
USING RECOMMENDATIONS FOR MANAGING TRUST IN DISTRIBUTED SYSTEMS

Alfarez Abdul-Rahman & Stephen Hailes

{F.AbdulRahman,S.Hailes}@cs.ucl.ac.uk
Department of Computer Science, University College London,

Gower Street, London WC1E 6BT, United Kingdom.

Abstract

Each time we carry out vital communication in any
distributed computer system such as the Internet, we face an
inherent risk. This risk arises because we can never be
completely certain about the trustworthiness of entities that
mediate our on-line interactions. To minimise this risk, users
must be given the chance to assess trust on the network, and
be given an opportunity to pick an option with the least level
of perceived risk. In this paper, we explain why traditional
network security mechanisms are incomplete in their
function to manage trust, and provide a general model based
on recommendations.

1. INTRODUCTION

Trust is a notion central to secure distributed systems
communications and transactions. Within this context, when
something is proven to be secure, it is ‘trusted’. Well known
techniques to ensure that something is ‘trusted’ have been
developed and strengthened, and these techniques include
cryptographic algorithms for secrecy and digital signatures,
authentication protocols for proving authenticity, and access
control methods for managing authorisation.

However, these techniques do not say much about the wider
notion of an entity’s ‘trustworthiness’. For example,
cryptographic algorithms cannot say if a piece of digitally
signed code has been authored by competent programmers
and a signed public-key certificate does not tell you if the
owner is an industrial spy.

With the increasing pervasiveness of the Internet, and
examples of its use like downloading software and on-line
commerce become commonplace, trust management becomes
an increasingly essential component. In [Luh79], Niklas
Luhmann said that if we live without trust, then human
interaction will not progress beyond the very trivial, as only
limited forms of action and cooperation is possible. Acting
on behalf of a human being, any computer is merely an
extension of a person, and therefore must be given the same
capability as humans to manage and reason about trust. This
capability is currently lacking, so a tool for managing trust,
which will complement current security technology, must be
designed.

In this paper, we present our approach to the problem of
trust management, which uses recommendations.

We will continue by clarifying our concept of trust in §2. In
§3, we will look at current practices in security, and discuss
their suitability to trust management. Then in §4, we provide
an outline of our approach, and justification of our design
decisions. A trust model is proposed in §5, and details of a

Recommendation protocol are fleshed out in §6. In §7, we
show how trust is calculated, followed by a discussion of
issues that relate to our work, in §8. Finally, we conclude in
§10.

2. DEFINITION OF TRUST

In this paper, we use Gambetta’s definition of trust [Gam90]:

“trust (or, symmetrically, distrust) is a particular level of the
subjective probability with which an agent will perform a
particular action, both before [we] can monitor such action
(or independently of his capacity of ever to be able to
monitor it) and in a context in which it affects [our] own
action”.

Of importance here are three points made in the definition
above: 1) that trust is subjective, 2) trust affects those
actions that we cannot monitor, and 3) the level of trust
depends on how our own actions are in turn affected by the
agent’s actions.

3. MOTIVATION

In the previous section, we gave brief examples illustrating
the need for more effective trust management techniques.
We now discuss in more detail the properties of current
security practices, and its issues which motivate a need for
complementary trust management schemes.

The following trends in current security practice impact the
management of trust:

a) Hard security

b) Centralised protocols

c) Implicit trust assumptions

These approaches have, and will continue to have, important
roles to play in the security of network formation systems.
However, they are incomplete as a general tool for managing
trust. Below, we highlight the shortcomings of points a) – c)
above, with respect to trust management.

3.1 Hard security

Currently, most security solutions can be categorised as
‘hard’ mechanisms. These mechanisms have an ‘all or
nothing’ property, i.e. access is granted fully, or not at all.
Cryptographic algorithms and firewalls are examples of hard
security mechanisms.

Hard security mechanisms do not say anything about trust1.

1 “[A] program’s hostility cannot be decided by any level of

Cryptography, for instance, is essential in ensuring the
integrity and privacy of statements about trust, but it is not a
mechanism for managing trust in itself.

Hard techniques work for applications where complete
certainty is attainable, e.g. whether Alice knows the key K or
not. As the notion of trust precludes some element of
uncertainty, an alternative ‘soft’ approach will be more
suitable for trust management. ‘Soft security’ is the term
used by Rasmusson et al [RJ96,RRJ96] to describe a ‘social
control’ model which acknowledges that malicious entities
may exist among benign ones.

3.2 Centralised protocols

Centralised protocols are protocols which use a ‘well-
known’ common trusted intermediary, call it the trusted
authority (TA), to form a trust relationship between two
mutually distrusting entities. This need to refer to a
centrally trusted point poses a major problem as a general
trust framework, because the assumed objectivity of trust
will not work. In our definition of trust, trust is subjective.

Furthermore, a TA can never be a good enough
recommender for everyone in a large distributed system. Its
credibility depletes, and its recommendations increase in
uncertainty, as its community of trustees grows.

A decentralised approach to trust management makes sense,
simply because trust decisions cannot be forced onto entities
– they make up (or must be allowed to make up) their own
minds. In the words of Phil Zimmermann: “Centralised trust
goes against the grain of human interaction”2.

Network entities (millions, in real life)
Relationships in the centralised model
Relationships in the ‘real world’

Figure 1 Centralisation vs. the decentralised ‘real world’.

3.3 Implicit trust assumptions

Assumptions are always made about which entities can be
trusted in a system. In common practice, the ‘trusted’ label is
given to products or systems that has undergone a rigorous
set of tests, and proven to have met certain criteria.

However, the ‘trusted’ label is misleading. ‘Trusted’
generally implies that ‘nothing can go wrong’, which implies
that the tests covered all eventualities. Surely, this cannot be
possible! This is a flaw of the Trusted Computing Base
argument [DoD85] as highlighted by panel discussions in
[Zur97], and also the underlying message in Bruce
Schneier’s words: “No amount of general beta testing will

cryptography” [RRJ96].
2 See [Abd97].

reveal a security flaw, and there’s no test possible that can
prove the absence of flaws” [Sch97].

If a secure system is desired, trust assumptions must be
explicit. It is insufficient to say that Alice trusts Bob. More
qualification is required: What does Alice trust Bob for, how
much does Alice trust Bob and under what circumstances
does that trust relationship hold or break?

3.4 Transitivity of trust

Most authentication protocols rely on the basic assumption
that trust is transitive, i.e. if Alice trusts Bob, and Bob trusts
Cathy, then it follows that Alice trusts Cathy. This, however,
is an erroneous assumption. Trust is not transitive [Jøs96]. If
Alice trusts Bob, and Bob trusts Cathy, it does not follow
that Alice trusts Cathy. Alice’s trust in Bob has no relation
whatsoever to Bob’s trust in Cathy.

The decision on whether to trust or distrust a subject, or a
given authentication chain is ultimately made by the entity,
and cannot be automated by any protocol.

4. OUR PROPOSAL

Our proposal extends and generalises current approaches to
security and trust management, based upon four goals:

1. To adopt a decentralised approach to trust management.
2. To generalise the notion of trust.
3. To lessen ambiguity by making trust statements more

explicit.
4. To facilitate the exchange of trust-related information

via a common protocol.

We provide further justification for these goals below.

4.1 Decentralisation

As discussed earlier, trust management requires a
decentralised approach, which will complement centralised
approaches to give a more complete general trust
management framework.

With decentralisation, each rational entity will be allowed to
take responsibility for its own fate. This is a basic human
right3. His policies need not be communicated, so there is
less ambiguity and no effort involved in trying to understand
them. Each entity then makes decisions for itself, on its own
policies.

The disadvantage of decentralisation is that more
responsibility and expertise is required on the user for
managing trust policies. However, entities on the network
will still have the option of relying on centralised trust
models so that this responsibility can be assigned to their
trusted authority, if they wish to do so. Decentralisation does
not completely replace current centralised approaches, but it
gives entities a choice of managing their own trust.

4.2 Generalising trust

Trust involves many aspects of an entity. When we say we
trust someone, we know, with a large amount of certainty,

3 See the UN Declaration of Human Rights.

exactly which aspects of trust we are referring to. For
example, we trust that our car mechanic will carry out a
satisfactory job of car servicing, but not to also handle our
domestic plumbing needs. There are also instances when we
trust one entity more than another, e.g. we trust one car
mechanic more than another for some reason. This hints at
different levels of trust.

To be able to capture this potentially large amount trust
information, we need to generalise trust information. In our
model, we have done this by using two types of trust
information; trust categories to represent which aspect of
trust one is referring to, and trust values for the different
levels of trust within each category.

4.3 Explicit trust statements

The reason for making trust explicit is straightforward, i.e.
to lessen ambiguity in recommendations which contain trust
statements. The issues relating to implicit trust assumptions
is discussed in §3.3. In our model, we have introduced trust
categories and trust values to make trust statements more
explicit.

4.4 A common protocol

We have proposed a Recommendation Protocol to facilitate
the propagation of trust information. A protocol is essential
as a standard vehicle for the exchange of trust information,
and to avoid ambiguities in queries or requests for
recommendation.

We argue that it makes sense to recommend trust because in
the absence of an infinite pool of resources, entities, just as
humans do, rely on information from others. We also stress
that this protocol does not assume that trust is transitive,
merely that agents are allowed to use trust-related
recommendations from recommenders that they trust.

4.5 Novelty and suitability of proposed
approach

Our approach is intended to complement current security
practices by forming a general model within which trust can
be more effectively managed. This is not ‘yet another
certification mechanism`. In a world where people live with
uncertainty, our model copes with these uncertainties by
allowing entities to reason with different degrees of trust,
rather than just complete or incomplete trust.

Our model is concerned with the general notion of trust, one
that goes beyond cryptographic protocols. This is important
because entities need a flexible means to ascertain a variety
of properties about a variety of other entities. For this to
work we need to generalise trust.

We believe that our model will be most suited to trust
relationships that are less formal, temporary or short-term
trust relationships or ad-hoc commercial transactions. Our
model will not be suited to formal trust relationships based
on legally binding contracts.

5. THE TRUST MODEL

In this section, we explain how trust is defined in our trust
model by describing its elements. This section can also be

regarded as containing the assumptions that we have made in
designing our trust model.

5.1 Agents

Entities that are able to execute the Recommendation
Protocol are called agents. This is to differentiate from static
entities like printers and disk volumes. Agents may
recommend any entity, but only agents can make and receive
recommendations.

5.2 Trust relationships

A trust relationship exists between A and B when A holds a
belief about B's trustworthiness. However, the same belief in
the reverse direction need not exist at the same time. In other
words, A trust relationship is unidirectional.

The properties of a trust relationship in our model are:

1. It is always between exactly two entities.
2. It is non-symmetrical.
3. It is non-transitive.

If mutual trust exists between the same entities, we
represent them as two separate trust relationships. This
allows each of these relationships to be manipulated
independently.

Two different types of relationships are distinguished.

If Alice trusts Bob, then there is a direct trust relationship. If
Alice trusts Bob to give recommendations about other
entities’ trustworthiness, then there is a recommender trust
relationship between Alice and Bob.

Alice Bob

Direct trust relationship.
Recommender trust relationship.

Figure 2 Recommender trust: Alice trusts Bob to
recommend other entities

Trust relationships exists only within each entity’s own
database. Therefore, there is no such thing as a ‘global map’
of trust relationships in our model. This also makes trust
relationships in our model highly volatile. The ability for
each entity to revise the properties of each relationship at
any time also makes trust relationships unstable.

By relaxing the constraints on how to build trust
relationships, we are able to allow this model to be used for
any type of trust architecture4, e.g. hierarchical, digraphs or
hybrids. Most architectures are policy driven, i.e. the shape
of the architecture reflects the policies used to build them.
Since we do not incorporate policies in our model, it is open
to arbitrary architectures5.

5.3 Trust Categories

Agents use Trust Categories to express trust towards other
agents in different ways depending upon which particular

4 The combined graph of trust relationships.
5 See [AH97] for examples.

characteristic or aspect of that entity is under consideration
at that moment. For example, we trust a CA to certify public
keys (category “sign-key”), but not to attest to the key-
holder’s credit status (category Credit”).

5.4 Trust Values

Trust values are used to represent the different levels of trust
an entity may have in the other.

Naturally, there is no one universal value system because its
use is application specific. However, standardisation is
important for interoperability. Therefore, is important that a
value system is proposed, even if we must base its semantics
on pure intuition. Below, we outline the trusts values and
their meaning as used in our trust model6.

Trust values in our model are constrained within each
category and arrre independent of values in other categories.

Two types of values are used, and the types of trust
relationships they are relevant to as described in §5.2:

1. Direct trust value: This is relevant to direct trust
relationships.

2. Recommender Trust Value. This is relevant to
recommender trust relationships.

The values and their descriptions are given below.

Value Meaning Description
-1 Distrust Completely untrustworthy.
0 Ignorance Cannot make trust-related

judgement about entity.
1 Minimal Lowest possible trust.
2 Average Mean trustworthiness. Most

entities I know of have this trust
level.

3 Good More trustworthy than most
entities.

4 Complete Completely trust this entity.

Table 1 Direct Trust Value Semantics

Value Meaning Description
-1 Distrust Completely untrustworthy.
0 Ignorance Cannot make trust-related

judgement about agent.
1
2
3
4

‘Closeness’ of recommender’s judgement to own
judgement about trustworthiness. See example
below.

Table 2 Recommender Trust ValueSemantics

5.5 Reputation and Recommendation

The concatenation of an entity’s Id or name, the trust
category and a trust value is called a Reputation.

A Recommendation is a communicated trust information,
which contains Reputations.

 6 Other examples of trust values are in [Maurer, Reiter,
BBK]

Each agent stores reputation records in their own private
databases and uses this information to make
recommendations to other agents.

5.6 Summary of definitions

Entity: any object in a network.

Agent: any entity that is capable of making trust-related
decisions (therefore able to participate in the
Recommendation Protocol).

Direct trust: trust in an entity, within a specific category and
with a specific value.

Recommender trust: trust in an agent to recommend other
entities.

Trust Category: the specific aspect of trust relevant to a
trust relationship.

Trust Value: the amount of trust, within a trust category, in
a trust relationship.

Reputation: trust information which contains the name of
the entity, the trust category, and a trust value.

Recommendation: reputation information that is being
communicated between two agents about another entity.

6. RECOMMENDATION PROTOCOL

Before going into detail, we stress that recommended trust is
different from transitive trust, in that in recommended trust,
we use the recommendation to assist us in forming trust
opinions about others, and not to concretely use that
information to automatically build trust relationships, as
transitivity suggests. Furthermore, for brevity and clarity, we
will leave out details on message integrity and privacy issues
and concentrate on the trust-related content of the
recommendation protocol messages.

To recap, each agent may be a recommender, or a requestor
of a recommendation. Any entity may be a target for a
recommendation.

6.1 Message structure

A requestor issues a recommendation request message, or an
RRQ, and receives a Recommendation message.
Recommendations can be refreshed or revoked using the
Refresh message. These messages have the following
structure:

6.1.1 RRQ

RRQ ::= Requestor_ID, Request_ID,
Target_ID, Categories, GetPKC,
Expiry

Categories ::= SET OF {Category_Name}

6.1.2 Recommendation

Recommendation ::= Requestor_ID,
Request_ID, Target_ID, Return_Path,
[Recommendation_slip, TargetPKC |
NULL]

Return_Path ::= SEQUENCE OF

{Recommender_ID}

Recommendation_slip ::= SET OF SEQUENCE
{Category_Name, Trust_value,
Expiry}

6.1.3 Refresh

Refresh ::= Target_ID,
Recommendation_chain,
Recommendation_slip

Requestor_ID, Request_ID, Target_ID and
Recommender_ID are straightforward. Categories is
a set of category names that the requestor is interested in
enquiring about. GetPKC is a Boolean flag which when set
to true indicates that the requestor would also like a copy of
the target's public key certificate for further communication.
If a public-key certificate is available, it is returned in the
Recommendation, in the TargetPKC field.

The Return_Path field contains an ordered sequence of
recommender IDs. This shows the path through which the
Recommendation propagated from the recommender to the
requestor.

The Recommendation_slip contains the actual trust
information that the requestor is interested in. For each
category, there is a sequence containing the
Category_name, the trust value of the target with respect
to this category, and the Expiry.

The Expiry field contains the expiry date for the RRQ or
Recommendation. In the case of the RRQ, this is used to
discard any old RRQs that may still be floating around in the
system. In the case of each recommendation slip, this is used
to indicate the validity period of the recommendation, after
which the recommendation should not be relied upon any
further.

If the RRQ reaches a dead end in its path, and fails to reach a
recommender who is able to provide a recommendation, the
fields Recommendation_slip and TargetPKC will be
replaced by a NULL.

6.2 Protocol flow

The protocol flow is best described using an example, as
depicted in Figure 3.

Alice Bob Cathy Eric

Figure 3 Example: can Alice trust Eric the mechanic?

6.2.1 Requests and Recommendations

Let us assume that Alice (the requestor) is requesting a
recommendation from Bob (the recommender) about Eric
(the target). Alice is interested in Eric's reputation for
servicing cars, especially for VW Golfs, one of which Alice
drives (trust category = "Car_Service"). The protocol run is
as follows.

1. Alice->Bob: Alice, rrqA01, Eric, [Car_Service], T,
20000101

2. Bob->Cathy: Bob, rrqB01, Eric, [Car_Service], T,

20000101

3. Cathy->Bob: Bob, rrqB01, Eric, [Cathy],
[(Car_Service,3,20000131)],
(PKEric)SKCathy

4. Bob->Alice: Alice, rrqA01, Eric, [Cathy,Bob],
[(Car_Service,3,20000131)],
(PKEric)SKCathy

The protocol is simple and straightforward. Each RRQ is sent
to the requestor's set of recommenders trusted to recommend
in that category in question. In the example above, Alice
sends an RRQ to Bob because she trusts Bob as a
recommender for car servicing mechanics, and Bob trusts
Cathy in a similar capacity. Since Bob cannot say anything
about Eric with respect to “Car_Service”, Bob forwards
Alice's RRQ to Cathy who may know. Cathy in fact knows
about Eric’s workmanship, and Cathy believes that Eric's
reputation for it is good, i.e. in Cathy’s opinion, Eric’s trust
value with respect to category “Car_Service” is 3.

Cathy replies to Bob with a recommendation in message 3.
Notice that the Requestor_ID and Request_ID represents the
last sender (or forwarder) of the RRQ in the forward RRQ
chain, and not the original issuer of the RRQ. This is
designed this way to encourage Recommendations to be
returned using the forward path, which contains at least one
trusted node (the original recommender Bob). This also
provides, to some degree, anonymity of the original RRQ
issuer, e.g. as far as Cathy knows, Bob is the requestor of the
RRQ. Cathy also appends Eric’s public key certificate, which
is signed by Cathy herself, to the end of the
recommendation.

Bob receives the recommendation from Cathy, and changes
the Requestor_ID and Request_ID fields. Bob also adds his
own ID to the tail of the Return_Path list. He then forwards
this to Alice.

6.2.2 Revocation and Refreshing Recommendations

The reputation of entities change over time so there is a need
to update the reputation information in the system. The
classic method for handling this is through revocation where
revocation messages are sent out to revoke certificates. In
our trust model there is a need to revoke, as well as refresh
recommendations. In fact, revoking is a subset of refreshing;
they are contained in the same Refresh message type. To
revoke, a recommender resends the same recommendation
with trust value 0. The receiver will treat this as any other 0-
value recommendation. Changing the trust value to any other
value (1-4) will refresh the recommendation.

In our previous example, if Cathy found out that Eric had
made several bad jobs of servicing her car, Cathy may decide
that Eric is not trustworthy after all, and would like to
inform his previous requestors of this. These messages show
how this will be carried out.

5. Cathy->Bob: Eric, [Cathy],
[(Car_Service,1,20000131)]

Bob, upon receiving message 5 also decides to propagate this
Refresh message to his previous requestors, who, in this
example, is just Alice.

6. Bob->Alice: Eric, [Cathy, Bob],
[(Car_Service,1,20000131)]

Alice Bob Cathy

Figure 4 Refreshing recommendations (arrow points
direction of Refresh message flow)

Public keys are not included in Refresh messages because
Refresh messages are for refreshing trust, not keys. Keys are
just piggybacked on Recommendations to avoid another
round of protocol for obtaining keys.

The Recommendation Protocol in our trust model makes
revocation easier. All that is required is to resend the
Refresh message to all previous requestors of the same target
and category. With traditional certificate mechanisms, the
target entity itself carries the certificate, and it is not easy to
determine whom it will present the certificate to next,
therefore distributing the revocation certificate is harder.
Furthermore, since there are potentially more recommenders
in our model than CAs in normal certification architectures,
there are less agents to broadcast revocations to. This shows
how much simpler trust management is through
decentralisation.

One major risk in sending Refresh messages is the
propagation delay of messages through the system. This
depends on the availability of the agents in the propagation
path and the promptness of each agent in the path at
forwarding protocol messages. However, since the protocol
is decentralised and each agent may also be a recommender,
it is suspected that the availability of the refreshed
reputation messages will be higher than in a centralised
system.

In short, the Recommendation protocol makes revocating
and refreshing trust information easier and improves
availability of Refresh messages.

7. CALCULATING TRUST

Due to space limitation, in this section, we will show the
algorithm used for calculating trust in our model, with a
brief description of its use. A more detailed argument for the
design of this argument can be found in [AH97].

The trust value of a target for a single given category is
computed as follows:

tvp(T) = tv(R1)/4 × tv(R2)/4 × .. × tv(Rn)/4 × rtv(T) (1)

Where,

tv(Ri): Recommender trust value of recommenders in
the return path including the first
recommender (who received the original RRQ)
and the last recommender (who originated the
Recommendation).

rtv(T): The recommended trust value of target T given
in the recommendation.

tvp(T): The trust value of target T derived from
recommendation received through return path
p.

tv() must be calculated for each recommendation received on
different return paths (1..p), and the final single trust value
for target T is the minimum of these calculated trust values:

tv(T) = Min(tv1(T),..,tvp(T)) (2)

We will illustrate this algorithm with our previous example
with Eric the mechanic. From the previous example, we have
the recommendation path from Cathy to Alice (refer to this
as Rec-path-1), Cathy � Bob� Alice, and we have the
following trust statement:

� Cathy trusts Eric value 3 (from example)

 Assume further that:

� Alice trusts Bob’s recommender trust, value 2
� Alice trusts Cathy’s recommender trust, value 3

We also assume that Alice had sent out a second RRQ for
the same trust category “Car_Service” to David, another of
her trusted recommenders, and had received a
recommendation from him about Eric (refer to this as Rec-
path-2).

Alice calculates trust for Eric on Rec-path-1 as follows:

tv1(Eric) = tv(Bob)/4 × tv(Cathy)/4 × rtv(Eric)

= 2/4 × 3/4 × 3
= 1.125

We assume that by using the same algorithm (1), Alice
obtains a value of 2.500 (tv2(Eric) = 2.500) on Rec-path-2.
Now Alice can apply (2) to obtain the following:

tv(Eric) = Min(tv1(T),tv2(T))
= Min(1.125,2.500)
= 1.125

Therefore, from the calculation, Alice may decide that Eric
has quite a low trustworthiness as a car-servicing mechanic.

Computing trust is a difficult area, and at this moment the
trust computation algorithm above was derived from a great
deal of intuition. Nevertheless, a standard algorithm is
necessary to lessen ambiguity in trust value
recommendations, and so that most requestors can be
confident that what is received in recommendations comes
close to a universal7 standard.

8. DISCUSSION

8.1 Related work

Policymaker [BFL96] is a distributed approach to trust
management. Although highly flexible, its implementation is
cumbersome for the average user, as the policy definition is
a complex procedure. In [YKB93, BBK94], a general
formalism was introduced. However, no actual protocol was
given, and the calculations are ad hoc. Maurer’s [Mau96]

7In discussions about areas as subjective as trust, it makes
more sense to think of the term universal as being
constrained by a particular application domain where
common standards exist, e.g. the domain of business or
finance, instead of taking 'universal' as a synonym for
'global'.

trust model too, although elaborate, is another ad-hoc
approach. Marsh gave an elaborate theory of trust in
[Mar94]. His techniques are more suited to cooperative
autonomous software agents environments.

8.2 Issues ignored

So far, we have ignored a large number of issues in our
work, which include provisions for anonymity, entity
naming, memory requirements for storing reputations, and
the behaviour of the Recommendation Protocol. These issues
have been ignored deliberately so that the more complex and
understudied area of trust can be satisfactorily pursued, since
the issues above are being tackled in work by other
researchers. For example, the work in SDSI [RL96] and
SPKI [Ell96] includes a novel attempt at eliminating the
need for global name spaces.

8.3 Future work

One of our concerns is the lack of understanding of the
meaning of trust in computer systems. Currently, we are
looking into this problem by surveying the different
semantics of trust within areas as diverse as sociology,
psychology and philosophy, as well as distributed systems.

There is also a need to look into the need for monitoring and
revising trust of other entities, because trust is non-static and
non-monotonic.

Finally, we intend to test the behaviour of our protocol and
trust calculation algorithms, based on simulations.

9. CONCLUSION

In this paper, we highlighted the need for effective trust
management in distributed systems, and proposed a protocol
based on recommendations. This work, and those being
carried out by other researchers, has barely scratched the
surface on the issues related to the complex notion of trust.
Nevertheless, it is an issue vital to the engineering of future
secure distributed systems.

REFERENCES

[AH97] Alfarez Abdul-Rahman, Stephen Hailes. A
Distributed Trust Model. (To appear) In
Proceedings, New Security Paradigms 97
Workshop, September 1997.

[Abd97] Alfarez Abdul-Rahman. Summary of the DTI’s
proposed encryption policy. London School of
Economics. http://www.cs.ucl.ac.uk/staff/
F.AbdulRahman/docs

[BBK94] Thomas Beth, Malte Borchedring, B. Klein.
Valuation of Trust in Open Networks. In
Proceedings, European Symposium on Research
in Computer Security 1994, ESORICS94, pp 3-
18.

[BFL96] Matt Blaze, Joan Feigenbaum, Jack Lacy.
Decentralised Trust Management. In
Proceedings, IEEE Conference on Security and
Privacy, May 1996.

 [DoD85] U.S. Department of Defense. Department of

Defense Trusted Computer System Evaluation
Criteria. DoD 5200.28-STD, 26 December,
1985.

[Ell96] Carl Ellison. SPKI draft.
http://www.clark.net/pub/cme/spki

[Gam90] D. Gambetta. Can We Trust Trust?. In, Trust:
Making and Breaking Cooperative Relations,
Gambetta, D (ed.). Basil Blackwell. Oxford,
1990, pp. 213-237.

[Jøs96] Audun. Jøsang. The right type of trust for
distributed systems. In Proceedings, New
Security Paradigms 96 Workshop, 1996.

[Luh79] N. Luhmann. Trust and Power. Wiley,
Chichester, 1979.

[Mar94] Stephen Marsh. Formalising Trust as a
Computational Concept. Ph.D. Thesis,
University of Stirling, 1994.

[Mau96] Ueli Maurer. Modelling a Public-Key
Infrastructure. In Proceedings, European
Symposium on Research in Computer Security
1996, ESORICS96.

[RJ96] Lars Rasmusson, Sverker Jansson. Simulated
Social control for Secure Internet Commerce
(position paper). In Proceedings, New Security
Paradigms ‘96 Workshop.

[RL96] Ronald Rivest, Butler Lampson. SDSI – A Simple
Distributed Security Infrastructure.

[RRJ96] Lars Rasmusson, Andreas Rasmusson, Sverker
Jansson. Reactive Security and Social Control. In
Proceedings, 19th National Information Systems
Security Conference.

 [Sch97] Bruce Schneier. Why Cryptography Is Harder
Than It Looks. Information Security Bulletin,
Vol. 2 No. 2, March 1997, pp. 31-36.

[YKB93] Raphael Yahalom, Birgit Klein, Thomas Beth.
Trust Relationships in Secure Systems - A
Distributed Authentication Perspective. In
Proceedings, IEEE Symposium on Research in
Security and Privacy, 1993.

[Zur97] Mary Ellen Zurko. Panels at the 1997 IEEE
Symposium on Security and Privacy, Oakland,
CA, May 5-7, 1997. CIPHER, Electronic Issue
#22, 12 July, 1997. http://www.itd.nrl.navy.mil/
ITD/5540/ieee/cipher/

