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Argumentation is a reasoning model based on the construction of arguments and counter-
arguments (or defeaters) followed by the selection of the most acceptable of them. In this
paper, we refine the argumentation framework proposed by Dung by taking into account pref-
erence relations between arguments in order to integrate two complementary points of view on
the concept of acceptability: acceptability based on the existence of direct counter-arguments
and acceptability based on the existence of defenders. An argument is thus acceptable if it
is preferred to its direct defeaters or if it is defended against its defeaters. This also refines
previous works by Prakken and Sartor, by associating with each argument a notion of strength,
while these authors embed preferences in the definition of the defeat relation. We propose a
revised proof theory in terms of AND/OR trees, verifying if a given argument is acceptable,
which better reflects the dialectical form of argumentation.
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1. Introduction

Argumentation is a promising model for reasoning with inconsistent knowledge,
based on the construction and the comparison of arguments. It may also be considered as
a different method for handling uncertainty. In particular, it should be possible to assess
the reason why a fact holds, in the form of arguments, and combine these arguments
to evaluate the certainty. Indeed, the process of combination may be viewed as a kind
of reasoning about arguments themselves in order to determine the most acceptable of
them. Note that the above definition encompasses two views of an argument:

• a local view, intended to give support in favour or against a conclusion; and

• a global view, intended to define the acceptable arguments.

Formal argumentation systems [11,14–17,19–23] are characterised by representing pre-
cisely some of these features of argumentation via formal languages, and by applying
formal inference techniques.

The different approaches, which have been developed for reasoning within an ar-
gumentation system, use one of the two following kinds of acceptability:
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Individual acceptability. An acceptability level is assigned to a given argument on the
basis of the existence of direct defeaters. That leads to the concept of acceptability
class introduced in [12,13].

Joint acceptability [10,11]. The set of all the arguments that a rational agent accepts
must defend itself against any defeater.

These notions of acceptability have been most often defined purely on the basis
of defeaters. The resulting evaluation of arguments is only based on the interactions
between (direct or indirect) defeaters. However, other criteria may be taken into account
for comparing arguments such as for instance, specificity [21], or explicit priorities on
the beliefs.

The notion of priority plays a crucial role in the study of knowledge-based systems.
When priorities attached to pieces of knowledge are available, the task of coping with
inconsistency is greatly simplified, since conflicts have a better chance to be resolved.
More generaly, preference relations allow the comparison of arguments and in some
cases the selection between conflicting arguments. Our aim is to take advantage of
these priorities in argumentation frameworks. For that purpose, we introduce preference
relations into argumentation systems.

In previous work [4], we studied different preference relations between arguments.
In [2,3], we presented the principles of preference-based argumentation and how prefer-
ence relations can be integrated into argumentation frameworks.

In this paper, we propose to refine the abstract argumentation framework pro-
posed by Dung in [11] with explicit priorities. We propose a general preference-
based argumentation framework where the definition of acceptability combines dif-
ferent independent evaluations: an evaluation based on direct or indirect defeaters
and on defenders, and a preference-based comparison between conflicting argu-
ments.

One basic idea is to accept an argument if it is not defeated, if it defends itself
against its defeaters (because it is preferred or stronger than its defeaters), or if it is
defended by other arguments. Finally, we show that a proof theory is available for test-
ing whether an argument is acceptable. The concepts presented are illustrated in the
particular framework of inconsistency handling in knowledge bases.

Note that Prakken and Sartor have also extended Dung’s framework with priori-
ties in [20]. The route taken is quite different. They present a language with defeasi-
ble and strict rules, and strong negation (a sort of classical negation) and weak negation
(a negation-by-failure), before considering the use of priorities and defeat. This language
seems useful in modelling legal reasoning. However, that extra layer of logic program-
ming notation and concepts masks the underlying simplicity of Dung’s proposal. Our
extension is more direct.

This paper is organized as follows: section 2 introduces the basic argumentation
framework of Dung [11]. Section 3 is divided in two parts: the first one is devoted to
the study of preference relations between arguments. The second part introduces a gen-
eral and abstract preference-based argumentation framework. Section 4 introduces the
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proof theory. Finally, section 5 is devoted to some concluding remarks and perspectives.
Proofs are given in the appendix.

2. The basic argumentation framework

2.1. Basic definitions

In Dung’s work [10,11], an argumentation framework is defined as a pair consisting
of a set of arguments and a binary relation representing the defeasibility relation between
arguments. Here, an argument is an abstract entity whose role is only determined by its
relation to other arguments. Then its structure and its origin are not known.

Definition 2.1. An argumentation framework is a pair 〈A,R〉 where A is a set of ar-
guments and R is a binary relation representing a defeasibility relationship between
arguments, i.e., R ⊆ A × A. (A,B) ∈ R or equivalently “A R B” means that the
argument A defeats1 the argument B. We also say that A and B are in conflict.

Each defeasibility relation leads to an argumentation framework. Defeating argu-
ments can in turn be defeated by other arguments so we need to define a notion of the
status of arguments. This notion of status is the central element of any argumentation
framework. Its definition takes as input the set of all possible arguments and their mutual
relations of defeat, and produces as output a division of arguments into three classes of
arguments:

• The class of acceptable arguments. They represent the “good” arguments. In the case
of handling inconsistency in knowledge bases, for example, the formulas supported
by such arguments will be inferred from the base.

• The class of rejected arguments. They are those arguments defeated by acceptable
arguments. Such arguments would not be considered in the process of inference from
a knowledge base, for example.

• The arguments which are neither acceptable nor rejected are gathered in the so-called
class of arguments in abeyance.

Note that to define the rejected arguments and the arguments in abeyance of a given
argumentation framework, we first need to determine the set of acceptable arguments of
that framework.

The different approaches, which have been developed for reasoning within an ar-
gumentation framework, use either the individual acceptability proposed by Elvang et al.
in [12] or the joint acceptability proposed by Dung in [10,11].

Definition 2.2 [12]. Let 〈A,R〉 be an argumentation framework. The class of accept-
able arguments, denoted by CR, is the set {A ∈ A | there does not exist B ∈ A such that

1 Dung uses the word Attack.
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B R A}. The class of rejected arguments, denoted by RejR is the set {A ∈ A | ∃B ∈ CR
such that B R A}. The set of arguments in abeyance is AbR = A \ (CR ∪ RejR).

Example 2.1. Let 〈A,R〉 be the argumentation framework defined by A = {A,B,C}
and R = {(A,B), (B,C)}. The unique argument which is not defeated is A then
CR = {A}. The argument B is defeated by A which is acceptable so RejR = {B}.
The argument C is neither acceptable nor rejected so AbR = {C}.

The above definition of acceptability is very cautious. An argument is accepted
if it is undefeated. With many defeasibility relations, when a given argument is de-
feated, the defeater itself is defeated and then unacceptable. So the acceptable ar-
guments do not appear in any conflict. In [10,11], Dung extended the above defi-
nition using a notion of defence. The basic idea is that an argument is acceptable
with respect to a set S of arguments if it is defended by that set S against all its de-
featers.

Definition 2.3 [11]. Let 〈A,R〉 be an argumentation framework, and S ⊆ A. An ar-
gument A is defended by S iff ∀B ∈ A, if B R A then ∃C ∈ S such that C R B.

Dung characterised the set of acceptable arguments by a monotonic function F that
returns for each set of arguments the set of all arguments that are acceptable with respect
to it.

Definition 2.4 [11]. S ⊆ A. F(S) = {A ∈ A | A is defended by S}.
Since the function F is monotonic, the set of acceptable arguments is defined as

its least fixpoint. Moreover, Dung showed that if the argumentation framework 〈A,R〉
is finitary (i.e., for each argument A there are finitely many arguments which defeat A),
the function F is continuous and then its least fixpoint can be obtained by iterative
application of F to the empty set.

Definition 2.5 [11]. Let 〈A,R〉 be an argumentation framework. The set of acceptable
arguments, denoted by AccR, is the least fixpoint of the function F .

Example 2.2 (Follows example 2.1). Let 〈A,R〉 be the argumentation framework de-
fined by A = {A,B,C} and R = {(A,B), (B,C)}. The set of acceptable arguments
is CR = {A,C}. In this case, the argument A defends C against its defeater B. The
argument B is defeated by A which is acceptable so RejR = {B}. The set of arguments
in abeyance is empty, AbR = ∅.

2.2. Illustration

To illustrate the concepts of argument, defeat relation (R) and acceptability, let
us consider particular argumentation systems proposed for handling inconsistency in
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knowledge bases. The arguments are built from a propositional knowledge base 	,
which may be inconsistent. � stands for classical inference and ≡ for standard logical
equivalence.

Definition 2.6. An argument of 	 is a pair (H, h) where H ⊆ 	 such that:

(1) H is consistent,

(2) H � h,

(3) H is minimal (for set inclusion).

H is called the support and h the conclusion of the argument. A(	) denotes the set of
all the arguments which are constructed from 	.

As examples of defeat relations, consider the Rebut and Undercut relations defined
in [12] as follows:

Definition 2.7. Let (H1, h1), (H2, h2) be two arguments of A(	).

• (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.

• (H1, h1) undercuts (H2, h2) iff ∃h ∈ H2 such that h ≡ ¬h1.

Note that the definition of an argument and the definition of the defeasibility rela-
tion depend broadly on the considered application. See [1] for a thorough presentation of
different definitions. In [6] an argument may be seen as a plan for an agent to achieve one
of its intentions. And in that particular case, and argument A defeats another argument B
if the two arguments (the two plans) share the same resource.

In [18,19] an argument is a sequence of chained implicative rules. Each rule has
a consequent part (consisting of one literal) and an antecedent part (consisting of a con-
junction of literals). The consequent of each rule in a given argument is considered as a
conclusion of that argument.

2.3. The limits of the basic framework

Dung’s definition of acceptability disregards the quality of the arguments. How-
ever, the force of an argument can be often estimated by considering the beliefs used
to build this argument. For example according to the preferences which can exist be-
tween the beliefs, an argument can be more or less strong than another argument. Let’s
consider the following example.

Example 2.3. Let 〈A,R〉 be an argumentation framework with A = {A,B,C} and
R = {(B,A), (C,B)}.

According to Dung, the set of acceptable arguments is {A,C}. Yet, if we know that
the argument B is preferred to A and C according to a preference relation Pref between
arguments, then the argument C defeats B but B defends itself against C in some sense.
Hence, the argument B might be considered as acceptable and A might be rejected.
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3. Preference-based argumentation framework

In order to refine the comparison between arguments and to enforce the concept
of acceptability, we propose in this section to combine the preference relations between
arguments with the defeasibility relations.

3.1. Preference relations

The notion of acceptability has been most often defined purely on the basis of
other constructible arguments. However other criteria may be considered for comparing
arguments. In the case of knowledge bases, for instance, specificity, or explicit priorities
on the beliefs can be taken into account. More generally, preference relations can be
used for comparing arguments.

We present below some of the preference relations proposed in the particular case
of handling inconsistency in knowledge bases. The relations between the arguments
are usually defined from priorities over the beliefs. Two kinds of priorities are most
commonly encountered:

• Implicit priorities are extracted from the knowledge base. They are used in condi-
tional approaches. Default rules can be (partially) ordered by exploiting specificity
relations between the contexts. For example we know that all birds are animals; that
generally animals do not fly and birds fly. For a given bird, the conflict is solved by
privileging the rule about birds.

• Explicit priorities are specified outside the logical theory to which they apply. They
may be given in the form of a partial order on the beliefs.

The preference relations between arguments are defined from a preordering over the
supports of that arguments. The preordering over the supports is itself computed from
the (explicit or implicit) priorities over the beliefs of the set 	.

Reminder. A binary relation P defined on a set X is a preordering iff it is reflexive
and transitive. From a preordering P, a relation of equivalence EP and a strict ordering
relation SP can be defined as follows: x EP y iff x P y and y P x and x SP y iff x P y

and not (y P x).
The relation of equivalence enables to partition X into several classes of equiv-

alence. If the preordering is partial, which means that there exist elements of X not
comparable, the different classes are not all comparable too. However, if the preordering
is total, a strict total ordering may be defined on the classes.

When a belief base 	 is equipped with a total preordering, it is equivalent to con-
sider its partition into classes 	1, . . . , 	n such that 	1 contains the most preferred beliefs
and 	n contains the less preferred ones. We say also that the belief base is stratified and
we denote it by 	 = 	1 ∪ · · · ∪ 	n.
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Let us consider P a preordering over the elements of the belief base 	. From P
we define a preordering, denoted by Pref , between sets of beliefs. Pref will allow com-
parison of supports of arguments. Finally, the preference between arguments is defined
as follows:

Definition 3.1. Let Pref be a (partial or total) preordering on subsets of 	 and let (H, h),
(H ′, h′) be two arguments of A(	). (H, h) is Pref -preferred to (H ′, h′) iff H is pre-
ferred to H ′ with respect to Pref .

Notation. Let (H, h), (H ′, h′) be two arguments of A(	). If Pref is a preordering then
(H, h) Pref -preferred to (H ′, h′) means that (H, h) is at least as “good” as (H ′, h′).
�Pref and ≡Pref will denote respectively the strict ordering and the relation of equiva-
lence associated with the preference between arguments. Hence, (H, h) �Pref (H ′, h′)
means that (H, h) is strictly Pref -preferred to (H ′, h′). (H, h) ≡Pref (H ′, h′) means that
(H, h) is Pref -preferred to (H ′, h′) and (H ′, h′) is Pref -preferred to (H, h).

An example of such a preference relation is the one based on the elitism principle
(ELI-preference [9]). Let � be a total preordering on 	 and > be the associated strict or-
dering. In that case, the knowledge base 	 is assumed to be stratified into (	1, . . . , 	n)
such that 	1 is the set of �-maximal elements in 	 and 	i+1 the set of �-maximal
elements in 	 \ (	1 ∪ · · · ∪ 	n).

Let H and H ′ be two subbases of 	. H is preferred to H ′ according to ELI-
preference iff ∀k ∈ H \ H ′, ∃k′ ∈ H ′ \ H such that k > k′.

Let (H, h), (H ′, h′) be two arguments of A(	). (H, h) �ELI (H ′, h′) iff H is
preferred to H ′ according to ELI-preference.

Example 3.1. 	 = 	1 ∪ 	2 ∪ 	3 ∪ 	4 is a knowledge base such that 	1 = {x,¬r},
	2 = {x → t}, 	3 = {t → r} and 	4 = {¬r → p}. Let us consider the arguments A

and B such that A: ({¬r,¬r → p}, p) and B: ({x, x → t, t → r}, r). B undercuts A

and B �ELI A. Let us consider the arguments B and NR: ({¬r},¬r). NR rebuts B and
NR �ELI B.

Other definitions of preference relations between arguments can be found in [4].

3.2. Argumentation framework

The result of combining preference relations with defeasibility relations leads to
more complex argumentation frameworks defined as follows.

Definition 3.2. A preference-based argumentation framework (PAF) is a triplet 〈A,R,

Pref 〉 where A is a set of arguments, R is a binary relation representing a defeat rela-
tionship between arguments, R ⊆ A×A, and Pref is a (partial or complete) preordering
on A × A.
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Different definitions for the defeat relation (R) and Pref lead to different preference-
based argumentation systems.

Note that the defeat and preference relations are given independently. We propose
to combine both relations in the following way.

Definition 3.3. Let A, B be two arguments of A. B attacks A iff B R A and
not(A �Pref B).

From a preference-based argumentation framework 〈A,R,Pref 〉, three categories
of arguments will be defined:

• the set of acceptable arguments of the argumentation framework, denoted by
AccR,Pref . It will be defined in definition 3.6 below.

• {A ∈ A−∃B ∈ AccR,Pref such that B RA and not(A �Pref B)} is the set of rejected
arguments denoted by RejR,Pref .
In other words, RejR,Pref gathers the arguments which are attacked by acceptable
arguments.

• AbR,Pref = A \ (AccR,Pref ∪ RejR,Pref ) is the set of arguments which are in abeyance.

Note that the definition of the sets RejR,Pref and AbR,Pref (from the set of acceptable
arguments) is the one present in most of the works about argumentation reasoning.

So next, we focus on the construction of AccR,Pref . Our purpose is to refine the
abstract argumentation framework proposed by Dung in [11]. Our contribution mainly
concerns the concept of defence. We use two complementary notions of defence: a so-
called individual defence (introduced via preference relations) and the notion of defence
proposed by Dung, which may be called joint defence.

Definition 3.4. Let 〈A,R,Pref 〉 be a PAF. Let A, B be two arguments of A such that
B R A. A defends itself against B (with respect to Pref ) iff A �Pref B. An argument
defends itself (with respect to Pref ) iff it is preferred with respect to Pref to each of its
defeaters.

CR,Pref denotes the set of arguments defending themselves (with respect to Pref )
against their defeaters.

Example 3.2. Let 〈A,R,Pref 〉 be a PAF such that A = {A,B,C,D,E}, R =
{(C,D), (D,C), (A,E)} and C �Pref D, then CR,Pref = {A,B,C}.

The set CR,Pref contains also the arguments which are not defeated (in the sense
of the relation R). We have chosen to regard each argument in CR,Pref as an acceptable
argument. This corresponds to the individual point of view. It generalizes the concept of
acceptability class proposed in [12,13] in basic argumentation frameworks (i.e., without
preference relations) since CR (as defined in definition 2.2) is included in CR,Pref .

Proposition 3.1. CR ⊆ CR,Pref .
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However, CR,Pref is too restricted since it discards arguments which appear accept-
able. Let us consider an argument A defeated by B such that B is preferred to A. It
is clear that A does not belong to CR,Pref . Then assume that B itself is defeated by an
argument C which is preferred to B. A might be regarded as an acceptable argument.
This corresponds to the joint defence point of view.

When we instantiate the abstract schema of Dung by taking the defeasibility rela-
tion as the Attack relation given in definition 3.3, the notion of joint defence becomes:

Definition 3.5. An argument A is defended by S (with respect to Pref ) iff ∀B ∈ A, if
B R A and not(A �Pref B) then ∃C ∈ S such that CRB and not(B �Pref C).

So, by applying the characteristic function F (as defined in definition 2.4) to the
empty set, and due to definition 3.4, we obtain exactly the set of arguments defending
themselves against their defeaters. More formally:

F(∅) = CR,Pref .

Now, we are ready to define our semantics of a general preference-based argumen-
tation framework.

Definition 3.6. Let 〈A,R,Pref 〉 be a finitary PAF in the sense of R (i.e., each argument
is defeated by finitely many arguments). The set of acceptable arguments of the PAF
〈A,R,Pref 〉 is defined as:

AccR,Pref =
⋃

F i>0(∅) = CR,Pref ∪
[ ⋃

F i�1(CR,Pref )
]
.

The acceptable arguments are the ones which defend themselves against their de-
featers (CR,Pref ) and also the arguments which are defended (directly or indirectly) by
the arguments of CR,Pref .

3.3. Application to inconsistency handling

Due to the use of propositional language and finite knowledge bases, in the
particular case of handling inconsistency in knowledge bases, the two frameworks
〈A(	),Rebut,Pref 〉 and 〈A(	),Undercut,Pref 〉 are finitary. So, the associated sets
of acceptable arguments are respectively:

CRebut,Pref ∪
[⋃

F i�1(CRebut,Pref )
]
,

CUndercut,Pref ∪
[ ⋃

F i�1(CUndercut,Pref )
]
.

Example 3.3 (Follows example 3.1). 	 = 	1 ∪ 	2 ∪ 	3 ∪ 	4 such that 	1 = {x,¬r},
	2 = {x → t}, 	3 = {t → r} and 	4 = {¬r → p}.

Let us consider the arguments A: ({¬r,¬r → p}, p), B: ({x, x → t, t → r}, r)
and C: ({x, x → t,¬r},¬(t → r)).
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B undercuts A and B �ELI A, so A is not ELI-preferred to B and A does not
defend itself against B: A /∈ CUndercut,Pref .

C undercuts B and C �ELI B, so C defends A against B. Moreover, C ∈
CUndercut,Pref . Then, A ∈ F(CUndercut,Pref ) and so A is an acceptable argument in the
system 〈A(	),Undercut,Pref 〉.

4. Proof theory

So far, we have only provided a semantics for a preference-based argumentation
framework, by defining the set of acceptable arguments. However, in practice we don’t
need to calculate the whole set AccR,Pref in order to know the status of a given argument.
In this section we propose a test for membership for an argument A, i.e., we propose a
proof theory for our semantics.

For this purpose, we are motivated by the work of Prakken and Sartor in [20],
developed in a logic programming like setting. We slightly improve their dialectical
proof theory according two points: First, unlike Prakken and Sartor, we keep the original
notion of defence (and so the original grounded semantics) proposed by Dung. Secondly,
we allow a more general (i.e., less constrained) definition for dialogue trees.

Let us recall the main basic concepts of a dialectical proof theory, before presenting
our improvement.

4.1. Definitions

In order to get a more efficient proof theory, Prakken and Sartor modify the
characteristic function of an argumentation framework by using a notion of strict de-
fence.

Definition 4.1. Let 〈A,R,Pref 〉 be a PAF, let A be an argument and S ⊆ A. A is
strictly defended by S iff ∀B ∈ A such that B attacks A then ∃C ∈ S such that C strictly
attacks B (i.e., C attacks B and B does not attack C).

Indeed, the restriction to a strict defence is not necessary, since we have proved

Proposition 4.1. ∀A ∈ AccR,Pref , A is strictly defended by AccR,Pref . In other words,
the set of acceptable arguments strictly defends all its elements.

This proposition is of great importance. It shows that to verify if an argument is
acceptable (in the sense of definition 3.6), we only have to take into account its strict
defenders rather than all the defenders.

Definition 4.2. Let 〈A,R,Pref 〉 be a PAF.
B indirectly attacks A iff there exists a finite sequence of arguments A0, . . . , A2n+1

such that:
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• A = A0 and B = A2n+1,

• ∀i, 0 � i � 2n, Ai+1 attacks Ai .

B indirectly defends A iff there exists a finite sequence of arguments A0, . . . , A2n

such that:

• A = A0 and B = A2n,

• ∀i, 0 � i < 2n, Ai+1 attacks Ai .

The argument B indirectly defends A against the argument A1.

The above definition was introduced by Dung using the defeasibility relation R.
The following results will enable us to prove the completeness of the proof theory.

Proposition 4.2. Let 〈A,R,Pref 〉 be a PAF. ∀x ∈ AccR,Pref , x is indirectly defended
by arguments of CR,Pref against all its defeaters.

Remark 4.1. An argument indirectly defended against all its defeaters by arguments
of CR,Pref is not necessarily acceptable (i.e., does not necessarily belong to the set
AccR,Pref ). Consider the following example.

Example 4.1. Let 〈A,R,Pref 〉 be a PAF such that A = {a0, a1, a2, a3, a4, a5, a6, a7},
R = {(a1, a0), (a2, a0), (a4, a2), (a3, a1), (a5, a3), (a6, a3), (a7, a6)}.

Suppose that a4 �Pref a2 �Pref a0, a5 �Pref a3 �Pref a1 �Pref a0, a7 �Pref

a6 �Pref a3.
The argument a0 is defeated by two arguments a1 and a2 and it does not defend

itself. The argument a0 is indirectly defended by a7, which is in CR,Pref , against a1. a0

is also defended against a2 by the argument a4 which belongs to CR,Pref . However, a0 is
not in the set AccR,Pref because it is indirectly attacked by the argument a5 of CR,Pref .

Proposition 4.3. Let 〈A,R,Pref 〉 be a PAF. If x ∈ RejR,Pref then ∃y ∈ CR,Pref such
that y indirectly attacks x. In other words, if an argument is rejected then it is indirectly
attacked by an argument of CR,Pref .

4.2. The dialectical proof

According to definition 3.6, an argument A is acceptable in a finite PAF if and only
if it is in the result of finitely iterative applications of the function F to the set CR,Pref .
Starting with A belonging to Fn, for any argument B attacking A we find an argument C
in Fn−1 which defends A.

According to proposition 4.1, it is not necessary to find all the defenders, we just
consider the strict defenders. The same process is repeated for each strict defender until
there is no strict defender or defeater.

In a dialectical form, a proof that an argument A is acceptable will take the form of
a dialogue tree, where each branch of the tree is a dialogue, and the root of the tree is the
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argument A. Each move in a dialogue consists of an argument of 〈A,R,Pref 〉 which
attacks the last move.

Definition 4.3 [20]. A dialogue is a nonempty sequence of moves: Movei = (Playeri ,
Argi) (i � 0) such that:

(1) Playeri = PRO iff i is even, Playeri = OPP iff i is odd.

(2) Player0 = PRO and Arg0 = A.

(3) If Playeri = Playerj = PRO and i �= j then Argi �= Argj .

(4) If Playeri = PRO (i > 1) then Argi strictly attacks Argi−1.

(5) If Playeri = OPP then Argi attacks Argi−1.

Note that the player PRO begins the dialogue with the argument we are interested
in. The players take turns, but have different roles. PRO must justify its initial argu-
ment A, while OPP wants to prevent A from being acceptable.

We define a dialogue tree as a finite tree where each branch is a dialogue. We
adopt a very general definition for dialogue trees to allow for the dialectical form of
argumentation: exchange of arguments. The main issue is then to define winning rules
such that an argument A is acceptable iff the player PRO wins a suitable dialogue tree
with root A. In the following, we propose a formalization which generalizes the one
proposed by Prakken and Sartor in [20].

It is obvious that PRO wins a dialogue iff OPP cannot move (PRO ends the di-
alogue). However, defining the winning rule for a dialogue tree is less trivial. Let us
consider the following example:

Example 4.2. Let 〈A,R,Pref 〉 be a PAF such that: A = {a0, a01, a02, a03, a10, a11, a12,

a13, a14}, R = {(a10, a0), (a01, a10), (a12, a02), (a02, a10), (a03, a11), (a11, a0), (a13, a14),

(a14, a13)}.
Suppose: a03 �Pref a11 �Pref a0, a01 �Pref a10 �Pref a0, a12 �Pref a02 �Pref a10,

a13 �Pref a14. We are interested in the status of the argument a0. The corresponding
dialogue tree is presented in figure 1. PRO presents the arguments a0, a01, a02 and a03;
OPP presents the arguments a10, a11 and a12. a03 defends a0 against a11 and a01 defends
a0 against a10. Since a01 and a03 belong to CR,Pref , a0 is acceptable.

In [20], the winning rule is defined by a player wins a dialogue tree iff it wins
all the branches of the tree. That rule is very strict and in practice is only applied to
particular dialogue trees, where each move labelled by OPP has only one child in the
tree. For instance, the dialogue tree presented in figure 1 is not won by PRO, in the sense
of Prakken and Sartor. But a particular sub-tree will be won by PRO.

In the following, we propose a more general winning rule, which applies to arbi-
trary dialogue trees.
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Figure 1. A dialogue tree.

A dialogue tree can be considered as an AND/OR tree. A node corresponding to
the player PRO is an AND node, and a node corresponding to the player OPP is an OR
node. That distinction between nodes is due to the fact that an argument is acceptable if
it is defended against all its defeaters. The children of a node containing an argument of
PRO represent defeaters so they all must be defeated. In contrast, the children of a node
containing an argument of OPP represent defenders of PRO so it is enough that one of
them defeats the argument of OPP.

Example 4.3 (Follows example 4.2). In the dialogue tree given in figure 1, a0 is an AND
node, while a10 is an OR node.

Definition 4.4. A player wins a dialogue iff he ends the dialogue (he makes the last
argument).

A player who wins a dialogue does not necessarily win in all the sub-trees of the
dialogue tree. And if a player wins a dialogue, the last argument he makes is not neces-
sarily acceptable. Consider the following example:

Example 4.4. Let 〈A,R,Pref 〉 be a PAF such that A = {a0, a1, a2, a3, a4}, R =
{(a1, a0), (a2, a0), (a1, a3), (a3, a1), (a2, a4), (a4, a2)}.

Suppose that: a1 �Pref a0, a2 �Pref a0. Let’s consider the argument a0. The
corresponding dialogue tree is presented in figure 2.

PRO presents the argument a0 whereas OPP presents the two arguments a1 and a2.
OPP wins the two dialogues and yet the arguments a1 and a2 are not acceptable.

Proposition 4.4. If PRO wins a dialogue then his last move is an argument of CR,Pref .

To formalize the winning rule of a dialogue tree, we define the concept of solution
sub-tree.
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Figure 2. A dialogue tree.

Figure 3. Candidate sub-trees.

Definition 4.5. A candidate sub-tree is a sub-tree of the dialogue tree containing all the
edges of each AND node and exactly one edge of each OR node. A solution sub-tree is
a candidate sub-tree whose branches are all won by PRO.

Example 4.5 (Follows example 4.2). The dialogue tree presented in example 4.2 has
exactly two candidate sub-trees S1 and S2 (see figure 3).

Example 4.6 (Follows example 4.4). The dialogue tree presented in example 4.4 has
only one candidate sub-tree which is the dialogue tree itself.

Definition 4.6. PRO wins a dialogue tree iff the dialogue tree has a solution sub-tree.

Example 4.7 (Follows example 4.2). PRO wins the dialogue tree presented in figure 1
because S2 is a solution sub-tree.

Proposition 4.5. If the player PRO wins the dialogue tree then:

(1) All the leaves of the solution sub-tree are arguments of CR,Pref .

(2) Each leaf of a solution sub-tree indirectly defends the arguments given by PRO in
the dialogue leading to that leaf.
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Definition 4.7. An argument A is provably acceptable iff there exists a complete dia-
logue tree whose root is A, won by the player PRO. A dialogue tree is complete iff for
each move (PRO,Argi) (i � 0), the children are exactly all the defeaters of Argi .

Example 4.8 (Follows example 4.1). The argument a0 is not provably acceptable be-
cause the dialogue tree whose root is a0 is not won by PRO.

Example 4.9 (Follows example 4.2). The argument a0 is provably acceptable because
the player PRO won the dialogue tree.

Example 4.10 (Follows example 4.4). The argument a0 is not provably acceptable be-
cause the player PRO did not win the dialogue tree.

Provably acceptable arguments exactly correspond to acceptable arguments:

Proposition 4.6. Let 〈A,R,Pref 〉 be a finite PAF.

• ∀x ∈ A, if x is provably acceptable then each argument given by PRO belonging to
the solution sub-tree is in AccR,Pref , in particular x.

• ∀x ∈ AccR,Pref , x is provably acceptable.

5. Conclusion

The work presented here concerns the acceptability of arguments in preference-
based argumentation frameworks. Our first contribution is to identify two complemen-
tary notions of acceptability (individual acceptability and joint acceptability) and to
present a unified general framework where both notions are used. Our second contri-
bution is to take into account preference relations between arguments in order to select
the most acceptable of them. The use of those preferences allows us to define a notion
of individual defence and a notion of joint defence. We have proposed an argumentation
framework in which an argument is acceptable if it is not defeated or if it defends itself
against its defeaters or if it is defended by other arguments. We have also proposed a
proof theory for this preference-based argumentation framework. The proof theory ver-
ifies whether a given argument A is acceptable or not. The proof theory is presented as
a dialogue tree between two players PRO and OPP.

The idea of presenting the proof theory as a dialogue game between two players
suggests the application of the argumentation framework to modelling dialogue and ne-
gotiation between agents.

In the past few years there have been a number of proposals for mechanisms for ne-
gotiation between agents that make use of argumentation. These proposals have largely
been vague on the subject of how the generation and interpretation of arguments fits
into the process of negotiation. In [5,7], this gap has been addressed by proposing a
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protocol based on our preference-based framework. One limit of our preference-based
framework is that it is not able to take into account different preorderings on the set of
arguments. These different preorderings can be considered to be contextual preferences,
that is preferences which depend upon a particular context. In [8] we have extended this
argumentation framework by taking into account contextual preferences.

Appendix

Proposition 4.1. ∀A ∈ AccR,Pref , A is strictly defended by AccR,Pref . In other words,
the set of acceptable arguments strictly defends all its elements.

Proof. Let x ∈ AccR,Pref = ⋃
F i>0(∅) = CR,Pref ∪ [⋃F i�1(CR,Pref )]. Let x′ ∈ A

such that x′ attacks x. AccR,Pref defends x then AccR,Pref contains x′′ such that x′′
attacks x′. Let i be the smallest index � 0 such that F i (CR,Pref ) contains x′′. If x′′
does not strictly attack x′ then x′ attacks x′′. x′′ ∈ F(F i−1(CR,Pref )) then there exists
y ∈ F i−1(CR,Pref ) such that y attacks x′. Contradiction with the definition of i. �

Proposition 4.2. Let 〈A,R,Pref 〉 be a PAF. ∀x ∈ AccR,Pref , x is indirectly defended
by arguments of CR,Pref against all its defeaters.

Proof. We show by induction on i that if x ∈ F i (CR,Pref ) and there does not exist j < i

such that x ∈ F j (CR,Pref ) then ∃y ∈ CR,Pref such that y indirectly defends x.

• Let x ∈ F(CR,Pref ) such that x /∈ CR,Pref then ∃x1 such that x1 attacks x.
∃x2 ∈ CR,Pref such that x2 attacks x1 then x2 indirectly defends x.

• We assume that the property is true at an order i and we’ll show that it is true at order
i + 1.

x ∈ F i+1(CR,Pref ) and ∀j < i + 1, x /∈ F j (CR,Pref ). (A.1)

∃x1 attacks x (due to (A.1)) and x ∈ F(F i (CR,Pref )) then ∃x2 ∈ F i (CR,Pref ) and x2

attacks x1.
Let j be the smallest index � i such that x2 ∈ F j (CR,Pref ), j � 0.

• j = 0: x2 ∈ CR,Pref and indirectly defends x.

• j � 1: according to induction hypothesis, ∃y ∈ CR,Pref such that y indirectly
defends x2 then y indirectly defends x. �

Proposition 4.3. Let 〈A,R,Pref 〉 be a PAF. If x ∈ RejR,Pref then ∃y ∈ CR,Pref such
that y indirectly attacks x. In other words, if an argument is rejected then it is indirectly
attacked by an argument of CR,Pref .

Proof. RejR,Pref = {x | ∃y ∈ AccR,Pref such that y attacks x}. Let x ∈ RejR,Pref ,
∃y ∈ AccR,Pref : y attacks x. According to proposition 4.2, ∃z ∈ CR,Pref such that z
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indirectly defends y. Due to definition 4.2, since z indirectly defends y and y attacks x,
we have z indirectly attacks x. �

Proposition 4.4. If PRO wins a dialogue then his last move is an argument of CR,Pref .

Proof. Take A as the last argument provided by PRO. Since PRO wins the dialogue,
then the player OPP has no argument which attacks A, so according to the definition of
CR,Pref , A ∈ CR,Pref . �

Proposition 4.5. If the player PRO wins the dialogue tree then:

(1) All the leaves of the solution sub-tree are arguments of CR,Pref .

(2) Each leaf of a solution sub-tree indirectly defends the arguments given by PRO in
the dialogue leading to that leaf.

Proof. (1) Since PRO wins the dialogue tree then PRO wins all the dialogues of the
solution sub-tree. According to proposition 4.4, the last moves of these dialogues are
arguments of the class CR,Pref .

(2) Since PRO starts the game and gives the last argument in each dialogue of the
solution sub-tree then there exists a sequence A0, . . . , A2n such that A0 = A (the first
argument given by PRO), A2n = B ∈ CR,Pref (B is a leaf of the solution sub-tree) and
Ai+1 attacks Ai . Then B indirectly defends A and indirectly defends each argument
A2(n−i) with 1 � i � n. �

Proposition 4.6. Let 〈A,R,Pref 〉 be a finite PAF.

(1) ∀x ∈ A, if x is provably acceptable then each argument given by PRO belonging to
the solution sub-tree is in AccR,Pref , in particular x.

(2) ∀x ∈ AccR,Pref , x is provably acceptable.

Proof. (1) Let x be a provably acceptable argument then there exists a dialogue tree
whose root is x and won by PRO. So, there exists a solution sub-tree whose leaves are
all arguments of the class CR,Pref and given by PRO.

Let 2i be the depth of the solution sub-tree (i.e., the maximum number of moves
of all the dialogues in the solution sub-tree).

As usual, we define the height of a node N in a tree as the depth of the sub-tree of
root N .

We show by induction on p that ∀p such that 0 � p � i, {y | y is an argument
given by PRO in a node of height � 2p belonging to the solution sub-tree} is included
in AccR,Pref .

(i) Case p = 0. The leaves of the solution sub-tree are all elements of CR,Pref and
then of AccR,Pref .

(ii) Assume that the property is true for order p, and consider the order p + 1. It
is sufficient to consider the arguments given by PRO in a node of height (2p + 2) of the
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solution sub-tree. Let y be such an argument. Since y is given by PRO, all the arguments
y′
k attacking y appear in the solution sub-tree as children of y, and each argument y′

k is
itself strictly attacked by one argument zk appearing in the solution sub-tree as a child
of y′

k. So each zk is given by PRO and appears in a node of height 2p of the solution
sub-tree.

By induction hypothesis, each argument zk belongs to AccR,P ref . Since all attack-
ers of y have been considered, AccR,Pref defends y. So, y belongs to AccR,Pref . And the
property is shown at the order p + 1.

(2) x ∈ AccR,Pref . Construct a tree with root x. Let i be the smallest index � 0
such that x ∈ F i (CR,Pref ). We show by induction on i that there exists a solution sub-tree
whose root is x and depth is � 2i.

(i) Case i = 0. x ∈ CR,Pref , the depth of the tree is 0.
(ii) Assume that the property is true for order i and consider the order i + 1. Then

x ∈ F i+1(CR,Pref ) and x /∈ F j (CR,Pref ) with j < i + 1.

Let x1, . . . , xn be the arguments attacking x. xj attacks x, and x ∈ F i+1(CR,Pref ) =
F(F i (CR,Pref )).

According to proposition 4.1, ∃yj ∈ AccR,Pref such that yj strictly attacks xj . Since
yj defends x (definition of F), then yj ∈ F i(CR,Pref ). By induction hypothesis applied
to yj , there exists a solution sub-tree whose root is yj and the depth is � 2i. The same
construction is done for each xj . So we obtain a solution sub-tree whose root is x and
its depth is � 2(i + 1). �
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