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Abstract

We provide experimental results for a task alloca-
tion problem where self-interested, individually ratio-
nal agents (re)contract tasks among themselves. Tra-
ditional contract types allow only one task to be trans-
ferred between agents at a time (original contracts).
In this paper the original and four other contract types
are studied: cluster-, swap-, multiagent, and OCSM-
contracts. The OCSM-contracts will reach the global
optimum even if the agents are individually rational,
but in large-scale problems the number of steps re-
quired can be prohibitively large, albeit finite. In such
cases it is more important to find the best solution
reachable in a bounded amount of time. To construct
algorithms that achieve that we study different con-
tract types evaluate their performance.

This paper discusses the quality of local optima
reached by the different contract types, and how
quickly they are reached. It is shown how environ-
mental characteristics such as the number of agents
and the number of tasks affect these results. This
analysis is used as a basis for making prescriptions
about which contract types agents should use in dif-
ferent environments. Out of original-, cluster-, swap-,
and multiagent-contracts, either original-contracts (if
the ratio agents to tasks is great) or cluster-contracts
(if the same ratio is small) reach alocal optimum with
a higher social welfare than the others.

Introduction

The importance of automated negotiation systems is
increasing as a consequence of the development of tech-
nology as well as increased application pull, e.g, vehicle
routing systems (Sandholm 1993) and electronic com-
merce (Sandholm & Ygge 1997). A central part of such
systems is the ability for the agents to reallocate their
tasks. Tasks can interact positively or negatively with
each other, so they are preferably handled by the same
agent or by different agents, respectively. The agents
also have different resources that lead to different costs
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for handling the various tasks and it is possible that
not every agent is capable of handling types of tasks.?

The contract type most commonly used in multi-
agent contracting systems only allows for one task
to move from one agent to another at a time (Sen
1993)(Smith 1980). We will refer to this type
of contract as original (O-contracts). By allow-
ing more than one task to be transferred in the
same contract, more efficient contracting can be
achieved. Hence, four new types of contracts have
been recently introduced (Sandholm 1996)(Sandholm
1997a)(Sandholm 1997b)(Sandholm 1998): cluster-
(C), swap- (S), and multiagent-contracts, (M) as well
as a combination of all three of the above with the
original contract (QOCSM-contracts). The C-contracts®
transfer at least two tasks from one agent to another,
while the S-contracts let two agents swap tasks with
each other (one task is transferred from each agent
to the other agent). In the M-contracts® at least
three tasks are being transferred between at least three
agents. FEach agent gives away only one task, but
can receive more than one task. All the character-
istics in the contracts above have been combined to
form the OCSM-contract. That is, any number of
tasks can be transferred between any number of agents
in one single contract. Any time a contract is per-
formed (tasks are transferred) agents which take on
tasks can incur side payments to cover their extra ex-
penses. OCSM-contracts guarantee that a global op-

2The dependencies between tasks in human negotiations
are discussed by Raiffa in (Raiffa 1982). The concepts of
linkage and log-rolling are also presented, which are similar
to swapping tasks and clustering of tasks.

®In the auction of airwave bandwidth, the Federal Com-
munication Commission used a simultaneous ascending
auction to provide for the bidders the possibility to clus-
ter the frequencies for which they were bidding, without
explicit cluster contracts (McAfee & McMillan 1996).

*Sathi and Fox (1989) (Sathi & Fox 1989) studied a
simpler version of multiagent-contracts where bids were
grouped into cascades.



timum is reached in a finite number of steps (con-
tracts), when used among myopically individually ra-
tional agents, irrespective of the order in which con-
tracts are proposed and made (Sandholm 1993)(Sand-
holm 1996)(Sandholm 1997a). Although this is a
powerful result for small problem instances, in large-
scale problems the number of steps needed to reach
the global optimum may be impractically large. In
these problems it is more important to obtain the best
achievable solution in a bounded amount of time.®

To examine the difference in contracting behavior
and reachable optima for the different contract types,
we constructed a multiagent version of the optimiza-
tion Traveling Salesman Problem (TSP). The TSP was
used as an example domain because it is NP-complete,
and the space of task allocations contains many local
optima when using hill-climbing-based contracting al-
gorithms (Sandholm 1997a)(Sandholm 1993). Another
advantage of the TSP is its structural simplicity, which
provides for repeatability and presentability without
unnecessary contextual overhead.

The multiagent TSP is defined as follows: several
salesmen will visit several cities in a world that con-
sists of a unit square (square with sides of length one).
Each city must be visited by exactly one salesman, and
each salesman must return to his starting location af-
ter visiting the cities assigned to him. A salesman can
visit the cities assigned to him in any order.
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Figure 1: An example problem instance of a multiagent
TSP consisting of five cities (*) and two salesmen (X). If
salesman A contracts out city 1 to salesman B, the social
welfare will increase due to less travel, i.e., lower costs.

The objective of the salesmen i1s to minimize their
own total cost, i.e., distance traveled. The outcome

® A more detailed discussion of these new contract types,
and the exact definitions of the contracts used in this con-
tracting approach can be found in (Sandholm 1997a).

of the system is the social welfare, z.e., the negative
of the sum of all the agents’ costs. Initially the lo-
cation of the cities and starting points of the sales-
men are chosen randomly as is each salesman’s ini-
tial assignment of cities to visit. After this initial as-
signment the salesmen can exchange cities with each
other. The salesmen are myopically individually ratio-
nal, which means that they agree to a contract if and
only if the contract increases the agent’s immediate
payoff. An agent’s payoff consists of the side payments
received from other agents (for handling their tasks)
minus the travel cost, ¢;, of handling tasks. Therefore
the sum of all salesmen’s total distance traveled de-
creases monotonically, i.e, the social welfare increases
monotonically. In the following discussion the general
multiagent task allocation terms, ”agent” and ”task”,
are used interchangeably with the TSP specific terms
”salesman” and ”city”.

The Contracting System

In principle our implementation of a contracting sys-
tem can solve the multiagent optimization TSP for any
number of agents and tasks. In the simulations, we
studied problem instances with up to eight agents and
eight tasks. These restrictions were set in order to limit
the computation time. For all combinations of num-
bers of agents between two and eight, and numbers of
tasks between two and eight, 1000 randomly generated
TSP instances were solved.® Each problem instance
was solved in five ways: using a myopically individu-
ally rational (é.e. hill-climbing) contracting method for
the O-, C-, S-, and M-contracts, respectively, and an
exhaustive enumeration of task allocations in order to
find the globally optimal allocation (this corresponds
to the outcome reached via myopically individually ra-
tional contracting using OCSM-contracts).

The cost ¢4 of traveling between locations ¢ and r
(either city or location of salesman) equals the Eu-
clidean distance between the locations. The total cost
each salesman incurs, ¢;, when visiting his cities, is the
sum of the costs along his tour:

C; = E Cqr

q,7€ The tour
of sales-
man ¢

The objective of agent ¢ is to maximize payments re-
ceived from others (for handling their tasks) minus
the agent’s own total cost ¢;. The social welfare is
given by the negative of the sum of all agents’ total
costs, ¢;. The side payments do not affect the social

6For the combination consisting of 8 agents and 8 tasks,
500 instances were used.



welfare as they are merely redistributing wealth among
the agents.

In the experiments, each problem instance was
tackled in two phases: first all possible TSPs were
solved,” and then experiments with different solution
approaches to the task allocation problem were con-
ducted. This way the agents did not have to recalculate
the TSPs every time a different contracting algorithm
was tried on the same problem instance. In order to
provide all the data necessary for determining the indi-
vidually rational contracts used when contracting, the
TSPs of all the possible combinations of cities together
with any one salesmen were solved.®

When searching for a good task allocation with the
O-, C-, S-, and M-contracts, all possible combinations
of agents and tasks that are applicable for that con-
tract type are tried repeatedly. If no changes in the
task allocation have occurred during a period when all
contracts (of a given type; O, C, S, or M) have been at-
tempted for all combinations of agents and tasks appli-
cable, the local optimum achievable with that contract
type has been reached.

A complete description of the contracting system can

be found in (Andersson & Sandholm 1997).

Results

To be able to compare the different contract types,
the ratio bound (ratio of the welfare of the obtained
local optimum for a given contract type to the wel-
fare of the global optimum) was used. The mean ratio
bounds (over the 1000 problem instances) were calcu-
lated for all possible combinations of numbers of agents
and numbers of tasks. The differences of the ratio
bounds between the contract types were also calcu-
lated, from which the significance of the results could
be statistically analyzed.

Evaluation Criteria

The description below concerns a fixed number of
agents and a fixed number of tasks. For all numbers
of agents and tasks, mean ratio bounds and the mean
of the difference in ratio bounds were calculated. Let

"The IDA* search algorithm (Korf 1985) was used to
solve the optimization TSPs. To ensure that the optimal
solution was reached an admissible A-function was used. It
was constructed by under estimating the cost function of
the remaining nodes by the minimum spanning tree (Cor-
men, Leiserson, & Rivest 1990) of those nodes (that is, of
nodes not yet on that path of the search tree, the last city
of that path of the search tree, and the finish (=start) lo-
cation of the salesman).

8Salesman 1 visits city 1, salesman 1 visits city 2, ...,
salesman 1 visits cities 1 and 2, ..., salesman 2 visits city
1, ..., salesman 8 visits all eight cities.

2! denote the social welfare (sum of all the salesmen’s
total traveling distances) of the jth problem instance,
J€1,...,n (n=1000), after task reallocation has been
performed until a local optimum has been reached us-
ing contract type [ € {O,C,S,M,G}, where G indicates
the global optimum (or equivalently OCSM-contracts).
The social welfare of the local optimum obtained us-

ing l-contracts, z!

5, over the social welfare of the global

i
optimum, :EjG gives the ratio bound ré- = f—é for the

J
jth problem instance using [-contracts. The difference
in ratio bounds between two different contract types
applied to the same instance j, is given by:

The mean difference, 7! between the contract types is:

1 n
=2
7j=1
The mean ratio bound of contract type [ € {O,C,S,M}

1S:
n
= 1 E l
T = — T
n J
7j=1

Comparison of Social Welfare

This section presents a comparison of the means of
the ratio bounds, 7, and the mean differences of ra-
tio bounds, 7, for the different contract types used
to solve the problem. Compared to the other contract
types, the mean ratio bound for the O-contracts, 79,
does not vary as much in the number of agents or tasks.
The ratio bound increases slightly with both the num-
bers of agents (Figure 2) and the number of tasks (Fig-
ure 3). The ratio bound for O-contracts varies between
1.1 and 1.2, which means that the social welfare using
O-contracts is 10% - 20% off the global optimum.

As the number of tasks increases, the mean ratio
bound, 7, for C-contracts decreases (Figure 2), i.e.,
using C-contracts leads to local optima closer to the
global optimum when the number of tasks is large.
While the decrease is monotonic, it is greatest for small
numbers of tasks. The ratio bound increases as the
number of agents increases (Figure 2). This is es-
pecially noticeable in the cases with few tasks (2-5).
For greater numbers of tasks, the increase in the ratio
bound is smaller (Figure 2, bottom left). The mean
ratio bound, 7, for S-contracts also decreases with
the number of tasks, and increases with the number
of agents. However, for S-contracts the increase in the
ratio bound is considerable even for large numbers of
tasks. As expected, M-contracts perform better both
when the number of agents increases (Figure 2) and
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Figure 2: The ratio bounds as a function of the number
of agents: (top left) 2 tasks, (top right) 4 tasks, (bottom
left) 6 tasks, and (bottom right) 8 tasks. The graphs for M-
contracts do not include any values for two agents or two
tasks, since at least three agents and three tasks are needed
to perform an M-contract.

when the number of tasks increases (Figure 3). In other
words the mean ratio bound, 7™ decreases with the
number of tasks and agents. This is obvious in the bot-
tom right graph in Figure 3. Extrapolating from these
results one can expect M-contracts to reach a lower
ratio bound than any of the other contract types for
much greater numbers of agents and tasks than eight.

In Figure 4 it can be seen that O-contracts always
perform better than S- and M-contracts. C-contracts
provide a lower ratio bound than O-contracts when
the number of tasks is greater than the number of
agents. In fact, for those numbers of agents and tasks,
C-contracts are the best contract type also when com-
pared to S- and M- contracts. So, the top left graph
in Figure 4 summarizes which of the O-, C-; S-; or
M-contracts is the best one to use for different com-
binations of numbers of agents and tasks. The reason
why the S-contracts are outperformed by all other con-
tract types is that number of tasks allocated to each
agent can not change when using S-contracts.

Computational Aspects

The number of contracts that has to be tried before one
can be certain that a local optimum has been reached,
varies noticeably between the different contract types,
Figures 5 and 6. Both the numbers of contracts needed
to be tried and those performed in order to reach a
local optimum, increase with the number of tasks in the
system. From Figure 6 we can conclude the number of
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Figure 3:  The ratio bounds as a function of the number of
tasks: (top left) 2 agents, (top right)4 agents, (bottom left)
6 agents, and (bottom right) 8 agents. The graphs for M-
contracts do not include any values for two agents or two
tasks, since at least three agents and three tasks are needed
to perform an M-contract.

contracts performed and tried by all the contract types
increases sub-exponentially.

O-contracts perform on average the largest number
of contracts for reaching the optimum, followed by C-
contracts, S-contracts, and M-contracts. The fact that
O-contracts only move one task in each contract is
likely to contribute to this result. It is an interesting
result since O-contracts are desirable for the reason
that they require the least number of contracts to be
tried to verify that a local optimum has been reached.
On the other hand, O- and C-contracts need to try
a larger number of contracts before reaching a local
optimum, than S- and M-contracts. In the case of six
agents and six tasks, O-contracts and C- contracts still
need less than 100 contracts, to reach a local optimum,
except in a small number of cases. With the exclusion
of some exceptional cases where several thousand con-
tracts are needed, M-contracts find local optima after a
small numbers of contracts have been tried. This may
be affected by the specific order of trying M-contracts.
Note that the discussion above concerns the number
of contracts needed to reach a local optimum, not the
number of contracts needed to verify that the system
has reached a local optimum. M-contracts need by
far the greatest number of contracts to verify that the
solution is a local optimum. Then, in order, C- con-
tracts, S-contracts, and O-contracts follow. The CPU-
time used for negotiation is proportional to the number
of contracts tried, but the constant of proportionality
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Figure 4: Pairwise comparison of the differences in ratio
bounds 7' for O-, C-, S-, and M-contracts. Above each
graph the two contract types under comparison are stated.
The darker the color in a square is, the better the latter
contract type. Black and white indicate areas where the
difference in performance is most significant. The black
and white areas represent results that are significant at the
0.05 confidence level of the mean difference ratio bounds
in a paired t-test (Cohen 1995). The gray areas represent
results that are not significant at the 0.05 level, yet one of
the contracts is better. In the dark gray areas the latter
contract is better while in the lighter gray areas the former
1s better. The graphs for M-contracts do not include any
values for two agents or two tasks, since at least three agents
and three tasks are needed to perform an M-contract.
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Figure 5: For each contract type the number of coniracts
tried before the system reached a local optimum is repre-
sented by the dotted line (includes those contracts needed to
verify that it is a local optimum). The number of contracts
performed before reaching the local optimum is represented
by the solid line. Note that the scales on the value azes are

different.

varies greatly between the contract types: it is much
greater for M- contracts than O-, C-, and S-contracts.
The reason is that M-contracts are more complicated
than the other contract types, and that many contracts
need to be checked before it can be verified that a local
optimum has been reached.

Dynamics of Contracting

The typical final task allocations are very different be-
tween the contract types. C-contracts tend to con-
centrate the tasks to one or to a few agents, while O-
contracts tend to spread the contracts to all the agents.
Because of the sequencing of the M-contracts, the tasks
tend to be allocated too often to agent number 1 °. The
number of tasks per agent cannot change at all when
S-contracts are used, which contributes to their poor
performance. As is desired from an anytime contract-
ing perspective, the contracts performed earlier often
improved the social welfare more than the contracts
performed later.

Conclusions

The current most widely used contract type allows for
only one task at a time to be moved from one agent to
another (O-contracts). Recently new contract types,

?One could avoid such anomalies by randomly picking
contracts to try. However, a systematic scheme is necessary
to verify that a local optimum has been reached.
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Figure 6: For each contract type the number of coniracts
tried before the system reached a local oplimum is repre-
sented by the dotted line (includes those contracts needed to
verify that it is a local optimum). The number of contracts
performed before reaching the local optimum is represented
by the solid line. The y-axis uses a logarithmic scale.

cluster (C), swap (S), multiagent (M), and OCSM-
contracts (all the other contract types combined) have
been introduced. They are all based on the idea of
moving several tasks in a single contract, which re-
duces the number of local optima in the search space
of task allocations for hill-climbing-based contracting
algorithms.

OCSM-contracts guarantee that a global optimum
is reached in a finite number of steps when used in any
hill-climbing algorithm. Although this is a powerful
result for small problem instances, in large-scale prob-
lems the number of steps needed to reach the global
optimum may be impractically large. In these prob-
lems it is more important to obtain the best achiev-
able solution in a bounded amount of time, than it is
to reach the global optimum. To be able to construct
algorithms which obtain the best achievable solution in
a bounded amount of time, we compared the five con-
tract types (all of which guarantee the optimal task
allocation is reached) in an example problem (multia-
gent version of the TSP).

The results regarding the social welfare of the local
optima of the different contract types provide guide-
lines to system builders regarding what contract types
to use in different environments when computation is
limited. We also presented timing results which can be
used in the choice of contract type if there is not enough
time to even reach a local optimum. In addition, our
results help in the choice of contract type when cer-
tain properties of the final outcome are desired, e.g.,

that tasks are distributed among multiple agents or
that tasks are concentrated to just a small number
of agents. For six agents and six tasks, a local opti-
mum was reached within the first 100 contracts tried,
with the exclusion of some exceptional cases. This is
important since several hundred - sometimes several
thousand - contracts often were tried before it could
be verified that a local optimum had been reached. M-
contracts reached a local optimum faster (when mea-
sured in the number of contracts tried or in the num-
ber of contracts performed before the optimum was
reached) than the other contract types. However, M-
contracts require more CPU-time per contract than O-,
C-, or S- contracts. They also require a significantly
larger number of contracts to be tried in order to verify
that a local optimum has been reached. For these rel-
atively small problem instances the mean of the social
welfare of the O- and C- contracts proved to be closer
to the global optimum (OCSM-contracts) than that of
the S- and M- contracts. C-contracts performed best
when the number of tasks was greater than the number
of agents; otherwise O-contracts were best. Extrapo-
lating to problems containing more agents and tasks,
M-contracts obtain local optima closer to the global
optimum. Despite the fact that O-contracts and C-
contracts have similar values of social welfare of the
local optima reached, the typical task allocations are
very different: O-contracts tend to spread the tasks
among all agents while C-contracts tend to concen-
trate the tasks to only one agent or a small number of
agents.

The sequencing of contracts within a particular con-
tract type influences the results. Analyzing this effect
further is part of our future research. Also, to improve
the social welfare, more than one contract type could
be used during contracting. Further research is re-
quired to determine the best way to sequence the differ-
ent contract types in order to obtain satisfactory social
welfare with bounded computation. There are several
possible approaches: change the contract type for every
single contract, apply many possible contracts (maybe
all) of one contract type before changing the type, or
find a local optimum using one contract type before
changing to another contract type. There is also the
question of which of the contract types should be inter-
leaved with each other. Yet another interesting area for
future work is combining the different contract types,
thus forming atomic contracts having characteristics
of more than one of the O-; C-; S-; and M-contracts,
but not all of them (unlike OCSM-contracts). These
composite contract types would not guarantee that in-
dividually rational agents will reach the global opti-
mal task allocation, but they would lead to a local



optimum faster then OCSM-contracts, and to higher
average social welfares than O-, C-; S-; or M-contracts
individually.
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