
An Extended Multi-Agent Negotiation Protocol

SAMIR AKNINE samir.aknine@lip6.fr

LIP6, Université Paris 6, 8, rue du Capitaine Scott, 75015 PARIS Cedex 15, France

SUZANNE PINSON pinson@lamsade.dauphine.fr

LAMSADE, Université Paris Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris 16, France

MELVIN F. SHAKUN mshakun@stern.nyu.edu

Leonard, N. Stern School of Business, New York University, 44, West 4th Street, New York, NY 10012-1126, USA

Abstract. This article presents a task allocation protocol that is efficient in time and tolerates crash failures in

multi-agent systems. The protocol is an extension of the negotiation protocol defined by Smith and Davis [25, 26]

for task allocation. Our extension of the Contract Net Protocol (1) enables an agent to manage several negotiation

processes in parallel; (2) optimizes the length of the negotiation processes among agents; (3) reduces the

contractors’ decommitment situations; (4) enables the detection of failures of an agent participating in a

negotiation process and prevents a negotiation process with blocked agents.

Keywords: negotiation protocol, contract net protocol, multi-agent systems.

1. Introduction

Negotiation between intelligent agents is one of the fundamental issues of research in

Distributed Artificial Intelligence and Multi-Agent Systems. A negotiation process aims

at modifying the local plans of each agent in order to achieve agreement among a subset

of agents in the system. The well-known Contract Net Protocol (CNP) defined by Smith

and Davis [26] for decentralized task allocation is a distributed negotiation model based

on the notion of call for bids on markets. The relation between clients (managers,

customers, buyers) and suppliers (bidders, contractors, sellers) is created in a call for

bids and an evaluation of the proposals submitted by the bidders to the managers. For

instance, in the transportation domain, the bid will be given a value which corresponds

to the duration of the transportation tasks. The negotiation process is carried out in four

steps.

(1) In the first step, the manager sends calls for bids to the agents it knows are able to

perform certain tasks;

(2) In the second step, the bidders use the description of the task to build a proposal they

send to the manager;

(3) In the third step, the manager receives and evaluates the proposals and assigns the task

to the best bidder;

(4) Finally, in the fourth step, the bidder to which the task is assigned sends the manager a

message to confirm its intention to do the requested task.

Autonomous Agents and Multi-Agent Systems, 8, 5–45, 2004
2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Initially, Smith applied the protocol to simulate the operating of sensors in a distributed

acoustic net. In this application [25], the agents of the system are totally cooperative. The

selection of an agent for the execution of a task is based on several factors such as the

position of the agent in its environment, its capacity to process information, etc.

The CNP model has several limits. First, as a multi-agent system is distributed, several

managers can concurrently call for bids, so an agent may have to manage several

negotiation processes in parallel in order to reduce the length of its negotiation processes.

Some applications of the CNP force the contractors to sequence their negotiation

processes, i.e. to answer with a single bid at a time. Sequencing the processing of

contractor answers to the calls emitted by the various managers may make the contractors

miss some contracts, as the following example shows (cf. section 2.1). Moreover when the

multi-agent system is equipped with delay failure detectors, it may also force the managers

to consider these contractor agents as failures, which perhaps is not the case. Second,

CNP-based applications enable the agent to break its commitments when an agent receives

an offer for a better task in comparison with those for which the agent is committed.

However, breaking the commitments is not always a good solution because it makes

managers call again for bids to find new contractors for their tasks.

In our work, the second original improvement for negotiation protocols is in enabling

the detection of failures of agents participating in a negotiation process and in preventing a

negotiation process with blocked agents [2–4]. Fault tolerance is a fundamental problem

of research in distributed systems. Neither the dynamism of the agents nor the collective

behaviors is normally taken into account by the approaches of distributed systems. As in

distributed processes, a negotiation for task allocation may fail. An agent (contractor or

manager) in a blocked state or in a bad operating state can make the system fail. However,

with the growing development of Internet there is a real need for reliable intelligent

negotiation tools. The previous solution proposed to this problem of failure at manager

level consists in introducing a time limit for the reception of the proposals submitted by the

contractors to the managers. Beyond this limit, the manager only evaluates the proposals it

has received. Of course, we can re-apply the same method at the level of the contractors to

enable them to react to the managers’ failures, but it is obvious that this solution leads to

many problems. With a short waiting time, the contractor may lose some contracts and

with a long waiting time, the contractor may wait unnecessarily for an answer which is

probably negative and may therefore lose interesting contracts. To solve this problem, we

propose a solution based on a termination process for the negotiation initiated by a

contractor which suspects a failure in the manager operation when the time exceeds the

answering time of the messages addressed by the contractors. The answering time takes

into account the time necessary for messages to be processed and the time necessary to

transfer those which have been sent and received. We assume that an approximation of the

answering time is known by all the agents before starting their execution in the

environment and that the agents follow their protocol.

The protocol proposed is adjusted for cooperative and self-interested agents. It (1) gives

a contractor the possibility to run in parallel several negotiation processes; (2) avoids

penalizing the contractors when they break their commitments; (3) reduces the length of

the global negotiation processes between agents; (4) reduces the situations of decommit-

ment of the contractors; (5) enables the detection of failures of an agent participating in a

negotiation process and prevents a negotiation process with blocked agents.

AKNINE, PINSON AND SHAKUN6

In previous work on the Contract Net Protocol, the effectiveness of this protocol has

been evaluated through simulations. However, as effectiveness is a critical aspect of a

protocol, we present a formal analysis of our protocol as well as a simulation.

This article is organized as follows. Section 2 informally presents our extension of the

CNP. Section 3 formally analyzes our protocol. Section 4 presents our experimental results.

Section 5 analyzes related work. Section 6 draws a general conclusion from this work.

2. Contract net protocol extension

To enable an agent to manage concurrently several negotiation processes, we have

introduced two phases of proposal and allocation by replacing the two phases Bid and

Assignment of the original CNP with four new phases: PreBidding, DefinitiveBidding,

PreAssignment and DefinitiveAssignment. Thus, we obtain a new protocol described in

Figure 1 in a simplified form.

The communication primitives used by the managers and the contractors are Announce,

PreBid, PreAccept, PreReject, DefinitiveBid, DefinitiveAccept and DefinitiveReject.

Table 1 proposes the semantics of each operator.

The transitions of the negotiation states between a manager and its contractors are

depicted in Figure 2. In our work, we assume that each task is elementary, i.e. it can be

performed by a single agent. When a manager announces a task to the contractors (state 1),

it receives PreBids, i.e. temporarily bids from the contractors (state 2). These PreBids

evaluate the contractors’ capacities to carry out the task announced when they receive the

announcement. These PreBids are computed according to schedules that the agents make

for the tasks that they receive. For each agent, a schedule of tasks forces it to favor the

execution of one task compared to another and thus to increase the PreBid of the favored

task compared to that of the other. The manager sends the best contractor a PreAccept

Figure 1. Phases of the protocol.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 7

(state 3), i.e. a temporarily positive answer and sends all the other contractors PreReject

messages (state 4). If the contractors’ situations evolve, they can submit new PreBids

(state 2). For instance, when an agent is pre-rejected for a task, it will downgrade this task

and thus increases the PreBid of the other tasks it preceded in the previous schedule.

Table 1. Semantics of the conversational primitives.

Primitives Semantics

Announce An agent proposes the execution of a task.

PreBid An agent makes a temporarily bid for the execution of a task.

PreAccept An agent is temporarily accepted for the execution of a task.

PreReject An agent is temporarily rejected for the execution of a task.

DefinitiveBid An agent makes a final bid for the execution of a task.

DefinitiveAccept An agent is definitively accepted for the execution of a task.

DefinitiveReject An agent is definitively rejected for the execution of a task.

Figure 2. State transition graph of a negotiation between a manager and a contractor.

AKNINE, PINSON AND SHAKUN8

Each time the situation of the contractors changes positively and until the manager of

the task sends them a definitive reject concerning the execution of this task, these

contractors can bid again but only with better PreBids (state 2, Figure 2).

At this level, the negotiation process between a contractor and a manager can evolve to a

PreAccept state (state 3) or stay in a PreReject state (state 4). On receiving a PreAccept

message, the potential contractor can send its DefinitiveBid (state 5), i.e. its definitive

proposal for the task execution. Themanager may question thisDefinitiveBid (states 4 and 7)

either if, during the PreBidding phase, a Pre-rejected contractor has sent a better PreBid, the

value of which exceeds the potential contractor’sDefinitiveBid or if thisDefinitiveBid is less

than the PreBid of one of the pre-rejected contractors.

As we assume that the agents can be cooperative or self-interested, we have added a

negotiation strategy for self-interested agents in order to prevent an agent from bidding

very high in the PreBidding stage in order to scare off competition and then rebidding

much lower in the DefinitiveBidding stage. A contractor agent which has been pre-

accepted for the execution of a task, and which tries to devaluate its temporarily proposal

afterwards will be definitively rejected if there is another agent whose preceding

temporarily bid becomes relatively more significant after devaluation. The DefinitiveBid

sent by the potential contractor can also result in the signing of the contract (state 6) and in

a definitive rejection of all other agents (7). The negotiation then ends with the execution

of the task by the selected contractor.

Section 2.2 describes in detail the algorithmic specifications of manager and contractor

behaviors during a negotiation process.

2.1. Interest of two proposal and allocation phases in the protocol

To make our ideas clearer and highlight the advantages of this protocol, we present here

several examples. The first example shows that the protocol ensures an efficient

assignment of the tasks to the agents.

Example 1. Let us consider a task allocation situation in which two manager agents

M1 and M2 want two tasks to be performed rapidly by two contractor agents C1 or C2.

AgentM1would like to propose task t1 whose execution length is 30mns. AgentM2wants to

propose task t2 whose execution length is 40 mns. Each contractor agent C1 and C2 is

currently executing its tasks. Agent C1 will be free in 20 mns, agent C2 in 95 mns.

Figure 3. Task announcement phase.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 9

Negotiation using the CNP will be as follows. Agents M1 and M2 will announce their tasks

(t1 and t2) to the agents C1 and C2. Once these agents receive these announcements, they will

bid for these tasks in an order which interests them (cf. Figure 3).

Let us assume that agent C1 wants begin task t1 before task t2 and that C2 wants to

perform task t2 then task t1. The agents will answer with the following bids. Agent

C1 starts a conversational process with M1. It proposes for t1 a bid for 20 mns which

corresponds to the time at which agent C1 will be free. Agent C2 sends a bid for 95 mns,

time at which C2 will be free concerning t2 to M2. The definition of the CNP does not

enable C1 to bid for task t2 until it has received an answer from M1 for the execution of

t1. Also, agent C2 cannot be a candidate for executing task t1 before receiving an answer

from agent M2. So each contractor agent must sequence its negotiations processes with the

two managers (cf. Figure 4).

The two agents M1 and M2 will wait respectively for the bids of C2 and C1 for the

execution of the two tasks t1 and t2. If there is a deadline for sending answers, the agents

M1 and M2 will answer the bids that they have already received, assuming that agents C1
and C2 respectively are not interested in tasks t2 and t1. So agent M1 will offer its task to

C1 and it will cancel its announcement for C2; agent M2 will accept agent C2 and will also

cancel its announcement for C1. Otherwise, i.e. if there is no deadline, the multi-agent

system will be blocked because the agents will still be waiting for the bids of the

contractors (cf. Figure 5).

However, the allocation of the tasks is not efficient because agent C1 will be free in just

50 mns, i.e. 20 mns plus the 30 mns execution time for t1, but task t2 assigned to agent C2
will not be executed before 95 mns are up.

Figure 4. Bidding phase.

Figure 5. Allocation phase.

AKNINE, PINSON AND SHAKUN10

. How does the new protocol solve this problem?

Once the manager agents have announced the tasks, the contractors C1 and C2 order their

tasks and submit temporarily bids. Agent C1 sends a PreBid of 20 mns to M1 concerning

the execution of task t1. At the same time it sends another PreBid of 50 mns to manager

M2 concerning the execution of task t2. Agent C2 transmits a temporarily bid of 95 mns

for task t2 managed by M2 and another temporarily bid of 135 mns for task t1 managed by

M1 (cf. Figure 6). Thus each contractor agent can parallelize its negotiation processes

with the two managers M1 and M2.

The resulting answers from each manager M1 and M2 are temporarily acceptance of

agent C1 for the execution of the tasks t1 and t2, and temporarily rejections of C2
(cf. Figure 7).

Figure 6. Temporarily bedding phase.

Figure 7. Temporarily answering phase.

Figure 8. Definitive bidding phase.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 11

If the managers can send out the information concerning the PreBids that they have

received from the contractors, they do so through PreReject messages in which they

indicate the PreBid of the accepted contractor. If C2 knows this information, it can leave

the negotiation process because C2 cannot make a better bid either to M1 or to M2.

Otherwise, if the managers are not authorized to send out the PreBids received, agent

C2 will try to reorder its tasks, i.e. it will try to choose the execution of task t1 before

the execution of task t2. Agent C2 will send its bid of 95 mns for task t1 to manager

M1 again, considering that this bid is better than the one it had previously sent (cf.

Figure 8).

This new bid is lower than to that sent by agent C1. Consequently, this message will be

followed by a negative definitive answer for C2 and by a positive definitive answer for C1
as soon as C1 confirms its temporarily bid by sending a DefinitiveBid which is equal to its

temporarily bid in this example. Contrary to the results observed when applying the

Contract Net Protocol, the negotiation between agents with this new protocol gives a more

efficient allocation of the tasks (cf. Figure 9).Using the Contract Net Protocol, the

execution of the two tasks would take 135 mns and using the suggested protocol, the

execution of the tasks would take 90 mns.

Over and above the advantage of efficient allocation of tasks, there are different reasons

for using two phases of proposal and allocation to negotiate the execution of tasks. These

advantages are the following.

(1) It enables M-N negotiations, i.e. a contractor agent can manage concurrently several

negotiation processes with M manager agents and a manager agent can manage

concurrently several negotiation processes with N contractor agents, thus reducing

the global length of the negotiation between the agents. Sending the managers

(resp. contractors) proposal (resp. answer) messages in packages means messages can

be processed in parallel, which reduces the waiting phase of the senders and the

receivers.

(2) An agent can propose itself with a temporarily bid (PreBid) to perform a task as soon

as it receives an order. If the agent subsequently receives new orders, it can modify its

previous offer as long as it has not sent a DefinitiveBid.

(3) The length of the PreBidding phase enables an agent to make the best choice from

among the tasks proposed before bidding definitively for the tasks, so that once

acceptance to carry out the tasks has been given, the protocol reduces the risk of

decommitment.

Figure 9. Definitive allocation phase.

AKNINE, PINSON AND SHAKUN12

(4) The fact that the contractors inform the managers of the other contracts they are

negotiating at the same time enables the managers to control the situations better.

Until the manager has received a DefinitiveBid from the potential contractor

confirming its intention to perform the task both parties agreed on, it does not

definitively reject the other contractors but informs them of the existence of this

potential contractor.

(5) Reducing the contractors’ decommitment means the manager may not have to announce

the task again when a contractor rejects its contract and, until the contract has been

definitively signed, will wait for better PreBids from the pre-rejected contractors.

2.2. Negotiation algorithms

This section presents the algorithms which describe the behaviors of the managers and

the contractors which participate in a negotiation process as well as the methods of

ending a negotiation process between agents when there is a failure within the system.

An agent is suspected of being in a failure state if it is not able to answer the

messages which are sent to it. Failures in an agent are detected using a supervisor

system introduced in each agent. This system informs the other agents about these

failures.

The details of the contractor behaviors are given in Figure 10.

Figure 10. Contractor behaviors during a negotiation process.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 13

The detail of the manager behaviors are given in Figure 11.

Our method, which consists in solving a blockage in the case of multi-agent systems, is

illustrated in Figure 12. This method is adopted by each contractor which suspects a block-

age in the manager of the negotiation process. It uses two variables: Manager_Decision and

Contractor_Decision.

The first variable enables a contractor to inform other agents about the last answer

PreReject, PreAccept, DefinitiveReject or DefinitiveAccept received from the manager

about its refusal or acceptance to perform the announced task. The second variable

indicates locally (for each contractor) the decision of the manager, which is deduced by the

contractor for the attribution of the task. If the manager fails, unanimous decisions enable

the agents of the system to unblock the negotiation process. Ending the negotiation process

saves the contractors from waiting uselessly for an answer which is probably negative and

therefore from losing interesting contracts.

In the first phase of this procedure, the contractor sends all the agents an Inform

Manager_Decision message (lines 1 and 2). By default, its variable contains an ‘‘Un-

known’’ value which indicates that the contractor is waiting for a temporarily or a

Figure 11. Manager behaviors during a negotiation process in a multi-agent system.

AKNINE, PINSON AND SHAKUN14

definitive answer from the manager. This message reminds the manager and the

contractors about the last manager decision concerning the allocation of a task.

In the second phase, the contractor enters a waiting phase until (1) it receives a

PreAccept (resp. DefinitiveAccept) message from the agents (lines 9 and 12) to infer the

PreReject (resp. DefinitiveReject) decision of the manager; (2) it receives a PreReject or

a DefinitiveReject message from all the agents (lines 13 and 16) to infer the PreAccept

(resp. DefinitiveAccept) decision; (3) the agent suspects a failure in another agent of the

system and leaves the negotiation process (lines 17 and 20). In the third phase, the

contractor sends all the agents its final decision (lines 22 and 23).

This method of unblocking a negotiation process by the contractors is significant

because it always unblocks a contractor agent that takes the decision to execute or not the

announced task. If the agent infers a manager’s decision of the type DefinitiveAccept or

PreAccept concerning this task, it can start its execution if during the previous negotiation

steps it has received all the information concerning this task. If it infers a manager’s

decision of the type DefinitiveReject, it leaves the negotiation process. An inferred

PreReject decision for a task enables the contractor to reorder its list of tasks and to

outclass this task by the other tasks appearing in its plan. So in all the cases, the multi-

agent system is necessarily unblocked with this method. It is useful because it enables the

agents to solve autonomously the problem of failures.

Figure 12. Algorithm for ending a multi-agent negotiation process.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 15

3. Theoretical analysis of the negotiation protocol

Our protocol aims at minimizing the length of the negotiation processes and at taking into

account faulty cases. At this stage of the presentation of our negotiation protocol, we have

informally defined our protocol. We have introduced the algorithms and communication

primitives which enable the synchronization of conversational processes between the

agents which participate in the negotiation process. In the following section, we will

introduce the formal definitions we have used in our negotiation protocol. Following [14],

we define a negotiation with a manager and a contractor as follows:

Definition 1 (Bipartite negotiation) Let A be a set of agents in a multi-agent system S, T

be a set of tasks announced by the agents of S. A bipartite negotiation process between a

manager agent M and a contractor ai for the execution of a task Tk is a 6-uple:

Negi;k ¼ ðai;M ; Tk ;P; s; �Þ

� ai 2 A, where ai is a contractor agent engaged by M in the process Negi,k.
� M 2 A, where M is a manager agent responsible of the negotiation process Negi,k.
� Tk 2 T, where Tk is a task for which the negotiation process Negi,k has been started.
� P is a set of necessary communication primitives for M and ai to negotiate the execution

of Tk, where P ¼ {PreBid, PreAccept, PreReject, DefinitiveBid, DefinitiveAccept,

DefinitiveReject}.
� s 2 P, where s is the current state of the negotiation Negi,k between ai and M.
� v is the current value proposed by ai to M in order to execute task Tk.

3.1. Termination of the negotiation process

In the previous section, we have shown that the negotiation protocol between the

manager and its contractors specifies the actions which can be followed by each member

to negotiate a contract about the execution of a task. However, the protocol does not

enable the contractor to build a deterministic plan ending with the signing of the contract

by the manager. At each negotiation step, the contractor must make a choice from among

several possibilities to keep the negotiation process going. We have defined in the

contractors’ behaviors a strategy that rearranges the tasks which caused the rejection of

the agent. In our approach, the decision about the adoption of a behavior by any con-

tractor ai during a negotiation process Negi,k with a manager M concerning the execution

of a task Tk does not only depend on the manager’s behaviors but also on the states of the

other negotiation processes Negi,p, started concurrently by ai about the execution of tasks

Tp/p6¼k.
The basic idea that we have adopted in order to guarantee the ending of a negotiation

process is to enable a contractor to change its preference order of tasks announced if some

of its contracts are not signed. Therefore, it withdraws from the tasks that it has favored in

the preceding cycles and from which it has been rejected, and it improves its offers for the

tasks it had neglected in the preceding cycles. The following definitions, lemmas and

theorems show these properties of the protocol, in particular the termination property of

AKNINE, PINSON AND SHAKUN16

the negotiation processes between agents in all possible cases, i.e. even if a failure occurs

in one or more agents in the system.

When an agent receives several offers at the same time from one or more managers, it

sorts these offers. This shows the need to define a task-ordering model.

Definition 2 (Task order) Let A be a set of ‘n’ agents, ai an agent of A and T a set of ‘m’

tasks announced to ai by the agents of A. Let WantExec (ai, Tk, �k) be a predicate which is
true if ai wants to perform the task announced Tk 2 Twith a bid �k and T-ordi(Tk) the order
of task Tk in the list of tasks of ai. Tasks are ordered by ai, denoted:

T-OrdiðTÞ ¼ ðT1; ::;TrÞ

such that:

1 � l; r � m; 1 � r; �1 > �� > �r;T-ordiðT1Þ < �� < T-ordðTrÞ:

When a manager receives several offers submitted by different contractors for the

execution of several tasks it has announced, it sorts the contractors in order to evaluate

them.

Definition 3 (Agent order) Let A be a set of ‘n’ agents and T a set of tasks. Let Tk be a

task of T announced by an agent al for the agents ai. Let WantExec(ai, Tk, �i) as defined
above and A-ordk(ap) the order of agent ap in the list of possible contractors for the

execution of task Tk. An order of the agents of A which bid for the execution of Tk is

denoted:

A-OrdkðAÞ ¼ ð::; ap; ::; aq; ::Þ

such that:

1 � p; q � n; �p 	 �� 	 �q;A-ordkðapÞ < �� < A-ordkðaqÞ

The protocol proposed satisfies certain properties, in particular in the sending of the

answers provided to the contractors during a negotiation process. The following lemma

and theorem show that the definition of the protocol takes into account all the answers sent

by each contractor agent to the manager of the tasks.

Lemma 1. Under the hypothesis of instantaneous message delivery,

1. A potential contractor cannot reach the DefinitiveBidding (resp. Task Execution) phase

until all the contractors have received a PreReject (resp. DefinitiveReject) message

from the manager of the negotiation process, in order to give the rejected contractors

the possibility of modifying their bids.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 17

2. A contractor cannot reach a PreReject state until one of the contractors is in a

PreAccept state, and it cannot access a DefinitiveReject state until one of the

contractors is in a DefinitiveAccept state.

Proof:

� In order to demonstrate (1), we know that an agent enters a DefinitiveBidding (resp.

Task Execution) phase only if it has previously received a PreAccept (resp.

DefinitiveAccept) message from the manager. With this argument and with the

hypothesis of instantaneous message sending, all the contractors have necessarily

already received a PreReject (resp. DefinitiveReject) message (cf. Figure 11). So they

have already been through the PreReject (resp. DefinitiveReject) phase.
� For (2), as for (1), to be in a PreReject (resp. DefinitiveReject) state, a contractor must

previously have received a PreReject (resp. DefinitiveReject) message, which means

the existence of a potential contractor whose PreBid (resp. DefinitiveBid) is at least

equal to the PreBid of the pre-rejected (resp. definitively rejected) contractor. For this

contractor, the manager will necessarily send a PreAccept (resp. DefinitiveAccept)

message. Then, this potential contractor will be in a PreAccept (resp. DefinitiveAccept)

state (cf. Figure 13).

Theorem 1 The algorithm describing the behaviors of the manager in the negotiation

process (cf. Figure 11) always respects conditions (1) and (2) of lemma 1.

Figure 13. Comparison between the transition states of a negotiation with a potential contractor and with a non-

potential contractor.

AKNINE, PINSON AND SHAKUN18

In all cases, condition (2) of lemma 1 cannot be violated by the algorithm that describes

the manager’s behavior during the negotiating process. The reason is that the manager

sends a PreReject (resp. DefinitiveReject) message to a contractor (aj) only after verifying

the condition (PreBid (aj) � MaxPreBids) (resp., MaxPreBids � DefinitiveBid (ap)),

(see Figure 11), ap being a potential contractor.

This condition requires that at least one potential contractor exists and has a PreBid

which equals the maximum value of the PreBids. Condition (1) of lemma 1 confirms that

the manager can only start the second phase of the algorithm if the first phase has been

completed.

The dependence between the tasks announced to an agent is translated into a dependence

between the negotiation processes engaged by this agent for the execution of these tasks.

As the tasks of each agent are ordered, the bids computed for some tasks will depend on

the bid computed for the others. Consequently, a temporarily or definitive reject during the

negotiation of a task will involve changes in the negotiation process of the tasks which

depend on it. The following definition shows the conditions of dependence of negotiation

processes.

Definition 4 (Dependence of negotiation processes) Let A be a set of ‘n’ agents and T be a

set of ‘m’ tasks announced by the managers of A. Let Negi be a set of negotiation processes

started by ai. A negotiation process Negi,k2Negi, with i¼ 1..n and k¼ 1..m, such that Negi,k
¼ (ai, M, Tk, P, s, �) between a contractor ai 2 A and a manager M 2 A, is dependent on a
negotiation process Negi,kV¼ (ai,MV, TkV, P, sV, �V) between a contractor ai2A and a manager
MV2 A, if the order of the tasks Tj/j ¼ 1..m for the contractor ai such that:

T-OrdiðTÞ ¼ ð::;Tk0 ; ::;Tk;::Þ:

The negotiation process Negi,kVis not dependent on the negotiation process Negi,k.This

definition means that an agent which receives several offers from the managers should sort

the announced tasks according to its preferences for these tasks and also according to tasks it

has committed itself to perform. While ordering these tasks, the agent makes priorities

between them. Consequently, the bid that it submits for a task depends on the bids that it has

submitted for the tasks for which it has already committed itself and the bids for the tasks it

prefers in this ordering relation.

Now we define the negotiation processes that can be positively reordered, i.e. processes

which can enable the agreement of different participants to the negotiation process when

the contractor agent is in a temporary reject step and the manager agent has a potential

contractor to which it will allocate the task if the pre-rejected contractors do not react.

Definition 5 (Positively reordered bipartite negotiation) Let A, m and Negi be as defined

above. A negotiation Negi,k 2 Negi, with i ¼ 1..n and k ¼ 1..m, such that Negi,k ¼ (ai, M,

Tk, P, s, �) between a contractor ai 2 A and a manager M 2 A can be positively reordered
by ai if there is at least a negotiation Negi,kV 2 Negi,

Negi;k0 ¼ ðai;M 0;Tk 0 ;P; s0; �0Þ

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 19

such that:

M0 2 A; k0 6¼ k; s0 2 fPreReject;DefinitiveRejectg
and T-OrdiðTÞ ¼ ð::;Tk0 ; ::;Tk; ::Þ:

The following lemma demonstrates that a negotiation process between agents may be

arranged when this negotiation fails to find an agreement but it cannot be arranged

definitively. This serves to prove the next theorem.

Lemma 2. Let T be a set of ‘m’ tasks announced to an agent ai and T-Ordi(T) the

preference order of ai for the execution of the tasks T. Let Negi be a set of negotiations

started by ai for the execution of tasks Tj, Tj 2 T with j ¼ 1..m. Let p be the rank of a task

Tk in T-Ordi(T) of ai and Negi,k be the negotiation process of ai for the execution of Tk.

Agent ai may at most (p
 1) times positively rearrange the negotiation process

Negi;k ¼ ðai;M ; Tk ;P; s; �Þ:

Proof: (see annexes)

The following theorem proves that the agent negotiation processes do not fail using this

protocol.

Theorem 2 Let S be a multi-agent system composed of n agents and T a set of tasks

announced. A negotiation process engaged by the agents of S using the protocol proposed

ends after a finite set of steps.

Proof: (see annexes)

Having presented the properties satisfied by the protocol proposed, in particular those

which ensure an effective negotiation with all the potential contractors for a given task, we

will continue our study of the protocol by analyzing the other properties it checks. The

properties that interest us concern how contractor agents unblock a negotiation process.

3.2. Unblocking contractor and manager negotiation processes in failure cases

In the previous sections we have presented the multi-agent negotiation protocol we propose

for task allocation. This protocol is applied by agents which can take the role either of

manager or of contractor. However, these agents can break down and the negotiation may

block. A classical solution to solve this problem of breakdown in manager agents consists in

introducing a time limit for the reception of the bids submitted by the contractors to the

managers. Beyond this limit, the manager evaluates the bids it has received. Of course, we

can re-apply the same method at the level of the contractors to enable them to react to the

managers’ failures, but it is obvious that this solution leads to many problems. With a short

waiting time, the contractor may lose some contracts and with a long waiting time, the

contractor may wait unnecessarily for an answer which is probably negative and may

therefore lose interesting contracts.

AKNINE, PINSON AND SHAKUN20

To solve this problem we propose a solution which is inspired by work suggested in

[10, 15, 19]. This solution is based on a termination process for the negotiation initiated by a

contractor which suspects a failure in the manager operation when the time exceeds the

answering time of the messages sent by the contractors. The answering time takes into

account the time necessary for messages to be processed and the time necessary to transfer

those which have been sent and received. This process will be free by exchanging messages

between contractor agents which are assumed to have correctly received the messages. We

assume that the messages sent by the agents are not corrupted after the failure. The problem

of task allocation by the managers is thus transformed into a process of unblocking a

negotiation process by the contractor agents. During this process, all those contractor agents

that are not blocked propose a value (cf. section 2). Using these values, the contractor agents

solve the failure. The process of unblocking a failure satisfies the following properties:

Termination. Each contractor agent that is not blocked decides on a value from among

the set of possible answers that the manager can send it concerning the execution of a task.

Formally:

Let A be a set of agents in a multi-agent system, Non-Blocked(A) an operator which

returns the set of non-blocked agents in A and Tk a task in current negotiation.

8ai 2 Non-BlockedðAÞ;
9 c 2 fPreAccept;PreReject;DefinitiveAccept;DefinitiveRejectg

such that:

Decision ðai;TkÞ ¼ c

Agreement. Two agents cannot give the same value of definitive acceptance for the

execution of a task Tk.

Formally,

8ai; aj 2 Non-BlockedðAÞ; if Decisionðai;TkÞ ¼ Decisionðaj;TkÞ ¼
DefinitiveAccept) ai ¼ aj

Integrity. Each decision of an agent belongs to the set of possible answers, i.e.

{PreAccept, PreReject, DefinitiveAccept, DefinitiveReject}.

Validity. If a contractor agent ai decides with a value v2 {PreAccept,DefinitiveAccept}, then:

� a priori, ai has received the answer v from the manager of the task.

or

� ai has received an answer vV=2 {PreAccept, DefinitiveAccept} from 8aj 2 A, i 6¼ j.

Now we will prove that the results of the algorithm which unblocks a negotiation

process generate consistent states for all the agents. To demonstrate the following

theorems, we need to demonstrate some intermediate results.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 21

Lemma 3 guarantees that each non-blocked agent of the system will receive answers

which indicate the negotiation state of each contractor agent for the current task.

Lemma 3. At each cycle of the first phase of the algorithm for unblocking contractor

agents (cf. Figure 12), each contractor agent ai receives a message of the type

Decision_Manager (ap, M, Tk) from each contractor ap in A. This message indicates the

last answer provided by the manager for contractor ap on the execution of task Tk.

Proof: Since agent ai belongs to the set of possible contractors for the execution of a task

Tk and since any agent ap carries out all the cycles of the first phase of the algorithm for

releasing contractor agents (cf. Figure 4), at each cycle an agent ai waits for and receives a

message of type Decision_Manager (ap, M, Tk) from agent ap.

The following lemma demonstrates that the algorithm proposed avoids all possible

conflict on the execution of a task by different contractor agents.

Lemma 4. Let ai and aiVbe two contractor agents for the execution of a task Tk. ai and aiV
cannot give the same value DefinitiveAccept(ai, Tk) and DefinitiveAccept(aiV, Tk) for the

execution of Tk.

Proof: We must show now that at the end of the second phase of the algorithm for

releasing the contractor agents, if DefinitiveAccept (ai, Tk) 2 Decision (ai) then Definitive-
Accept (aiV, Tk) =2 Decision (aiV) and inversely. Two cases must be considered:

� if DefinitiveAccept (aiV, Tk) 2 Decision_Manager (Tk) at the end of phase 1 of the

algorithm (cf. Figure 12), according to lines 9 to 12, Decision (ai) 2 {DefinitiveReject,
PreReject};

� if Answer (aiV, Tk) ¼ {}, ai waits and then decides with DefinitiveReject (ai, Tk) or

PreReject (ai, Tk) (lines 17 to 20).

Lemma 5 shows that the method of a contractor agent for unblocking a negotiation

process terminates.

Lemma 5. If a contractor agent is not in a failure state, it necessarily reaches the third

phase of local decision in the algorithm for unblocking blocked agents (cf. Figure 12).

Proof: The only case where a contractor agent ai which is not in a failure state does not

reach the third phase of local decision in the algorithm for releasing contractor agents

(cf. Figure 12) is when the contractor waits indefinitely in the second phase. Indeed during

the second phase, ai may wait for a message of an agent aiVit has not suspected; two cases

must then be considered:

� Agent aiVfails. In this case, the deadline for answers from the contractors enables agent

ai to suspect agent aiV;
� Agent aiVhas not failed. ai is not waiting for a message from agent aiVin the second phase

because aiVhas necessarily sent it in the first phase.

AKNINE, PINSON AND SHAKUN22

In both cases, ai is not blocked in the second phase of the algorithm for releasing

contractor agents (cf. Figure 12); thus ai will necessarily reach the third phase of this

algorithm.

Theorems 3 and 4 show that the results of the protocol proposed remain consistent even

with certain failed agents.

Theorem 3 Let S be a multi-agent system composed of n agents. Let am be a contractor

agent in S for a task Tl announced by a manager M. When M fails, if the contractor am
sends a message of the type ‘‘Request_Inform’’ to the other contractors of M in order to be

informed of the state of their negotiation processes with M for the execution of task Tl, the

contractor am:

1. Cannot receive from two agents ai and aj/i 6¼j two messages of the type

DefinitiveAccept(ai, Tl) (resp., PreAccept(ai, Tl)) and DefinitiveAccept(aj, Tl) (resp.,

PreAccept(aj, Tl)).

2. Cannot receive from a contractor agent ai a message of the type Definitive-

Accept(ai, Tl) (resp., PreAccept(ai, Tl)) if the manager has sent a message of the type

DefinitiveAccept(am, Tl), i 6¼ m (resp., PreAccept(am, Tl)).

3. Cannot receive from all the contractors ai/i¼1..n,m 6¼i messages of the type Definitive-
Reject(ai, Tl) (resp., PreReject(ai, Tl)) if the manager has sent a message of the type

DefinitiveReject(am, Tl) (resp., PreReject(am, Tl)).

Proof:

1. A contractor agent am cannot receive from the manager a message of the type

DefinitiveReject(am, Tl) (resp., PreReject(am, Tl)) unless there is a potential contractor

ap/p 6¼m for which the manager has necessarily sent a message of the type

DefinitiveAccept(ap, Tl) (resp., PreAccept(ap, Tl)). This message is necessarily

followed by other messages of the type DefinitiveReject(ai, Tl)) (resp., PreReject(ai,

Tl)) for each agent ai/i 6¼p, am included, which demonstrates part (2) of this theorem.
2. A contractor agent am may receive from the manager a message of the type

DefinitiveAccept(am, Tl) (resp., PreAccept(am, Tl)) only if this agent is the potential

contractor for task Tl. This message is necessarily preceded by messages of the

type DefinitiveReject(ai, Tl) (resp., PreReject(ai, Tl)) for each agent aj/i 6¼m, which
means that the manager cannot send a message of the type DefinitiveReject(am, Tl)

(resp., PreReject(am, Tl)) to the contractor am, which demonstrates part (3) of this

theorem.

3. In (1), we have shown that a contractor agent am does not receive from the manager

a message of the type DefinitiveReject(am, Tl) (resp., PreReject(am, Tl)) unless there

is one and only one potential contractor ap/p 6¼m having received a message of the
type DefinitiveAccept(ap, Tl) (resp., PreAccept(ap, Tl)). This message, sent by the

manager, is followed by other messages of the type DefinitiveReject(am, Tl) (resp.,

PreReject(am, Tl)) for each agent am/m 6¼p, which justifies the fact that am cannot receive
at the same time from two different agents ai and aj/i 6¼j two messages of the type
DefinitiveAccept(ai, Tl) (resp., PreAccept(ai, Tl)) and DefinitiveAccept(aj, Tl) (resp.,

PreAccept(aj, Tl)), which demonstrates part (1).

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 23

Theorem 4 The algorithm describing the manager’s behaviors during the negotiation

process (cf. Figure 11) generates consistent states for the system, in that two contractors

can be temporarily accepted at the same time, but not definitively.

Proof: Part (1) of theorem 3 implies that the execution of the task is initiated by a

potential contractor once all the other contractors have been definitively rejected, i.e. the

negotiation process cannot finish with two contractors accepted definitively at the same

time. However, when a contractor fails at the end of the PreAssignment phase, it can be in

a PreAccept state after a blocking phase during which the manager should have selected

another potential contractor agent for the execution of the task.

In this section, we have presented and formally analyzed the properties of the

negotiation protocol proposed. In the following section, we will show how to use our

protocol on a real multi-agent application.

4. Experimental results

We have chosen to illustrate our negotiation protocol on a transportation application. Our

system is composed of two types of agents, customers and suppliers. A customer

(manufacturer) produces the goods on its site (factory) and stores them in several

warehouses. The goal of the customer is to deliver the goods produced in the shortest

time. To achieve this goal, the customer must find a supplier (delivery agent) who

undertakes the carriage of these goods from the site of production to the warehouses.

A supplier is equipped with a geographical map which indicates sites on which the

customers are positioned, the site of their warehouses and the possible transportation

communication channels. Each supplier owns a truck.

The customers can communicate with their suppliers and call them when they produce

new goods on their sites. Each supplier must thus build its own plan for the tasks it will ask

to be carried out. Its goal is to maximize its payoff by transporting a maximum amount of

goods in a minimum amount of time. To understand how these negotiation algorithms run,

let us consider another example.

Example 2. In this case, we consider two suppliers S1 and S2which are initially at positions

P1 and P2. Their customers M1 and M2 are respectively at factories F1 and F2. The goods at

site F1 must be forwarded to the warehouse W1 and that at F2 to W2. The quantities of goods

at F1 and F2 are initially 15 and 10 units. The suppliers are equippedwith trucks which have a

capacity of 5 units. Figures 14 and 15 show the results of the application of the negotiation

protocol proposed and those of the standard CNP. The bids submitted for the execution of the

tasks announced relate to the time necessary to reach the site where the customer is located.

Figure 14 concerns the steps of the negotiation process between the customers and the

suppliers using the new protocol. For each negotiation step, we present the various messages

sent by the customers and the suppliers. As an example, in Figure 14, PreBid (S1, T1, M2)¼
5 is a message transmitted by supplier S1 to customer M2 for the execution of task T1. The

value of the temporarily bid is 5 time units. Figure 15 show the steps of the negotiation

process according to the standard CNP.

AKNINE, PINSON AND SHAKUN24

Figure 14. Results of the agents’ negotiation process using the protocol proposed.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 25

In this example, the negotiation process started using the new protocol was completed

performed after 5 phases. However, with the Contract Net Protocol the negotiation was

completed after 12 phases. Even if we observe that more messages are exchanged in our

protocol compared to the Contract Net Protocol, the additional messages do not have

Figure 15. Results of the agents’ negotiation process using the CNP.

AKNINE, PINSON AND SHAKUN26

serious consequences on the performance of our protocol. These messages are sent in

packages since agents have concurrent negotiations. Consequently, there are no messages

pending as in the Contract Net Protocol. This shows the advantage of our protocol in

reducing the length of the negotiation processes, which has also been confirmed in the

experimental results discussed below.

To evaluate the performance of our protocol, we have simulated the application

described in section 3 using the Contract Net Protocol and the new suggested protocol.

The agents of our system are the customers and the suppliers. This application makes it

possible to measure the advantages of our protocol, i.e. shorter negotiation time and more

flexibility. It makes it possible to remove or add agents and/or tasks during problem-

solving process. In this sense, the multi-agent approach is preferable to an operational

research approach.

In this application, the agents and their tasks have the following characteristics which

are the following:

5 The tasks of the agents are decomposed locally by the managers, i.e. the customers in

our case. The managers propose to the suppliers to carry out tasks which correspond to

the capacity of their trucks. Thus supplier agents are not concerned by the

decomposition of their tasks since they are independent and it is not assumed that

they know each other.

5 A supplier agent is asked to respect the values of the bids which enabled it to sign

contracts. Consequently, it can perform several tasks at the same time, only if it takes

into account the additional loads that all the accepted tasks may induce. For instance,

an agent which moves from a position Pi to a warehouse Wj in order to perform a task

Tk, may accept the execution of a concurrent task TkV. If, this task requires loading

Figure 15. (continued).

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 27

products at a position PiVand/or unloading products at a warehouse WiV, which is in the

path of task Tk, the agent should consider in the initial bid of task Tk the duration of

each of these additional operations of loading and unloading goods.

5 A manager agent can work with several suppliers concurrently and a supplier agent can

also work with several managers concurrently.

5 New tasks can be identified by the agents during the problem-solving process. Initially,

tasks to be performed are not known by the suppliers. In our problem, the perception of the

supplier agents is limited, i.e. they are not informed about the other suppliers which share

with them the same environment but this knowledge can be gradually refined. Themanager

agents have precise knowledge about the supplier agents which are in their environment.

5 Initially, the manager agents work independently. However, their tasks can become

dependent during their execution. This can create dependence relations between these

manager agents.

5 The manager agents have local knowledge. In particular, they do not have knowledge

about the tasks of their suppliers and other managers.

5 The knowledge of the agents is exact. The communications are not disturbed and the

agents are sincere, they do not communicate erroneous data.

5 A supplier agent which starts the execution of a task cannot desist from this task, i.e. it

cannot abandon its goods on the road.

Knowledge about the capacity of the supplier agents, the position of the production sites

and the warehouses of the goods is introduced in the system at the time of its activation. In

our experiments, the various transportation communication channels between the centers are

memorized by the supplier agents on a map making it possible to calculate the shortest paths

to be taken by the agents using the Dantzig search algorithm for the shortest path [11].

The aim of the continuation of this section is to show howwe have tested the performance of

the protocol proposed. Knowing that it is difficult to evaluate the complexity of the

algorithms proposed in a formal way, we agree with the idea that the effectiveness of these

coordination models can also be evaluated by analyzing the results of the experiments for the

solving of one or more problems by the agents.

To measure the effectiveness of these models according to a time parameter, in each

experiment we show the time spent by the agents to negotiate their tasks. To do so, we

placed time indicators on each agent, which enabled us to follow the evolution of their

plans. In both cases, i.e. using the Contract Net Protocol or the suggested extension, we

used the same data.

In all 8 experiments, we varied the number of agents in the system in order to observe

their behaviors while applying each of these protocols to big and small agent populations.

Thus the number of agents in the system was either 4, 10, 20, 30 or 40. In each set of

experiments with n agents, we also varied the number of manager and contractor agents. In

the following graphs, the results of the Contract Net Protocol are shown using continuous

curves and the results of the new protocol in discontinuous curves. It should be noted that

the results of the Contract Net Protocol indicated in these graphs correspond to the

experiments which were carried out successfully, i.e. without blockages. In several cases,

the multi-agent system was blocked using the CNP in both small and big agent

populations. The explanation of this blockage is certainly due to the reasons mentioned

at the beginning of the presentation (cf. Section 2.1).

AKNINE, PINSON AND SHAKUN28

To be able to measure the performance of the Contract Net Protocol in these blockage

cases, we were sometimes obliged to modify the data of the case, i.e. the tasks to be carried

out by the agents and their appearance dates, in order to avoid the problem of data

interference which does not conform to reality.

To do these experiments, we carried out several tests. We took the average of the results

in order to obtain the final values indicated in the tables and graphs below which compare

the performance of the protocols. In the rest of this section, we will discuss the results

obtained in these experiments, organized in to four groups.

First experimental group

In this first experimental group, we observed the behavior of the agents during the use of

these protocols by small agent populations. In the first series of this group, we tested these

behaviors with an equal number of manager and contractor agents (cf. Figure 16). In the

second series, we increased the number of manager agents and decreased the number of

contractor agents but the total number of agents in each of the two series was the same (cf.

Figure 17).

Series 1.1. Table 2 shows the results that we obtained after several experiments on a total

population of 4 agents, i.e. 2 managers and 2 contractors. When moving from 4 to 50

tasks, we observed that the ratio of the evolution of the negotiation time using the

suggested protocol is less than its evolution using the CNP. In addition negotiation time

using the extension of the CNP was lower than the negotiation time using the CNP.

Table 2. Results of the protocols with n ¼ 4 agents (2 managers and 2 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 1490 2910 4020 5940 11266 18322

Average time using our extension of the CNP (Ms) 1320 2530 3460 5050 9140 14258

Figure 16. Performance of the protocols with n ¼ 4 agents (2 managers and 2 contractors).

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 29

Series 1.2. In this experimental series, we observed that the agent negotiation time is

shorter than in the previous series (cf. Table 3). This reduction in time is due to the fact

that there is only one possible contractor agent which is asked to carry out the tasks, so

there is no longer any time wasted. In addition, we have not observed blockages during the

use of the CNP, due to the same reasons, i.e. the existence of only one possible contractor

agent. However, negotiation time using the CNP remained higher than that using the

extension of the CNP. We have observed that the difference in negotiation times using

the two protocols becomes increasingly significant as the number of tasks negotiated by

the agents increases (cf. Figure 17). We will see that this property characterizes our

protocol and that it remains satisfied in all the following experiments. This confirms the

usefulness of our protocol compared to the CNP.

Second experimental group

It is essential to check the behavior of the agents in medium size populations before

observing their behaviors on larger populations. This group of experiments gathers the

results of our tests on a population of 10 agents. In the first series, we considered two

manager agents and 8 contractor agents (cf. Table 4); in the second series, we used 6

manager agents and 4 contractor agents to observe the opposite situation, i.e. more

managers than contractors (cf. Table 5). In this group and in each of the following tests,

negotiation time needed by the agents are higher than times needed in the previous

experimental group with the same sets of achieved tasks. The explanation lies in the

Table 3. Results of the protocols with n ¼ 4 agents (3 managers and 1 contractor).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 1021 1950 3732 4800 8650 15415

Average time using our extension of the CNP (Ms) 880 1588 2260 3320 5920 10060

Figure 17. Performance of the protocols with n ¼ 4 agents (3 managers and 1 contractor).

AKNINE, PINSON AND SHAKUN30

number of agents which has been increased in the multi-agent system. Consequently, the

announcements are more widely distributed and there are more bids since there are more

agents participating in this group than in the previous experimental group.

Series 2.3. The remarks made about the previous experimental group on the evolution of

negotiation times according to the number of tasks, when using each of the two protocols,

are also valid in this group (cf. Figures 18 and 19).

Series 2.4. In this experiment series, we considered 6 managers and 4 contractors.

Compared to the previous experimental series with the same number of agents (10 agents),

we have observed in this series that the negotiation time is appreciably longer. We can

explain this by the fact that there are fewer contractor agents in the system compared to the

previous case. The agents spend more time to analyze the tasks announced before

accepting them.

Figure 18. Performance of the protocols with n ¼ 10 agents (2 manager and 8 contractors).

Table 4. Results of the protocols with n ¼ 10 agents (2 managers and 8 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 1612 3230 4414 6814 14989 21262

Average time using our extension of the CNP (Ms) 1370 2580 3810 5908 10015 15298

Table 5. Results of the protocols with n ¼ 10 agents (6 managers and 4 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 1994 4005 5904 7112 15229 23786

Average time using our extension of the CNP (Ms) 1540 3228 4042 6110 11789 16247

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 31

Third experimental group

From the results in Tables 6 and 7, we see that the difference between the negotiation times

based on the new protocol and the CNP has become larger than that obtained in the

previous experiments. These results are obtained on a population of 20 agents. We have

varied the number of tasks from 4 to 50 tasks in each of this series (cf. Figures 20 and 21).

Series 3.5

Figure 19. Performance of the protocols with n ¼ 10 agents (6 managers and 4 contractors).

Table 6. Results of the protocols with n ¼ 20 agents (4 managers and 16 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 2398 5989 7024 12587 19365 28001

Average time using our extension of the CNP (Ms) 1794 3824 4225 6335 12569 18549

Figure 20. Performance of the protocols with n ¼ 20 agents (4 managers and 16 contractors).

AKNINE, PINSON AND SHAKUN32

Series 3.6. Considering that the number of agents is higher in this group of experiments,

it is obvious that the negotiation time will be longer than that obtained in the last

experimental group. When comparing the first series with the second series, the difference

between the results is also appreciably greater, for the same reason as for the last group.

Fourth experimental group

In this last group of tests, we increased the number of agents in the system to 40 (cf.

Figures 22 and 23). We will see that sometimes the difference between the results of the

two protocols regarding negotiation time is small, which is shown at the beginning and the

end of Figures 22 and 23. This is due to the fact that the agents take more time, in these

cases, to find an agreement using our protocol. Nevertheless, our protocol remains better

than the Contract Net Protocol regarding the other advantages it offers and that the

Contract Net Protocol does not have.

Series 4.7. In this series, the total number of agents is 40, with 14 managers and 26

contractors (cf. Table 8).

Figure 21. Performance of the protocols with n ¼ 20 agents (14 managers and 6 contractors).

Table 7. Results of the protocols with n ¼ 20 agents (14 managers and 6 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 2998 6581 9004 13101 20879 28925

Average time using our extension of the CNP (Ms) 2242 4255 4651 6700 10589 19072

Table 8. Results of the protocols with n ¼ 40 agents (14 managers and 26 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 4988 8225 12244 19698 24334 29950

Average time using our extension of the CNP (Ms) 3509 7901 10821 16941 18788 29872

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 33

Series 4.8. The results in the following table were obtained with 40 agents, 24 managers

and 16 contractors (cf. Table 9).

In the previous section, we have presented and formally analyzed the properties satisfied

by our protocol. Knowing that a formal analysis of these properties is not sufficient to

assert the applicability of the protocol, we performed several series of tests in order to

confirm the results that we announced. All the experiments show that the time performance

Figure 22. Performance of the protocols with n ¼ 40 agents (14 managers and 26 contractors).

Table 9. Results of the protocols with n ¼ 40 agents (24 managers and 16 contractors).

Number of tasks 4 10 20 30 40 50

Average time using the CNP (Ms) 5209 9245 13202 20578 25789 30589

Average time using our extension of the CNP (Ms) 3621 8189 10934 16991 18933 29978

Figure 23. Performance of the protocols with n ¼ 40 agents (24 managers and 16 contractors).

AKNINE, PINSON AND SHAKUN34

of the protocol proposed is superior to that of the Contract Net Protocol. Moreover, the

protocol proposed satisfies other properties which improve its performance compared to

those of the Contract Net Protocol which does not satisfy them.

5. Related work

Several models have been proposed to solve the problem of coordination in multi-agent

systems. Jennings presented a system that handles task allocation by having a central

analyzer that uses information it has about the abilities of all the other agents to design

tasks [17]. This solution requires a central agent. El Fallah and Haddad worked on

distributed planning in multi-agent systems using recursive Petri nets as a formal

representation model of agent actions [13]. This model involves the sharing of plans

among the agents. Distributed Artificial Intelligence has previously addressed tasks with

order of precedence and with overlapping problem solvers as in PGPG [12]. In this work,

coordination is based on an organizational view of node activity where each node acts

subject to its local control, solving a sub-goal of the global goal. In another approach a

group of agents has to achieve a common task [24], but this is beyond the scope of our

work.

In this article we focus on the Contract Net Protocol and its extensions. We only

describe this work in order to show the difference between the aim of our protocol and that

of the existing protocols and also in order to analyze the advantages and limitations of each

protocol [1].

In the first approach of Sandholm [20] (Marginal cost-based contracting), the decisions

of the agents are based on the calculation of marginal costs. Sandholm introduced the

concept of rationality of a contract for an agent. He considers that a contract is rational for

an agent if the agent is in a better state if it accepts the contract than if it does not. An agent

accepts a contract if it increases its payoff by taking into account the costs for executing

the contracted tasks. In this new protocol, the agents propose contracts to other agents and

accept or reject contracts based on their marginal costs.

In the second approach of task allocation [21], Sandholm and Lesser were interested in

the problem of allocating several tasks at the same time to the same agent (cf. Figure 24).

This figure indicates that a manager agent can gather several tasks under the same contract

Figure 24. Grouped allocation of tasks.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 35

with one agent. According to Sandholm and Lesser, this approach reduces the execution

time of the tasks when they are inter-dependent because the necessary means for the

execution of a task can be used to carry out the other tasks. Nevertheless, this extension

has some limitations because it does not answer one of the problems raised by this

recombination of tasks: should a manager favor the agents which bid for a set of tasks or

those which bid only for some tasks and for what kind of application should these agents

be preferred to others?

In all the cases, if the agents are self-interested the bids sent by the contractors are likely

to be smaller than those which can be sent using the Contract Net Protocol. The reason is

that the contractor agents will tend to reduce their bids since they propose to perform

several tasks at the same time. In this sense, we think that this extension remains strongly

dependent on the application domain.

In order to improve the performance of the agents, Sandholm and Lesser consider that

the agents which carry out their tasks separately can sometimes exchange certain

contracts (Swap-contracts). Figure 25 described this situation. The protocols defined in

this approach for self-interested and cooperative agents are different. A cooperative agent

can be committed to carry out the exchanged task without compensation by the manager

of the contract. However, an individualistic or a self-interested agent requires compen-

sation for each additional processing carried out compared to the processing of its

original task.

We think that this kind of protocol is not sufficient. In certain applications, in order for this

protocol to be used it must be combined with other protocols because the agents may not

want to exchange their tasks, for instance, when considering confidentiality constraints.

The fourth approach presented by Andersson and Sandholm [7, 8] shows that it is possible

to make contracts circulate between agents by exchanging messages. A contract can be

considered as valid if one of the interested agents signs it. Figure 26 described this situation.

This protocol remains applicable only for cooperative multi-agent systems in which the

contractor agents can contribute to improvng the performance of the managers. However,

self-interested agents will not disseminate the information announced, in order to increase

their chances to obtain the contracts.

In a cooperative multi-agent system, the advantage of this approach remains in the fact

that the announcements will be widely disseminated between the agents, i.e. each agent

disseminates them to the other agents it knows. This may facilitate the application of

Figure 25. Exchanging tasks.

AKNINE, PINSON AND SHAKUN36

several agents for an announcement. Nevertheless, there are still serous limitations: (1) the

multi-agent system is likely to be easily saturated by messages duplicated by the agents

which concurrently send the same bids. With n agents in the system and k tasks to be

executed, (kn)2 bids may circulate at the same time between the agents; (2) consequently,

the processing of each agent will thus be unnecessarily increased by these messages; (3)

negotiation time thus increases.

The Leveled Commitment Protocol presented in [6, 7, 21, 26] considers that an agent

may be decommitted from a contract if it pays a certain penalty required by the manager of

the contract. However, using penalties is not suitable for cooperative multi-agent systems

in which the agents voluntarily take part in the execution of the tasks of the other agents.

The limits of this approach is that penalties in these systems will prevent the agents from

voluntarily offering to execute the tasks. Penalties are not always easy to calculate, and a

consensus between the agents is necessary to choose these values. Sandholm et al started

to address this work in [23].

Sandholm has also highlighted the limits of all the approaches quoted above, in that

they are context-dependent and so we have to decide which protocol to implement,

depending on the context.

In more recent and promising work, [6, 7] have addressed the problem of reallocating

tasks in multi-agent systems. They propose a way to enable the agents to use several

protocols during their negotiation in the same application. In their work, they have

compared sequences of four of their contract types that we have discussed earlier. They

have tried to provide a guideline for the designers of the multi-agent systems regarding the

contract types to use and how to sequence them. However, these experiments are based on

certain assumptions.

(1) The experiments have been carried out with a population of 8 agents and 8 tasks.

We understand that it is difficult to increase the number of agents and tasks, because of the

computational complexity problem. But we also believe that it is very difficult to retain

general and relevant conclusions from experiments on populations with a low number of

agents. In reality, there are many multi-agents systems with large numbers of agents than

8. This approach needs to be tested on a large number of tasks like in [20] where the tests

have been done on 771 tasks.

Figure 26. Task allocation by circulation of announcements.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 37

(2) The application and the domain tasks were initially known by the authors (designers

of the multi-agent system). Negotiation time has been divided into several intervals and

agents knew which protocol to apply a priori in such or such time interval. Thus there is

certain knowledge a priori (a certain determinism), which makes it difficult to generalize

the results obtained. In a real application, the choice of a protocol is determined by the task

to be performed. Consequently, considering that agents do not know a priori either the

tasks, which can be completely different from each other, or their order or their occurrence

dates, they do not know at what time to apply such or such protocol. What would be

interesting would be to perform tests on various applications to confirm the results

obtained on the relevance of the best sequences of protocols that they found.

(3) Another aspect which is not developed by the authors in their work is how agents

can switch individually and dynamically from one protocol to another without needing the

specifications of the designer. Of course, this problem does not arise in their application

since the duration of the validity of a protocol has been fixed in advance. The cost of the

solution should therefore also include the cost that is necessary for agents to make

agreements on the protocol to be used. In addition, they should check that the consensus

on the protocol to be adopted is easily achievable by the agents when it has not been fixed

by the designer. It would be interesting to perform tests and to evaluate the quality of the

results obtained by the agents while taking into account all these constraints.

Having said this, trying to categorize negotiation protocols according to the applications

and the tasks that they contain would undoubtedly be a very promising step to improve

negotiation between agents and would facilitate the work of the designers of these

systems.

In order to apply the CNP to a problem of transport (Autonomous Cooperative

Shipping Companies) [14], Fischer, Müller, and Pischel have decentralized the process

like in [20]. This enables the contractors to decompose the tasks into sub-tasks, enabling

them to bid for the set of the task announced by the manager or for subtasks when the

contractors are not able to perform all of the task. However, this extension is domain-

dependent, i.e. the extension can be applied only to those whose tasks are complex and

can be decomposed.

In addition, it does not solve the problem that may be created by this decomposition. As

we have seen for the extension suggested by Sandholm and Lesser, should a manager

favor agents which bid for a set of tasks or those which bid only for some tasks, and for

what kind of application should these agents be preferred? In all the cases, we also think

that if agents are self-interested, the bids sent by the contractors are likely to be smaller

than those which can be sent under the Contract Net Protocol. The reason is that the

contractor agents will tend to reduce their bids since they propose to perform several tasks

at the same time. In this sense, we think that this extension remains strongly dependent on

the application domain.

This approach is similar to the one presented in the work of Bouron [9]. Bouron

considers that when an agent carries out a task contracted with a manager, the agent may

break this task into sub-tasks, if it is not able to carry out the whole of the task. It must

behave as a manager for these new sub-tasks for which it must find contractors. This

process can be reproduced by each new sub-contractor. A contractor agent confronted to

such a situation may behave in two different ways.

AKNINE, PINSON AND SHAKUN38

� It may ask for assistance once it has been granted the contract. This solution, known as

fast commitment of the agents, can block the manager and the contractor if the latter

cannot find the agents necessary for the achievement of its task. The contractor must

then break its commitment;
� It can also seek the agents likely to help it in the achievement of its task before being

accepted by the manager. This solution, known as late commitment of the agents,

involves more problems than the previous one. The contractor will try to accept other

agents for the execution of tasks it is not even sure will be allocated. It may easily create

a fatal deadlock in the system.

Lee considers that a negotiation process can be subdivided into several negotiation sub-

processes [18]. Initially, it is assumed that each agent is informed of a set of tasks. The

agents must negotiate between themselves to reallocate the tasks which they have

contracted.

At a given instant, each agent announces a set of tasks that it tries to allocate. The agents

select from among these announcements those that maximize their utility. In the event of

infinite blocking on task reallocation, the agents can stop the negotiation process and can

decide to carry out the tasks which were initially affected to them.

This negotiation model contains several limitations: (1) it leads to fast commitments of

the contractors, which involves signing contracts which will perhaps not be honored; (2) it

is difficult to find contractors which will perform the tasks accepted by the first contractor

agents. Since the first agents reallocate these tasks, they must necessarily ask for higher

bids from the second contractors compared to those they have themselves submitted to the

original managers of these same tasks. This enables them to compensate for the processing

done; (3) the execution time of the accepted tasks may be longer if the contractors do not

find the agents necessary to achieve the tasks.

6. Summary

In the first part of this article we presented a new negotiation protocol which extends the

Contract Net Protocol defined by Smith and Davis. Our protocol presents the following

advantages: (1) it enablesM-N negotiations, i.e. a contractor agent can manage concurrently

several negotiation processes with m manager agents, and a manager agent can manage

concurrently several negotiation processes with n contractor agents; (2) it is more efficient in

time and it is fault tolerant.We then proposed the algorithms describing the behaviors of each

contractor and manager agent and gave concrete examples to illustrate the use of this

protocol. In the second part, we analyzed the properties of our protocol. First, we showed the

convergence property of our protocol, then we analyzed the properties for releasing a

blocked negotiation process with failed agents. In order to evaluate our protocol, we

presented a goods delivery application, where each truck is represented by an agent which

negotiates to deliver goods while taking into account its capacity and the distance from the

tasks to be performed. We described the experiments and the simulation results. Finally, we

discussed related work on multi-agent coordination, mainly on task allocation. We have

deliberately presented different work extending Smith and Davis’s protocol in order to show

the difference between our protocol and each existing protocol.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 39

In this article, we have shown the use of our protocol or solving agent coordination

problems by task allocation. We plan to extend this research to electronic commerce. First,

we intend to test the protocol and show its efficiency in a national project, electronic

commerce with intelligent negotiator agents [16]. Then, we plan to tackled the problem of

more complex negotiation processes, i.e. M-N-P negotiations with m sellers, n buyers and

p dependent products [5] using our proposed protocol.

Appendix A. Annexes

Proof of lemma 2: To prove this lemma, we reason by induction on the number j of

tasks announced to an agent ai.

� For j ¼ 1. When only one task Tk is announced to agent ai, it is obvious that after a

rejection no rearrangement is possible for Tk. With a preference order p ¼ 1, Negi,k
cannot be rearranged.

� For j ¼ 2. Let Tk and TkV be two tasks for which agent ai negotiates the execution. Let

Negi,k ¼ (ai, M, Tk, P, s, �) and Negi,kV¼ (ai, M V, Tk V, P, sV, �V) be two negotiation
processes respectively associated with Tk and TkV.

(1) Assuming that T
 ordi (Tk) < T
 ordi (TkV), p ¼ 1:

PreBid ðTkÞ 	 PreBid ðTk0 Þ; there is not a better arrangement for Tk:

(2) If T
 ordi (Tk) > T
 ordi (TkV), p ¼ 2:

PreBid ðTkÞ � PreBid ðTk0 Þ; two cases are then possible :

Case1. sV2 {PreReject, DefinitiveReject}
As ai is authorized to change the schedule of the tasks announced when it is rejected to

a contract (Section 2), there is a better arrangement for Tk such that:

T
 OrdiðTÞ ¼ ðTk;Tk0Þ: Negi;k can be ðp
 1 ¼ 1Þ time rearranged:

Case2. sV=2 {PreReject, DefinitiveReject}
There is no better arrangement for Tk which respects the choice of the agent such that:

T
 Ordi (T) ¼ (TkV, Tk).Negi,k cannot be rearranged.

Negi,k can thus be at most (p
 1) time positively rearranged by ai.

� Assume that at the instant �, m tasks have been announced to ai, with T-ordi(Tk) ¼ p,

Negi,k is at most (p
 1) time positively rearranged by ai.
� We must show that at the next instant �V, if a new task is announced to ai and if T-ordi
(Tk) ¼ p, Negi,k can be at most (p
 1) time positively rearranged by ai, and with T-ordi
(Tk) ¼ p þ 1, Negi,k can be at most (p) time positively rearranged by ai

Let Tm be a set of tasks announced to ai at the instant � and T
mþ1 be the set of tasks

announced at the instant �V, let Tx be a new task, Tmþ1 ¼ Tm [Tx.

AKNINE, PINSON AND SHAKUN40

Let Negi,x ¼ (ai, MV, Tx, P, sx, �x) be the negotiation process associated with the execution
of Tx. Several cases are possible according to the schedule of Tx compared to Tk in T

Ordi (T

mþ1).

Case1. T-ordi (Tx) > T-ordi (Tk), T-ordi (Tk) ¼ p

Considering that the rearrangement of Tk depends only on the tasks Tl 2 Tmþ1 such that
T-ordi (Tl) < T-ordi (Tk), Negi,k is then independent of Negi,x.

The set of negotiation processes on which Negi,k depends, at instant �V is the same that
those at instant �. Consequently, Negi,k is at most (p
 1) positively rearranged by ai.

Case2. T-ordi (Tx) < T-ordi (Tk), T-ordi (Tk) ¼ p þ 1 and Negi,k depends on Negi,x.

.If sx 2 {PreReject, DefinitiveReject}
Considering the algorithm describing the behaviors of contractor agent ai, task Tx can

necessarily be reordered, so T-ordi (Tk) changes by 1 degree (cf. Figure 10). Since PreBid

of Tk grows according to T-ordi (Tk), reordering Tx gives a positive rearrangement of

Negi,k.

From the previous assumption, Tk can be at most (p
 1) positively reordered by ai at

instant �; thus we have Negi,k being at most p positively rearranged by ai at instant �V.

.If sx =2 {PreReject, DefinitiveReject}
There is not a better arrangement for Tk which respects the choice of the agent:

T
 Ordi ðTmþ1Þ ¼ ð::;Tx; ::;Tk; ::Þ:

Negi,k is thus at most (p
 1) time positively rearranged by ai.

In all the cases, we have proved that if T-ordi (Tk) ¼ p, Negi,k is at most (p
 1) time

positively rearranged by ai.

Now that we have proved this lemma, we can give the proof of the theorem on the

termination of the algorithm.

Proof of theorem 2: Observation of the automaton in Figure 2 describing the possible

transitions of a negotiation between a manager and its contractors reveals that loops can

occur during the application of the protocol. There are two cases of loops:

(a) A first loop on states (2) and (4), i.e. the contractors block on sending messages of the

type PreBid and the manager blocks on rejecting these contractors;

(b) A second loop on states (3), (5) and (4).

To show that the protocol does not block the manager and its contractors, we must show

that there is no infinite sequence of loops on (a) and (b). Let us see the two loops separately.

I Loops on (a)

Let S be a set of agents in the multi-agent system and am a manager agent of a negotiation

process for the execution of a task Tp. Each time that a contractor agent receives an

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 41

announcement from am for the execution of a task Tp, it returns a message comprising its bid,

i.e.PreBid (ar, Tp) for am.When themanager receives this message, it sorts ar (definition 3) in

its list of contractor agents (cf. Figure 11). According to the rank of ar, the manager am can

adopt one of the two following behaviors:

1. am returns for ar a message of the type PreAccept (ar, Tp) if

8 ai/i 6¼r, A-ordp (ar) < A-ordp (ai), ar is at the head of the list of the contractors of am for
the announced task.

2. am returns for ar a message of the type PreReject (ar, Tp) if there is at least a potential

contractor ai/i 6¼r, such that PreBid (ai, Tp) 	 PreBid (ar, Tp) and am will send a message
of the type PreAccept (ai, Tp) for ai.

In the first case, the negotiation between am and ar goes to state (3) in Figure 2, i.e.

comes out of the loop (A). In the second case, the negotiation with contractor ar goes to

state (4), i.e. looping on (a).

Because of the time constraint answers to the messages, which we have imposed on the

manager and the contractor, and owing to the fact that the pre-rejected contractors can

modify their PreBids if their situation evolves, the states of the negotiation between the

manager and all its contractors depend on the behaviors adopted by the potential contractor

ai. These behaviors are the following:

1. The potential contractor ai returns a DefinitiveBid (ai, Tp) 	 Max
1�j�n

[PreBid (aj, Tp)].

The evaluation of the DefinitiveBid of ai by am involves the signing of the contract

between am and ai, and the final rejection of contractor ar from the negotiation process

with ar which goes to state (7), i.e. comes out of the loop (a).

2. The potential contractor agent ai returns a DefinitiveBid (ai, Tp) < Max
1�j�n

[PreBid

(aj, Tp)] and

8 ai 2 S; j 6¼ i; DefinitiveBid ðai;TpÞ 	 PreBid ðaj;TpÞ

The negotiation between the manager and its contractors finishes in the same way

as for case (1), i.e. comes out of the loop (a).

3. The potential contractor agent ai returns a DefinitiveBid (ai, Tp) < Max
1�j�n

[PreBid

(aj, Tp)] and

9 ai 2 S; j 6¼ i such that DefinitiveBid ðai;TpÞ < PreBid ðaj;TpÞ

As ar 2 S and ar is in the list of pre-rejected contractors, several cases are then

possible.

� Case3.1. aj ¼ ar. ar is then temporarily accepted by am. The negotiation between ar and

am goes to state (3) in Figure 2, i.e. comes out of the loop (a).
� Case3.2. aj 6¼ ar. The negotiation between aj and am goes to state (3). The manager sorts

again the pre-rejected contractors according to their PreBids and integrates the potential

contractor (ai) in the list of the pre-rejected contractors according to its DefinitiveBid.

AKNINE, PINSON AND SHAKUN42

The next state of the negotiation between am and ar depends on the rank of the new pre-

rejected contractor (ai) and on the behavior of the new potential contractor (aj).
� If DefinitiveBid (ai, Tp) < PreBid (ar, Tp), the schedule of the agents of S by am for the
execution of task Tp is such that:

A
 OrdpðAÞ ¼ ðaj; ::; ar; ::; aiÞ

Based on lemma 2, the negotiation between am and ar for the execution of task Tp
converges to a state of PreAccept (), i.e. comes out of the loop (a).

� If DefinitiveBid (ai, Tp) 	 PreBid (ar, Tp)
The schedule of the agents of S by am for the execution of task Tp is such that:

A
 OrdpðAÞ ¼ ðaj; ::; ai; ::; arÞ

The negotiation between am and ar for the execution of task Tp converges then to a final

rejection state (7), i.e. comes out of the loop (a).

II Loops on (b)

In the same way as above, we show that there is no infinite loop on states (3), (5) and (4)

of Figure 2.

In order to enable the negotiation between contractor ar and manager am to go through state

(3) (cf. Figure 2), contractor ar must send a

PreBid ðar;TpÞ 	 Max
1�j�n

½PreBid ðaj;TpÞ�

and to go to state (5), ar must return a DefinitiveBid (ar, Tp). According to the final bid of

ar, several cases are possible:

1. DefinitiveBid (ar, Tp) 	 Max
1�j�n

[PreBid (aj, Tp)]

The negotiation between manager am and all its contractors ends with the signing of

the contract with ar and the final rejection of all the contractors aj 2 S with j 6¼ r,

i.e. comes out of the loop (b).

Knowing that the contractors, even if pre-rejected, can send PreBids when their

situations evolve, other cases are also possible.

2. DefinitiveBid (ar, Tp) < Max
1�j�n

[PreBid (aj, Tp)] and

8 aj 2 S; j 6¼ r; DefinitiveBid ðar;TpÞ > PreBid ðaj;TpÞ

The manager signs the contract with ar, which involves the transition of the

negotiation with ar towards state (6), i.e. coming out of the loop (b).

3. DefinitiveBid (ar, Tp) < Max
1�j�n

[PreBid (aj, Tp)] and

9 aj 2 S; j 6¼ r; such that DefinitiveBid ðar;TpÞ < PreBid ðaj;TpÞ

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 43

The state of the negotiation between contractor ar and manager am is in state (5) in

graph of negotiation transitions (cf. Figure 2). Several cases arise:

� Case3.1. Manager am receives a confirmation from aj for its PreBid before receiving a

DefinitiveBid from ar. The negotiation between am and ar is immediately interrupted

with a transition to state (7). The contract is signed with aj, i.e. coming out of the loop

(b).
� Case3.2. The new potential contractor aj has not yet confirmed its PreBid to manager
am. Contractor ar is thus pre-rejected with a transition of the negotiation state with am
towards (4) (cf. Figure 2). It will be reordered in the list of pre-rejected contractors. In

the same way as for case I, we can show that the negotiation between ar and am
converges to a state of DefinitiveAccept or DefinitiveReject according to the

DefinitiveBid sent by aj.

In all the cases, we have shown that the negotiation process does not loop; the examples

presented in section 3 illustrate some of the cases described in the proof of this theorem.

References

1. S. Aknine, S. Pinson, and M. F. Shakun, ‘‘New multi-agent models for multiple negotiations,’’ French

Artificial Intelligence Review, vol. 15, no. 1, 2001.

2. S. Aknine and S. Pinson, ‘‘Reliable algorithms for multi-agent task allocation,’’ 8th International Conference

on Intelligence Systems, Colorado, USA, June 24–26, 1999.

3. S. Aknine, ‘‘Issues in cooperative systems: Extending the contract net protocol,’’ IEEE Joint Conference on

the Science and Technology of Intelligent Systems, Maryland USA, September 14–17, 1998.

4. S. Aknine and S. Pinson, ‘‘Un nouveau protocole de négociation flexible pour la coopération multi-agent,’’ in

M. P. Gleizes and P. Marcenac, (eds.), Ingénierie des Systèmes Multi-agents, Hermès, pp. 165–174, 1999.

5. S. Aknine, ‘‘Strategies and behaviors of agents in multi-phased negotiations,’’ Third International Confer-

ence on Electronic Commerce and Web Technologies, EC-WEB with DEXA, LNCS, Springer Verlag, Sep-

tember 2–6, Aix-en-Provence, France, 2002.

6. M. Andersson and T. Sandholm, ‘‘Time-Quality Tradeoffs in reallocative Negotiation with Combinatorial

Contract Types,’’ AAAI, 1999.

7. M. Andersson and T. Sandholm, ‘‘Contract type sequencing for reallocative negotiation,’’ International

Conference on Distributed Computing Systems, ICDCS, 2000.

8. M. Andersson and T. Sandholm, ‘‘Leveled commitment contracting among individually rational agents,’’

International Conference on Multi-agent Systems, Paris, 1998.

9. T. Bouron, ‘‘Structures de Communication et d’Organisation pour la Coopération dans un Univers Multi-

agent,’’ Ph.D. Thesis, Université Paris 6, 1992.

10. T. D. Chandra and S. Toueg, ‘‘Unreliable failures detectors for reliable distributed systems,’’ Journal of the

ACM, vol. 43, no. 2, 1996.

11. G. B. Dantzig, ‘‘All shortest routes in a graph,’’ On Theory of Graphs, Rome, Gordon, 1966.

12. E. H. Durfee and V. R. Lesser, ‘‘Partial global planning: A coordination framework for distributed hypothesis

formation,’’ IEEE Transaction on Systems, Man and Cybernetics, vol. 21, no. 5, 1987.

13. El-Fallah Seghrouchni, A. et Haddad, S. ‘‘A coordination algorithm for multi-agent systems’’, Agents Break-

ing Away, European Workshop on Modelling Autonomous Agents in a Multi-agent World, Maamaw’96, The

Netherlands, 1996.

14. K. Fischer, J. P. Muller, and M. Pischel, ‘‘Scheduling an application domain for DAI,’’ Applied Artificial

Intelligence, An International Journal, vol. 10, pp. 1–33, 1996.

15. R. Guerraoui and A. Schiper, ‘‘Consensus service: A modular approach for building agreement protocols in

distributed systems,’’ 26th IEEE Symposium on FTCS, Sendai, Japan, June 1996.

AKNINE, PINSON AND SHAKUN44

16. K. Hamdouni, M-N negotiation models for electronic commerce, Master Thesis (French Language), Paris-

Dauphine University, 2001.

17. N. R. Jennings, ‘‘Controlling cooperative problem solving in industrial multi-agent systems using joint

intentions,’’ Artificial Intelligence, vol. 75, no. 2, 1995.

18. L. C. Lee, ‘‘Progressive multi-agent negotiation,’’ Second International Conference on Multi-Agent Systems,

1996.

19. M. Raynal, ‘‘Revisiting the non-blocking atomic commitment problem in distributed data management

systems,’’ Ingénierie des Systèmes d’Information, vol. 5, no. 6, 1997.

20. T. Sandholm, ‘‘An Implementation of the contract net protocol based on marginal cost calculations,’’ 11th

National Conf. On AI, AAAI, 1993.

21. T. Sandholm and V. Lesser, ‘‘Issues in automated negotiation and electronic commerce: Extending the contract

net framework,’’ ICMAS-95, First International Conference on Multi-agent Systems, MIT Press, 1995.

22. T. Sandholm and V. Lesser, ‘‘Advantages of a leveled commitment contracting protocol,’’ AAAI’96, National

Conference on Artificial Intelligence, Portland, 1996.

23. T. Sandholm, S. Sikka, and S. Norden, ‘‘Algorithms for optimizing leveled commitment contracts,’’ Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, pp. 535–540, 1999.

24. O. Shehory and S. Kraus, ‘‘Methods for task allocation via coalition formation,’’ Artificial Intelligence,

Elsevier Science, 1998.

25. R. G. Smith, ‘‘The Contract net protocol: High-level communication and control in a distributed problem-

solver,’’ IEEE Transactions on Computers, vol. 12, 1980.

26. R. G. Smith and R. Davis, ‘‘Frameworks for co-operation in distributed problem solving,’’ IEEE Transaction

on System, Man and Cybernetics, vo. 11, no. 1, 1981.

27. G. Weiss, (ed.), Multiagent Systems: A modern approach to distributed artificial intelligence, MIT Press,

1999.

AN EXTENDED MULTI-AGENT NEGOTIATION PROTOCOL 45

