwel

A common use of mass functions is to characterize the probabil-
ity distribution of a discrete random variable. In our application,
however, we employ mass functions in a way analogous to prob-
ability theory, but with a different interpretation. In the interest
of making intrinsic comparisons of attributes of options, we will
define two mass functions.

Definition 2: A selectability mass function pg is a mapping
that characterizes the degree of support that is attributed to
u € U in the interest of accomplishing whatever fundamental
goal is relevant to the decision maker.

A rejectability mass function pr is a mapping that character-
izes the degree to which u© € U consumes whatever resources
are at the disposal of the decision maker as it takes action.

Resources may consist of such things as money, fuel, ex-
posure to hazard, or any other undesirable consequences that
are distinct from achieving the fundamental goal of taking ac-
tion. The tradeoff between achieving success and consuming
resources identifies the satisficing options.

Definition 3: An option v is said to be satisficing at nego-
tiation level q if the degree of support for its implementation
is at least as great as ¢ times the degree to which it consumes
resources. The satisficing set at negotiation level q is

Yy ={ucU: ps(u) > qpr(u)}. (1)

Nominally, we will take ¢ = 1, but it may be adjusted in the
course of negotiation as means of lowering standards in an
attempt to reach a compromise in multi-agent applications.

B. Multiple-Agent Satisficing

The advantage of using mass functions as utilities is that they
can be extended to the multiple-agent case analogous to the
way probability mass functions can be extended to the multi-
variate case to characterize the distribution of multiple random
variables.

Definition 4: Consider a set of N agents, and let U; denote
the option set for the ith agent. The set of joint options is the
product set U = U; x Uy X - -- x Uy, and the elements of U
are vectors of the form u = (uy,us,...,uy), where u; € Uj.
The joint selectability mass function pg,s,..... 5, 1S a mapping
from U to the unit interval such that

Dsq..8y (U1, ...,un) >0V (ug,...,uy) € U,
and
> psiesy (U, uy) =1
u;GU,;
i=1,...,N

The joint rejectability mass function pr,
larly.

Analogous to the way univariate probability mass functions
are obtained as marginals of joint probability mass functions,
we may extract individual decision maker selectability and re-
jectability mass functions as marginals; namely

ps, (u;) = Z DSySy (UL, un). (2)
uj €U;:j#i
j=1,....N

The rejectability marginal pr, for decision maker 7 is defined
similarly.

Definition 5: A satisficing game [14]-[24] is the triple
{U,ps, ... Sy PRy....Ry }- The jointly satisficing solution is the
subset of all option vectors such that the joint selectability is at
least as great as the negotiation index times the joint rejectability,
that is

3, = {(ug,... JUN)

,’LLN)}. (3)

sun) € Ut pgy sy (U, ...
> PR, Ry (U1, .-

The individually satisficing solutions for each agent are ob-
tained from the marginal selectability and rejectability mass
functions, yielding the individually satisficing solutions

S, =A{u; € Ui : ps, (i) > qpr, (u)}- 4

The satisficing rectangle is the product set of the individually
satisficing sets, namely

R=3, x - x 2. 5)

The jointly satisficing set 33, represents the subset of option
vectors that are collectively satisficing for the group, in the sense
that the benefits to the group dominate the costs to the group.
However, it is important to appreciate that this concept does not
presuppose that there is a cohesive notion of group preference.
If the group is purely competitive, such as would be the case
with a zero-sum game, then the group “preference” may be to
oppose each other, and the individual preferences as obtained
as marginals will be consistent with narrow self-interest. On the
other hand, if the group is committed to achieving a coherent
collective goal, then a well-defined group preference may ob-
tain, and the individual preference marginals will be consistent
with cooperative behavior, even at the expense of individual
benefit.

In general, the satisficing rectangle will not be the same as
the jointly satisficing set; they may even be disjoint. However,
the following theorem relates the two sets.

Theorem 1: The Negotiation Theorem: If w; is individually
satisficing for agent ¢, that is, u; € Ef], then it must be the ith
element of some jointly satisficing vector u € X,.

Proof: We  will  establish  the  contrapositive,
namely, that if w; is not the ¢th element of any
u € X, then u; ¢ Ef]. Without loss of generality, let ¢ = 1.
By hypothesis, ps,... s, (u1,V) < qpr,.... .y (u1,v) for
all veUs x---x Uy, 30 pg,(u1) = >, P8y (U1,V) <
43y PR Ry (U1, V) = qpR, (u1), hence uy & X[, n

Thus, if an option vector is individually satisficing, it is part
of a jointly satisficing vector, although it need not be part of all
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jointly satisficing vectors. The converse, however, is not true:
if u; is the ith element of a jointly satisficing vector, it is not
necessarily individually satisficing for agent ¢. The significance
of this theorem for negotiation is that no one is ever completely
frozen out of a deal—every decision maker has, from its own
perspective, a seat at the negotiating table. This is perhaps the
weakest condition under which negotiations are possible.

Definition 6: The compromise set at negotiation level q is
the intersection of the jointly satisficing set and the satisficing
rectangle: C = 3, NI

The elements of C comprise the set of options that are si-
multaneously good enough for the group and good enough for
each individual. If this set is empty, then successive rounds of
negotiation may be performed by incrementally lowering the
negotiation index ¢ until C # {).

C. Interdependence

Since the behavior of the group is dependent on the structure
of the joint selectability and rejectability mass functions, it is im-
perative that we understand exactly how these functions are cre-
ated. To understand this process, it is necessary to define a more
fundamental concept, that of interdependence. An act by any
individual member of a multi-agent system has possible ramifi-
cations for the entire system. Some participants may be benefited
by the act, some may be damaged, and some may be indifferent.
Furthermore, although an individual may perform the act in its
own interest or for the benefit of others or the entire system, the
act is usually not implemented free of cost. Resources are ex-
pended, or risk is taken, or some other penalty or unpleasant con-
sequence is incurred, perhaps by the individual whose act it is,
perhaps by other participants, and perhaps by the entire system.
Although these undesirable consequences may be defined inde-
pendently from the benefits, the measures associated with ben-
efits and costs cannot be specified independently of each other,
due to the possibility of interaction. A critical aspect of modeling
the behavior of such a system, therefore, is the means of repre-
senting the interdependence of both positive and negative con-
sequences of all possible joint options that could be undertaken.

Definition 7: The interdependence mass  function
DS,....Sx R1....Ry 1 a mapping from U x U to the unit
interval such that

DS, Sx Ruyeos By (Uls oo, UN VL, . ., UN) 2> 0
and
E pslA.,SA‘.leRN (ul, e UNS ULy . 7UN) =1.
U,EU,’,’U]EU]‘
i,j=1,....N

The joint selectability and rejectability mass functions may then
be obtained from the interdependence function as

DSySy (U1, .y UN) =
Z PSy-Sx RiRy (U1, .., UN; VL, ..., 0n)  (6)
v; €U;
i=1,...,N

PR.1-Ry (Ul, ce ,’UN) =
Z DSySy RyRy (Ulse ooy UN; UL, .oy ). (T)
u; €U;

i=1,...,N

A useful way to view the interdependence function is that
each decision maker possesses two selves, or roles. One self
considers only the positive, or selectable, attributes of the op-
tions under consideration, and the other self considers only the
negative, or rejectable, attributes. The interdependence function
then describes the collective attitude of the group when consid-
ering both selves of every member of the group with respect to
selecting option vector (u1, ..., uy ) and rejecting option vec-
tor (v1,...,vy). This structure provides a framework within
which all conceivable relationships can be expressed. The spe-
cial case when v; = wu; characterizes the conflict that arises
between the two selves because of the desire to select an op-
tion on the basis of its expediency, but also desiring to reject
it because of its expense. In the single-agent case, it is reason-
able to assume that the criteria that define selectable attributes
are distinct from the criteria that define rejectable attributes.
In that case, because selectability and rejectability are inde-
pendent, the interdependence function would factor into the
product psr (u;v) = ps(u)pr (v), but this factorization is not
required by the theory. In the multiple-agent case, however, one
participant’s rejectability, say, may influence another player’s
selectability, so it is not generally true that the interdependence
function factors into the product of the joint selectability and
rejectability functions.

III. A SOCIOLOGY FOR NEGOTIATION

For cooperative negotiatory scenarios where the agents must
work together to achieve a group goal, it is imperative that they
function according to a sociology that supports their cooperative
requirements. With the satisficing approach, the interdepen-
dence mass function characterizes all of the interconnections
between the participants. They may be derived either from the
perspective of individual rationality, or they may be derived from
the perspective of coordination and collaboration. The interde-
pendence function is a mathematical encoding of the sociology
of the system. Its construction is the most critical aspect of sat-
isficing game theory. The reader may have already noticed that
the structure of a satisficing game is reminiscent of a Bayesian
network. Recall that a Bayesian network is a directed acyclic
graph (DAG) consisting of nodes and edges, where the nodes
represent the variables of the system, and the edges represent
a conditional probabilistic description of how the instantiation
of a parent node at a particular value influences a child node.

Similar to the way a Bayesian network is defined, we may
also employ the tools of graph theory to express a multi-agent
system as a DAG. To distinguish between the probabilistic ap-
plication and our context, we will refer to such networks as prax-
eic networks. (Praxeology is the science of efficient action). A
praxeic network for an /NV-agent system consists of 2/V nodes,
with each participant having two nodes associated with it—
one for its selectability self and one for its rejectability self. The
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Praxeic network for a three-agent system.

Fig. 1.

variables associated with these nodes are the options available to
the decision maker and the edges represent the influence that one
agent’s self has on another agent’s self. These linkages consist of
conditional selectability or conditional rejectability functions.

Each application will have a different network and a corre-
sponding independence function that is unique to that network.
As an example, consider the graph displayed in Fig. 1. This
graph corresponds to a three-agent system where the selectabil-
ity of agent 1 influences the selectabilities of agents 2 and 3 and
the rejectability of agent 2, and the selectability of agent 2 in-
fluences the selectability of agent 3 and rejectabilities of agents
1 and 3. The corresponding interdependence function is

DSy 52855 R1 Ra R (U1, U2, Ug; V1, V2, VU3)
= DS3]5155 (u3 | u1, Uz)PRl | S (01 |U2)pR2 \51(02 |u1)
PR4 |5, (V3 | U2)Ps, | s, (U2 | ur)ps, (u1). ®)

P9, 5.8, (Us | ur,u2) is a conditional selectability mass func-
tion characterizing the degree of support that agent 3 places
on selecting option ug given that agent 1 were to prefer to se-
lect option u; and agent 2 were to prefer to select option us.
Similarly, pr, | s, (v1 | u2) represents the conditional rejectabil-
ity that agent 1 places on option v; given that agent 2 were to
prefer to select option us. The other terms in this expression
may be interpreted in like manner.

There are two major distinctions between Bayesian networks
and praxeic networks. First, whereas Bayesian networks deal
with the epistemological problem of what to believe, praxeic
networks deal with the problem of how to act. Second, whereas
Bayesian networks deal with one notion of probability—a mea-
sure of the degree of belief—praxeic networks deal with two
“probability-like” notions: selectability, which characterizes the
degree of suitability of options, and rejectability, which charac-
terizes the degree of resistibility of options. These functions
possess the same mathematical structure as do probability mass
functions, with the two most important properties being the
concepts of conditioning and independence.

A third distinction between Bayesian and praxeic networks
is often present; Bayesian networks define connections between
propositions, whereas praxeic networks define connections be-
tween agent selves. With Bayesian networks, the vertices rep-
resent interacting elements (e.g., the states of Nature), and the
edges represent the flows of belief influence between them. The
vertices of a praxeic network, however, represent the sets of

actions that are possible for the agent selves, and the edges
characterize the flows of action influence between the selves.

A key feature of Bayesian networks is that the joint probability
mass function is constructed from conditional relationships via
the chain rule of probability theory. Praxeic networks share
this same computational feature. It is a well known aspect of
probability theory that it is often much easier to compose a joint
distribution from conditional distributions by means of the chain
rule than to stipulate it directly. The conditional mass functions
represent hypothetical situations that are often quite simple to
evaluate. They may be viewed as production rules of an expert
system. The power of this approach is that the marginals can
be computed via Pearl’s Belief Propagation Algorithm [25],
thereby establishing the degree of belief support for each state
of nature. (Although the general fully linked problem is N P-
hard, fortunately, many interesting systems are only sparsely
linked, resulting in a greatly reduced computational burden.)

Praxeic networks possess an analogous interpretation. The
conditional selectability and rejectability mass functions rep-
resent hypothetical situations that may occur in a society, and
correspond to behavioral rules that define how the members of
the society function. For example, given the hypothetical “agent
1 selects option u;,” then agent j should condition its rejectabil-
ity of option v; as pg, | 5, (vj | ;). Using such hypotheticals, the
interdependence function can be constructed by the chain rule,
and Pearl’s algorithm may then be applied to obtain the joint and
marginal selectability and rejectability mass functions, thereby
solving the satisficing game.

By exploiting and adapting the mathematical structure of
mass functions, we may define a systematic design methodol-
ogy for the synthesis of a multi-agent system that incorporates
negotiation.

1) Form operational definitions of selectability and re-
jectability, and represent each agent’s selectability and
rejectability selves as nodes.

2) Define the influence flows between agent selves, that is,
the ways in which each agent’s preferences influence the
preferences of others. Represent these influence flows as
directed edges linking the appropriate nodes. If there is
not a direct influence between two nodes, then no edge
connects them.

3) Associate a conditional selectability or conditional re-
jectability mass function (as appropriate) with each edge.
These functions represent the degree of influence that ex-
ists between the agent selves.

4) Compute the marginal selectability and rejectability func-
tions for each node and the joint selectability and joint
rejectability functions for the entire group (or subgroups
if appropriate) using Pearl’s Belief Propagation Algo-
rithm [25] or the sum-product rule of factor graphs [26].

5) Compute the joint and individually satisficing sets for each
node.

6) If the satisficing rectangle and the jointly satisficing set
are disjoint, then enter into negotiations by incrementally
lowering the negotiation index and repeating the previ-
ous step until the intersection is nonempty. The resulting
options are then both satisficing for the group and for each
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individual. If the intersection contains more than one el-
ement, the option that maximizes the group benefit is a
logical one to be chosen.

IV. ATTITUDE

An important aspect of negotiation is the sense that the agents
are content or conflicted by whatever settlement is achieved. Un-
less anegotiated decision is optimal, in some sense, for all partic-
ipants, the possibility for discontent may exist. A consequence
of the individual rationality paradigm is that the decision-maker
dispassionately does what should be done under that behavorial
regime. On the other hand, replacing individual rationality and
its attendant demand for optimization with satisficing method-
ology provides an opportunity for the decision makers to form
assessments of the quality of proposed compromises. In par-
ticular, it admits a measure of attitude, or disposition, of the
decision makers that is not subjective and, though it admits
anthropomorphic metaphors, does not rely upon them for its
validity.

It is fortunate if an option that conserves resources (low re-
jectability) also achieves the goal (high selectability). If such
an option is available, the decision maker would be in a state
of contentment with respect to that option. Many interesting
decision problems, however, are such that the only possible op-
tions that achieve the goal are relatively expensive, hazardous,
or have other undesirable side effects. A decision maker in this
situation is in a state of conflict. Fortunately, satisficing theory
provides a natural mathematical method to define such notions
as contentment and conflict. Since it is based upon the mathe-
matics of probability theory, we may categorize the elements of
the satisficing set with respect to these dispositions by adapting
the notion of entropy to a praxeological context. The entropy of
a mass function p is given by H(p) = — > .y p(u) log, p(u).
The classical Shannon information-theoretic interpretation of
entropy is a measure of the uncertainty associated with a prob-
ability mass function. For example, if p is a probability mass
function and p(u) ~ 1, then —log, p(u) = 0, which confirms
that, since the occurrence of the event u is highly probable, there
is little uncertainty associated with its occurrence (or, equiva-
lently, observing that v occurred does not greatly reduce un-
certainty). Conversely, suppose p(u') ~ 0. Then — log, p(u') is
large, indicating that great uncertainty is associated with predict-
ing the occurrence of that event, or, equivalently, uncertainty in
the outcome is greatly reduced by the occurrence of w’. Entropy
is the average value of uncertainty over all v € U, and admits
two interpretations. On the one hand, H (p) is a measure of the
average uncertainty in the outcome of an experiment governed
by p before it is conducted. On the other hand, it is a measure
of the average reduction in uncertainty after the experiment has
been conducted. Putting this latter interpretation slightly differ-
ently, entropy is the average increase in certainty as a result of
conducting the experiment.

In the usual epistemic context, uncertainty results because of a
lack of information. We may also define notions of uncertainty in
the praxeic context. Even if the decision maker is epistemically
certain that a given option is the correct choice, it still may be

equivocal about how well, relative to the other available options,
the given one will perform both in terms of achieving the goal
and in terms of consuming resources. To illustrate, suppose X
can choose among three routes, 71, 2, and 73 to take from home
to work, and desires to both enjoy the scenery and keep travel
time down. On a scale of 0-10, X ranks the scenic beauty of
these routes as 4, 5, and 7, with corresponding travel times are
20, 30, and 50 minutes, respectively. Viewing scenic beauty as
selectable and travel time as rejectable, the corresponding mass
functions are

ps (Tl) = 02505 ps (TQ) = 03127 ps (Tg) = 0438a

and

pr(r1) = 0.2, pr(rs) =0.5.

The variations in the degree of scenic beauty among the options
generates a type of equivocation, since each route offers some
degree of scenic beauty. Also, the variation in time of travel
generates another type of equivocation with respect to consum-
ing resources (time). These equivocations are manifestations
of praxeic uncertainty. This type of uncertainty deals with the
difficulty the agent has in making a decision. If, for example,
all of the selectability mass were ascribed to, say, r1, then the
praxeic uncertainty with respect to selectability would be neg-
ligible. Thus, just as entropy provides a measure of epistemic
uncertainty when there is a lack of information, entropy may
also provide measures of praxeic uncertainty when the decision
maker is equivocal about its choices. Praxeic entropy provides
a measure of the “emotional” difficulty the decision maker ex-
periences in making choices.

To appreciate entropy in the satisficing context, we require in-
terpretations of this notion for both selectability and rejectability
that are analogous to the usual Shannon interpretation. Let us
first consider selectability, and view the expediency of an option
as the degree to which it leads to success. Then inexpediency, the
degree to which an option fails to achieve the goal, is analogous
to epistemic uncertainty, or the degree to which an outcome
is unlikely to occur. If pg is a selectability mass function and
ps(u) & 1, then — log, ps(u) & 0, which indicates that, since
implementing u is highly selectable, there is little inexpediency
associated with doing so. Conversely, suppose ps (u’) = 0. Then
—log, ps (') is large, indicating that great inexpediency is as-
sociated with implementing that option. H (ps ) then becomes a
measure of the average inexpediency associated with the deci-
sion problem before taking action. Equivalently, it is a measure
of the average reduction in inexpediency after taking action, or
to put it more positively, it is the average increase in the degree
to which success will be achieved as a result of taking action.

To interpret the entropy of pg, let us view expense as the
degree to which resources are consumed, and consider inex-
pense, the degree to which we conserve resources, as analogous
to uncertainty. If pg (u) ~ 1, then log, pr (u) = 0, which indi-
cates that u is highly rejectable, thus little inexpense obtains if
a highly rejectable option is implemented. On the other hand, if
pr (') ~ 0 and v’ is implemented, then — log, pg (u') is large,
indicating that great inexpense obtains if u’ is implemented.
H (pr) is ameasure of the average inexpense associated with the

Pr (7’2) = 0.37
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decision problem before taking action. Equivalently, it is a mea-
sure of the average reduction in inexpense after taking action, or
to put it more positively, it is the average increase in the degree
to which resources are consumed as result of taking action.

Entropy is maximized by the uniform distribution. Let n be
the cardinality of the option space, U (assumed to be finite).
If p*(u) = 1/n forall w € U, then H(p*) > H(p) for all mass
functions p over U, and H (p*) = logy n. A near-uniform pg
would generate high average inexpediency, in that all options
would work equally (either effectively or ineffectively). A low-
entropy ps would indicate that most of the selectability mass
is concentrated on a few options that are highly conducive to
success. A near-uniform pp would generate high average in-
expense, in that all of the options cost the same, and none
are inexpensive, while a low-entropy pp indicates that the re-
jectability mass is concentrated on a few options that consume
a disproportionate amount of resource (and, consequently, there
exists a subset of options that are inexpensive, in that imple-
menting them will conserve resources). For the drive-to-work
example defined above, H(ps) = 1.548, H(pr) = 1.486, and
H (p*) = 1.585. Thus, we see that there is considerable praxeic
uncertainty with that decision problem. This is reflected in the
fact that, with ¢ = 1, the satisficing set is X1 = {71, 72}, and
there is no obvious way to prefer one route to the other. Although
X has no epistemic uncertainty (all routes will get X to work),
X does have a non trivial “emotional” decision to narrow the
choice to a single option.

Definition 8: 1If ps(u) > 1/n (that is, selectability under pg
is greater than selectability under the uniform distribution), then
the option is attractive with respect to performance—u is expe-
dient.

Definition 9: If pg(u) > 1/n (that is, rejectability under pg
is greater than rejectability under the uniform distribution), then
1 1S unattractive with respect to resource consumption—u is
expensive.

The relationship between selectability and rejectability per-
mits the definition of four dispositional modes of the decision
maker with respect to each of its options.

Definition 10: If uw € U is both expedient and expensive,
then the decision maker will be in a position of desiring to
reject, on the basis of cost, an option that is suitable in terms of
performance—it will be ambivalent with respect to u.

Definition 11: If u € U is both inexpedient and inexpensive,
then the decision maker will be desirous of accepting the option
on the basis of cost, but will be reluctant to do so because of poor
performance. The decision maker will be dubious with respect
to u.

Definition 12: If u € U is expedient and inexpensive, then
the decision maker is in the position of desiring, on the basis
of cost, to implement an option that would also yield good
performance—it will be gratified with respect to w.

Definition 13: If uw € U is inexpedient and expensive, then
the decision maker will desire to reject, on the basis of cost, an
option that also provides poor performance, and will thus be in
mode of relief with respect to u because it will not be chosen.

These four modes provide a qualitative way for a decision
maker to evaluate its choices more definitively. Gratification and

relief are modes of contentment, while dubiety and ambivalence
are modes of conflict. With the drive-to-work example, X is
dubious with respect to both satisficing decisions r; and rs.

With multi-agent decision problems, it is in conflictive sit-
uations that negotiation is the most difficult. By categorizing
the options according to these modes, the decision maker may
invoke additional situation-dependent criteria, such as task ur-
gency or resource reserves, to facilitate a compromise. These
modes provide additional insight into the process of negotia-
tion, and serve as indicators of the difficulty or ease of making
compromise choices.

V. SINGLE-ROUND NEGOTIATIONS

The BOS game described in Section I provides a simple ex-
ample of single-round negotiation, such as occurs when there are
only two players and each player must choose between two alter-
natives. To see how satisficing methodology might apply to this
situation, let us cast BOS as a satisficing game. Although we will
retain the traditional story-line, it is easy to adopt this example to
a different context. We must first establish each player’s notions
of selectability and rejectability. Although there are many ways
to frame this game, let us take selectability as the two players
being with each other, regardless of where they go. This is the
fundamental goal. The resources available to the players are the
venues they may attend; rejectability deals with the costs of be-
ing at a particular venue. The dichotomy before the players is
that the fundamental goal of being together potentially conflicts
with the preference for one’s favorite venue. According to the
stereotypical roles of the players, H would prefer D if he did
not take into consideration S’s preferences; similarly, S would
prefer B. Thus, we may express the myopic rejectabilities for
H and S in terms of parameters h and s, respectively, as

Pry (D) =h
PRy (B) =1-nh (9)

and
PRs (D) =1-s

PRy (B) =s (10)
where & is H’s rejectability of D and s is S’s rejectability of
B. The closer h is to zero, the more H is adverse to B with an
analogous interpretation for s with respect to S attending D. To
be consistent with the stereotypical roles, we may assume that
0<h<1/2and0< s < 1/2. As will be seen subsequently,
only the ordinal relationship need be specified, that is, either
s<horh <s.

Since being together is a joint, rather than an individual, objec-
tive, it is difficult to form unilateral assessments of selectability,
but it is possible to characterize individually the conditional se-
lectability. To do so requires the specification of the conditional
mass functions pg, |p, and pgg g, , that is, H’s selectabil-
ity conditioned on S’s rejectability and S’s selectability condi-
tioned on H'’s rejectability. If S were to place her entire unit
mass of rejectability on D, H may account for this, if he cares
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about S’s feelings, by placing some portion of his conditional
selectability mass on B. By so doing, H is manifesting situa-
tional altruism. .S may construct her conditional selectability in
a similar way, yielding

Psy s (D D) =1-a

Psy |rs (B|D) =«

Psy |rs (D] B) =1

Psy |rs (B|B) =0 (11

and

Pss |ry (D[D) =0

Pss |ry (BID) =1

Pss Ry (D|B)=p

Psy|ry (B[ B) =1-0. (12)

The valuations pg,, |r, (B | D) = aandpg, g, (D|B) = 3
determine the amount of deference one player gives the other. If
S were to place all of her rejectability mass on D, then H may
defer to S’s strong dislike of D by placing « of his selectability
mass, as conditioned by her preference, on B. Similarly, S
could show a symmetric conditional preference for D if H
were to reject B strongly. The parameters « and [ serve as
a way for each to control the amount of situational altruism
he and she are willing to offer. In the interest of simplicity,
we shall assume that both players are maximally situationally
altruistic and set « = 8 = 1. In principle, however, they may
be set independently to any value in [0, 1]. Notice that, even in
this most deferential case, these conditional preferences do not
commit one to categorical abdication of his or her own unilateral
preferences. H still myopically (that is, without taking S into
consideration) prefers D and S still myopically prefers B, and
there is no intimation that either participant must “throw” the
game in order to accommodate the other.

With these conditional and marginal functions, we may factor
the interdependence function as follows:

DSy Ss Ry R (U1, U5 V1, V2)
= DSy |Rs (u1 |’02)pss |Ry (ug |v1)
PRy (Ul)pRs (1)2)

where we have assumed that H’s selectability conditioned on
S’s rejectability is dependent only on S’s rejectability, that S’s
selectability conditioned on H'’s rejectability is dependent only
on H’s rejectability, and that the myopic rejectability values of
H and S are independent.

The resulting joint selectability and rejectability functions are

Psuss (D, D) = (1—h)s

Dsy s (D, B) = hs

psuss (B, D) =(1—h)(1-5s)

Psuss (B, B) =h(l —s) 13)

and
Pry s (D, D) = h(1 — s)
PRy Rs (D, B) = hs
PRy rs (B, D) = (L= h)(1 - s)
Pry s (B, B) = (1—h)s (14)

The marginal selectability and rejectability values for H and
S are

psy (D) =5 pr,(D)=h (15)

ps,(B)=1—s pr,(B)=1—h (16)
and

pss(D)=1—h pr,(D)=1-s a7

pss(B)=h pr,(B) =s. ()

Setting the negotiaion index ¢ equal to unity, we obtain the
jointly satisficing set as

{(D’B)v(BaD)7(B7B)} fors < h
{(D,D),(D,B),(B,D)} fors > h
{(D,D),(D,B),(B,D),(B,B)} fors=~h

the individually satisficing sets are

3, =

{B} fors < h
sl =< {D} fors > h
{B,D} fors=nh
{B} fors < h
%Y =< {D} fors > h

{B,D} fors=nh
and the satisficing rectangle is

{B, B} fors < h
{D,D} fors > h.
{{B,B},{D,D}} for s=h

Thus, if S’s aversion to D is less than H'’s aversion to B,
then both players will go to H’s preference, namely, D, and
conversely. Notice that these are ordinal, rather than cardinal,
comparisons. The satisficing approach fails to give a single an-
swer only in the unlikely situation where both players have
exactly equal aversions to the other’s preference.

Recall, under classical game theory, that if each player defers
to the other, the result is disastrous for both. By contrast, with
the satisficing approach, even though both players are maxi-
mally conditionally deferential, the satisficing solution is far
from disastrous—it results in a very natural cooperative strategy
that is socially defensible. Notice, however, that since s < 1/2
and h < 1/2, by assumption, the dispositional mode of the com-
promise choice will be dubious for the one who gets to go to
his or her favorite venue, and will it be ambivalent for the one
who defers. There are no gratifying solutions—the choices are
difficult ones for both players. This result provides additional
insight for why the BOS game is not easily resolved and why
conventional game theory fails to provide a definitive solution.

%Q:EfxEQS:
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VI. MULTIROUND NEGOTIATIONS

Many negotiation scenarios are complex, and involve propos-
als and counter proposals, with each participant modifying its
choices and standards for making choices at each round as it
seeks for a compromise. Typically, each participant will condi-
tion its preferences on the preferences of others. Such condition-
ing may be based on its own selfish interests, it may be benevo-
lent in the sense of giving deference to others to benefit them at
one’s own expense, or it may even be malevolent, in the sense
of desiring to injure others even if it reduces one’s own level of
performance. Even in a non-harmonious negotiation scenario,
the decision makers may strongly desire to avoid an impasse,
especially if the consequences of the group failing to achieve a
mutually agreeable decision are high (and thus all players are
frustrated) compared to the cost of individuals compromising
their individual interests. Thus, there is often an implicit notion
of group preference (if only to avoid failure). Such a notion need
not be explicitly defined at the outset by the decision makers.
Rather, it may emerge as a consequence of their interaction as
the conditional preferences propagate through the system.

To illustrate this type of negotiations, we present an example
that we name the Three Hermanos (TH). It consists of three
agents who act primarily in their own self-interest, but are will-
ing to give some deference to others in order to improve the
benefit to the entire group. This scenario involves three brothers,
Alberto (A), Juan (J), and Paco (P). They divide their recently
deceased father’s land into three plots, and each must decide
what to grow on his own plot of land for the coming year.

We also assume the following conditions.

1) Alberto is the eldest son, receives the best plot of land,
and has first choice of which crop to grow. He can grow
tomatoes or onions or raise chickens. Juan is the second
son, receives the next-best plot of land, and has second
choice of which crop to grow. His land will support grow-
ing tomatoes, tomatillos, or onions. Paco is the youngest
son, has third choice, and the worst plot of land that can
grow only beans, tomatillos, or peppers.

2) The individual market values for the six possible crops
are, in arbitrary units: tomatoes (20), chickens (19), onions
(18), beans (17), tomatillos (16), and peppers (15). How-
ever, if the brothers cooperate, they can grow products
according to three popular recipes with the consequence
that they can make and sell these products and thereby in-
crease their income by multiplying the individual market
values as follows: enchiladas (chickens, tomatillos, pep-
pers) with a multiplier of 3/2, burritos (chicken, beans,
tomatoes) with a multiplier of 5/4, and salsa (tomatoes,
onions, peppers) with a multiplier of 4/3.

3) The resources required consist of seeds (both for planting
the crops and feeding the chickens). In arbitrary units,
these costs are: tomatoes (15), chickens (13), onions (14),
beans (12), tomatillos (11), and peppers (11). Furthermore,
due to the scarcity of these resources, if two brothers
decide to plant the same crop, the cost doubles.

This example, although somewhat artificial, nevertheless cap-

tures some of the important features of distributed multi-agent

decision making. A centralized approach would be simply to
compute the maximum-valued crop and impose that decision
upon all of the participants, but that would imply the presence
of an external superplayer who could dictate the choices to each
participant. If such an agent were to exist, the need for nego-
tiation would be obviated. Optimization is instructive, but it is
not constructive. It provides a prescription for how individually
rational decision makers should behave, but does not offer a
description of how to achieve the optimal result. Negotiations
are required to provide the process of making decisions.

A. Conventional Game-Theoretic Approach

To formulate this decision as a game in the tradition of von
Neumann and Morgenstern, it would be necessary for each
player to specify its utility as a function of possible actions
of all players. Since there are three players and each has three
options, this means that each player must determine his payoff
for each of the possible outcomes. These payoffs would then be
juxtaposed in a payoff array, and a solution concept would need
to be defined to determine a solution. Although many negotia-
tion protocols exist under the rubric of classical game theory, the
requirement that payoffs be defined for all possible outcomes is
unwarranted, since they are not specified by the problem state-
ment. Thus, the application of conventional game theory to this
problem scenario is problematic.

B. A Satisficing Approach

We begin by identifying the decision spaces for Alberto, Juan,
and Paco, respectively, as

Us ={C,T,0}
UJ = {T7 t, O}
Up = {B, t, P}
where C = chickens, T = tomatoes, O = onions, t=

tomatillos, B = beans, and P = peppers.

The next step is to specify operational definitions for se-
lectability and rejectability. We follow the general rule of as-
sociating selectability with achieving the fundamental goal of
the endeavor, which is to sell the crop, and we take rejectability
as being associated with the consumption of resources (seed).
Using these operational definitions, we may elicit the following
influence relationships.

1) Due to the hierarchical nature of the relationships, Al-

berto’s selectability is unconditional.

2) Juan’s selectability is conditioned on Alberto’s selection.

3) Paco’s selectability is conditioned on both Alberto’s and
Juan’s selections.

4) Since growing the same crop greatly increases the cost of
resources, the limitation of seed dictates that Juan’s re-
jectability is conditioned on Alberto’s selection and that
Paco’s rejectability is conditioned on Juan’s selection. Fur-
thermore, since Alberto and Paco have no crops in com-
mon, Alberto’s rejectability is conditioned only on Juan’s
selection.
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Fig. 2. Praxeic network for the Three Hermanos.

These influence flows define a praxeic network consisting of
six nodes corresponding to the six selves S4, R4,S;, Ry, Sp,
and Rp, which correspond to the selectabilities and rejectabil-
ities of Alberto, Juan, and Paco, respectively. The DAG associ-
ated with this network is identical with the one given in Fig. 1,
where Alberto corresponds to agent 1, Juan to agent 2, and Paco
to agent 3. This graph is reproduced with the appropriate rela-
beling n Fig. 2. The interdependence function corresponding to
this network is identical to (8), namely

PS4 S, SpRaRyRp (WA, Uy, Up; VA, Vs, UP)
=Dsp (545, (up |ua, ws)pr, (s, (Va |wr)pr, s, (V7 |wa)

Prp 15, (0P [wr)ps, s, (wr |ua)ps, (ua) (19)
where u4 and v, are elements of Uy, uy and v; are elements
of Uy, and up and vp are elements of Up.

The next step in our development is to define the functional
values for the six mass functions that appear on the right-hand
side of (19). Since Alberto is able to define his selectability
unconditionally, he may do so by simply normalizing the market
values of the crops available to him, yielding

19 20 18
= Psa (T) = 57 Psa (0)—5-

Psy (C) =
Next, since Juan’s selectability depends upon Alberto’s selec-
tion, we must define three conditional selectability mass func-
tions Ps, (-] C), Ps, (| T), and Pg, (- | O). Since Juan is moti-
vated to increase his success, he will desire to choose a crop that
will result in one of the recipes. We first consider Pg, (- | C).
Given that Alberto selects chickens, Juan may immediately dis-
count salsa, and focus his selectability on tomatillos and onions
(to complete the recipe for enchiladas or burritos). Thus, he
should ascribe selectability to these choices according to the
nominal return on the product he grows multiplied by the appro-
priate multiplier for the recipe. The selectability mass function
corresponding to this logic is

24

25
pSJ\S.4(T|C)—Z 19

9
Ps; |84 (O | C) = 0.

To compute Juan’s conditional selectability given that Alberto
selects tomatoes, we observe that there is only one possible

DPs; (1S4 (t|C) =

recipe, hence Juan must ascribe his entire conditional selectabil-
ity mass to onions, yielding

ps, 15, (T1T)=0 pg,5,(t[0)=0 pg,s,(O|T)=1.

By similar logic, we obtain

ps, 15, (T10)=1 ps,|5,(t]0)=0 pg,s,(0]0)=0.

The conditional selectabilities for Paco, given the choices of
Alberto and Juan, are found by similar logic, except that Paco
must condition on both Alberto’s and Juan’s selections. This
requires a total of nine conditional selectability mass functions,
but they are of simple structure. For example, if Alberto selects
tomatoes and Juan selects onions, then Paco should ascribe
his entire selectability mass to peppers. The other conditional
selectabilities are determined similarly.

The next task is to determine the rejectabilities of the three
brothers. We illustrate how this is done by examining Juan’s
situation; the cases for Paco and Alberto are similar. We need
to compute pr, |5, - Suppose Alberto chooses chickens. Then
there can be no conflict, so Juan simply normalizes the seed
costs for his three possible crops, yielding

15 11
Pr, |5, (T'|C) = 0 ProISs t|C) = 10
14
PR, |84 (O|C) = ZO

If, however, Alberto were to select tomatoes, then Juan must
double the cost of tomato seed for himself, yielding, after nor-
malization,

30 11
PR, |84 (T‘T) = % PR, |S4 (t|T) = %
14
PR, |54 (O|T) = %

By a similar calculation, if Alberto were to select onions, then
Juan’s conditional selectability would become

15 11
Pr, |5, (T]0) = 51 PRiISs (tl0) = 1
28
PR, |54 (O‘O) = 54

The conditional rejectability functions for Paco and Alberto can
be computed similarly.

These conditional mass functions define the links between
the nodes of the praxeic network. Once these links are forged,
the joint and individual selectability and rejectability functions
can be computed. To do so, however, we must first define initial
values the negotiation indices for the group and for the indi-
vidual. Let q4,qs, and gp denote the negotiation indices for
Alberto, Juan, and Paco, respectively, and let g5 denote the
negotiation index for the group (for example, we could take
gc = min{qa, qs, gp }). Then the joint and individual satisfic-
ing sets are

3o = {(ua,uy,up) :ps,s,s, (wa,uy,up)

2 4GPR,sR;Rp (uAvquuP)}
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TABLE I

NEGOTIATION OUTCOMES FOR THE THREE HERMANOS PROBLEM
round q values Alberto Juan Paco | Group

1 (1.0, 1.0, 1.0) C T P 0

2 (1.0, 1.0, 0.9) C T P 0

3 (1.0, 0.9, 0.9) C T,0 P 0

4 (0.9, 0.9, 0.9) C T,0 P 0

5 (0.9, 0.9, 0.8) C T,0 P 0

6 (0.9, 0.8, 0.8) C T,0,t P C,t, P

and

S, ={ua: ps, (ua) > qapr, (ua)}
Yy, ={us: ps, (ws) = qipr, (uy)}
Egp =A{ur : psp (up) = qppr, (up)}.
The satisficing rectangle is then
R=%,, XXy, XX

and the compromise set is C = X,, NR. If C = (, then there
is no set of satisficing options that are satisficing for both the
group and for all of the individuals, and some negotiation must
take place in order to avoid an impasse.

There are a number of negotiation protocols that could be
implemented, with one of the simpler being a round-robin pro-
cedure of decrementing the negotiation indices of the three par-
ticipants. So doing will enlarge the individual satisficing sets,
which will in turn enlarge the satisficing rectangle. Eventually,
the compromise set will not be empty, and the negotiations
can be successfully concluded. A reasonable protocol that is
consistent with the hierarchical structure of this society is for
Paco, the lowest ranking member, to lower his standards by first
decrementing gp by a small amount, say Ag, resulting in an
enlarged satisficing rectangle. If the resulting compromise set is
still empty, then Juan would decrement ¢;. If the compromise
set still remains empty, then Alberto would decrement g4 . If
additional rounds or negotiation are required, then Paco would
decrement ¢p again, and the process would continue until C # ()
or until no participant is willing to further lower his ¢ value, re-
sulting in an impasse. If C contains exactly one set of options,
that set is then implemented. If C contains more than one set of
options, then the set that results in the greatest joint selectability
for the group would be an appropriate choice.

For the Three Hermanos problem as described, with
Aqg = 0.1, six rounds of negotiation were required in order
to achieve a compromise. The outcomes of these rounds are
summarized in Table II, where the last four columns indicate
the individual and group satisficing sets. These results indicate
that both Alberto and Paco hold firm to their favorite choice,
and it is Juan who eventually gives in to allow the compromise.
The resulting jointly and individually satisficing sets are given
in Table III. The satisficing rectangle is

®={{C, T, P},{C,0,P},{C,t, P}}
and the compromise set is therefore

c={C,t P}

TABLE III
FINAL JOINTLY AND INDIVIDUALLY SATISFICING VALUES FOR THE THREE
HERMANOS PROBLEM

Jointly Satisficing Sets
Crops PSAS;Sp | PRAR Rp Group Group
Attitude Profit
{T, O, P} 0.351 0.092 Ambivalent 30.7
{C, t, P} 0.163 0.018 Gratified 40.0
{0, T, P} 0.316 0.086 Ambivalent 30.7
{C, T, B} 0.170 0.010 Gratified 30.0
Individually Satisficing Sets
Brother | Choice Ps PR q
Alberto C 0.333 0.203 0.9
Juan T,0,t | 0.486, 0.351, 0.163 | 0.420,0.382,0.198 | 0.8
Paco P 0.830 0.462 0.8

Hence the satisficing cash crop is for Alberto to raise chickens,
Juan to grow tomatillos, and Paco to grow peppers; the brothers
can then combine these ingredients to make enchiladas. Notice
that every jointly satisficing option vector is a recipe. Further-
more, it turns out that the compromise option vector is the one
that maximizes profits for the group. This result was not stated
as an explicit goal of the negotiation; rather, it emerged as a
group preference as a result of the conditional preferences prop-
agating through the system via the chain rule. This result was
not guaranteed. It obtained because the participants were willing
to lower their individual standards. If they had not been willing
to do so, they would not have achieved the optimal solution.
Hence, the group benefits because the individuals are willing
to be flexible in their choices, and are not intransigent utility
maximizers. A willingness to be moderate at the local (individ-
ual) level can turn out to be instrumentally optimal at the global
(group) level. The success of this negotiation is evidenced by
the fact that the compromise solution is gratifying for the group.

The individual dispositional modes associated with the com-
promise decision are that Alberto is gratified, Juan is dubious,
and Paco is ambivalent. These modes help interpret the negoti-
ation process. During the negotiation, neither Alberto nor Paco
were willing to budge from their initial choice. Juan, however,
was the one who made possible the compromise. The fact that
Juan’s choice is dubious (both selectability and rejectability are
very low) helps to explain this situation.

VII. DISCUSSION

This paper presents a negotiation theory that is based on a
formalized game-theoretic structure that is as mathematically
rigorous as is conventional game theory as developed by von
Neumann and Morgenstern. Von Neumann—Morgenstern game
theory is based on the hypothesis of individual rationality, and
is therefore of limited value for situations where cooperative
negotiations are essential. Since satisficing game theory is not
founded on individual rationality, it is able to accommodate both
non-cooperative and cooperative negotiation scenarios. This pa-
per has focused primarily on the cooperative situation, since that
is the scenario where the power of this approach is perhaps most
obvious. However, the satisficing theory is applicable to general
negotiation scenarios. Some of the features that apply to the
more general case include the following.
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Since negotiation protocols are distributed, it is not re-
quired or assumed that all participants subscribe to the
satisficing point of view. Even if a satisficer is negotiating
with a non-satisficer, it may proceed according to a pro-
tocol based on satisficing game theory. By so doing, the
agent is able to identify all options for itself that are good
enough as defined by its criteria, and it is able to control
the degree to which it is willing to lower its standards as
it attempts to achieve a compromise. Satisficing is more
flexible than optimization. It provides some friction to the
slippery slope of compromise.

Whereas optimization is strictly an individual concept,
satisficing can be a social, as well as an individual, concept.
For any group of decision makers, if the group and each of
its members are willing to compromise sufficiently (either
out of deference to others or simply because the penalty
for failing to reach a compromise is catastrophic), there
will exist a joint option that is good enough for the group
as a whole and good enough for each member of the
group according to their individual standards. This does
not mean, of course, that the decision makers are obligated
to accept this compromise option. It means only that it
exists.

The interdependence function is able to accommodate
self-interest as well as community interest. Therefore, a
self-interested player is able to encode exactly the same
information using satisficing theory as can be done via von
Neumann—Morgenstern utilities. In fact, satisficing theory
is even more general than individual rationality in that it
permits situational altruism. We do not assert that, under
the theoretical framework of conventional game theory,
it is impossible to formulate theoretical models of social
behavior that go beyond individual interests and accom-
modate situationally altruistic tendencies while at the same
time preserving individual preferences. However, the ex-
tant literature does not provide such a theory.

Virtually all negotiation protocols provide rationale for an
agent to modify its position in order to seek a mutually
acceptable solution. Usually, such procedures require the
agent to change from its most preferred outcome to an
outcome that is less preferred. Since conventional game
theory requires the decision maker to do the best for it-
self, using it as a protocol for negotiation requires some
mechanism for the agent to revise its utilities. Such mech-
anisms are not part of the basic theory, and there is no sys-
tematic way to introduce them without making additional
assumptions that are not part of the game-theoretic struc-
ture. Satisficing, on the other hand, provides a systematic
and convenient mechanism for the agents to modify their
standards; namely, they may iteratively adjust g, their ne-
gotiation indices. By so doing, they gradually widen their
consideration of alternatives in a controlled way. They
may set explicit limits as to how far they are willing to go
in order to accommodate others, and they may break off
negotiations if they would be required to sacrifice more
performance than they can afford. Notice that this form
of compromise does not require the agent to modify its

5)

6)

7)

8)

preferences as expressed by its utilities. Rather, it only
requires it to modify the negotiation index.

Regardless of the notions of rationality, the negotiation
protocols, or any other aspects of negotiation, the suc-
cess of any negotiating agent is limited by the accuracy
of its model of the environment. Consequently, an impor-
tant aspect of any negotiation protocol is the ability to
learn, and satisficing theory provides a particularly conve-
nient way to accommodate this requirement. Recall that
the interdependence function is formed as the product of
conditional selectability and rejectability functions, each
of which corresponds to a hypothetical situation involving
the preferences of other agents. By actualizing such hy-
pothetical situations, a satisficing negotiator can learn the
preferences of the other players and thereby dynamically
adapt its interdependence function to the actual situation.
It is beyond the scope of this paper, however, to develop
such learning procedures in detail.

Two types of complexity arise with the satisficing ap-
proach: a) modeling complexity and b) computational
complexity. Extending the sphere of interest beyond the
self increases the complexity of a multiagent system
model, since it must account for sophisticated social rela-
tionships such as compromise, negotiation, and altruism.
As noted by Palmer, “Complexity is no argument against
a theoretical approach if the complexity arises not out of
the theory itself but out of the material which any theory
ought to handle” [27]. If one is to account for social re-
lationships that exist between members of a multi-agent
system, one must pay the price.

Computational complexity arises because of the calcu-
lation of the marginals of the interdependence function.
This complexity can be mitigated somewhat by efficient
organization of the computations, using, for example,
Pearl’s Belief Propagation Algorithm [25] or the factor
graph approach described by [26]. Even so, it is well
known that even these approaches are /N P hard, and the
computational burden for a tightly interconnected, high-
dimensional multi-agent system may become intractable.
Fortunately, however, as is the case with many useful
Bayesian networks, many interesting multi-agent systems
will be rather sparsely connected.

A possible weakness of the satisficing approach is that,
by eschewing optimality as the ideal, the participants may
settle on a “good enough” solution that is of dubious qual-
ity, that is, one for which neither the benefits nor the costs
are very high. The fact of the matter is, however, that
neither optimization nor satisficing can guarantee that the
chosen solution is very good. Making the best of a bad
situation is not very comforting, but at least with the satis-
ficing approach, the players are able to evaluate the quality
according to attitudinal modes.

Satisficing negotiation provides an explanation for some
forms of human negotiation. In some negotiations (for
example, the TH problem), parties often repeat a
position without an apparent change of state, until at some
point there is an abrupt change in feasible options. The
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procedure presented here provides a model for such be-
havior: even when from one iteration to the next there
might be no change in the compromise sets, each agent is
lowering its negotiation index and, if it possesses a learn-
ing ability, is modifying its models of the other agents.
Other behaviors, such as recalcitrance or openness, can be
accommodated by more sophisticated dynamics of how
the negotiation indices are changed.

VIII. CONCLUSION

Multi-agent satisficing theory provides a means of describing
solutions which are individually and jointly satisficing from the
perspective of an individual agent in a community of agents.
This paper extends previous work on satisficing decision theory
by a) distinguishing between categorical and situational altru-
ism, b) providing a discussion of participant attitude modes,
¢) providing an explicit protocol for negotiation under the sat-
isficing regime, and d) providing examples that demonstrate
negotiation under the satisficing paradigm.

Satisficing game theory provides a new tool for the analysis
and design of multi-agent systems. It is particularly applicable
to negotiatory situations since, by substituting a mathematically
precise notion of being good enough for the notion of optimality,
it provides decision makers with flexibility to adjust their choices
as they interact with each other. The theory is equally applicable
to cooperative and noncooperative scenarios.

When cooperation is essential in a multi-agent system, it is im-
portant to design the system according to principles that explic-
itly accommodate cooperation. However, under conventional
individual rationality-based approaches such as von Neumann—
Morgenstern game theory, it is difficult to characterize coop-
eration, especially if it requires deferring preferences at one’s
own expense in order to benefit others. But under the notion of
satisficing rationality, giving deference is easy to characterize
and to specify via conditional preference relationships.

The appeal of optimization is a strongly entrenched attitude
that dominates current decision-making practice. There is great
comfort in following traditional paths, especially when those
paths are founded on such a rich and enduring tradition as in-
dividual rationality affords. But when synthesizing an artificial
negotiatory system, the designer has the opportunity to impose
upon the agents a more socially accommodating paradigm. The
satisficing game theory presented in this paper provides a soci-
ological decision-making mechanism that seamlessly accounts
for group and individual interests, and provides a rich framework
for negotiation to occur between agents who share common in-
terests and who are willing to give deference to each other.
Rather than depending upon the noncooperative equilibria de-
fined (even if only approximately) by individual benefit, this
alternative may lead to the more socially realistic and valuable
equilibria of shared interests and acceptable compromises.
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