
Introduction to Java I/O

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. An overview of the java.io package 3

3. java.io class overview 8

4. Sources and sinks 13

5. Files 19

6. Buffering 25

7. Filtering 30

8. Checksumming 34

9. Inflating and deflating 38

10. Data I/O 44

11. Object serialization 49

12. Tokenizing 54

13. Lab 58

14. Wrapup 59

Introduction to Java I/O Page 1

Section 1. Tutorial tips

Should I take this tutorial?
This tutorial is an overview of Java I/O and all the classes in the java.io package. We
journey through the maze of the java.io package, examining I/O classes, methods, and
various techniques for handling I/O in your Java code.

This tutorial assumes you have a basic knowledge of I/O, including InputStream and
OutputStream. If you have training and experience in Java programmming, take this course
to add to your knowledge. If you do not have Java programming experience, we suggest you
take Introduction to Java for COBOL Programmers , Introduction to Java for C or C++
Programmers , or other introductory Java courses available on the Web.

In this tutorial, we provide examples of code to show details of Java I/O. If you want to compile
and run the same code and you do not have a Java compiler, you can download the Java
Development Kit (JDK) from Sun Microsystems. (See Setup on page 58.) You may use either
the JDK 1.1 or JDK 1.2 (also known as Java 2).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 2

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument

Section 2. An overview of the java.io package

Introduction
This section introduces the java.io package.

Here are some basic points about I/O:

* Data in files on your system is called persistent data because it persists after the program
runs.

* Files are created through streams in Java code.
* A stream is a linear, sequential flow of bytes of input or output data.
* Streams are written to the file system to create files.
* Streams can also be transferred over the Internet.
* Three streams are created for us automatically:

*System.out - standard output stream
*System.in - standard input stream
*System.err - standard error

* Input/output on the local file system using applets is dependent on the browser's security
manager. Typically, I/O is not done using applets. On the other hand, stand-alone
applications have no security manager by default unless the developer has added that
functionality.

Basic input and output classes
The java.io package contains a fairly large number of classes that deal with Java input and
output. Most of the classes consist of:

* Byte streams that are subclasses of InputStream or OutputStream
* Character streams that are subclasses of Reader and Writer

The Reader and Writer classes read and write 16-bit Unicode characters. InputStream
reads 8-bit bytes, while OutputStream writes 8-bit bytes. As their class name suggests,
ObjectInputStream and ObjectOutputStream transmit entire objects.
ObjectInputStream reads objects; ObjectOutputStream writes objects.

Unicode is an international standard character encoding that is capable of representing most of
the world's written languages. In Unicode, two bytes make a character.

Using the 16-bit Unicode character streams makes it easier to internationalize your code. As a
result, the software is not dependent on one single encoding.

What to use

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 3

There are a number of different questions to consider when dealing with the java.io
package:

* What is your format: text or binary?
* Do you want random access capability?
* Are you dealing with objects or non-objects?
* What are your sources and sinks for data?
* Do you need to use filtering?

Text or binary
What's your format for storing or transmitting data? Will you be using text or binary data?

* If you use binary data, such as integers or doubles, then use the InputStream and
OutputStream classes.

* If you are using text data, then the Reader and Writer classes are right.

Random access
Do you want random access to records? Random access allows you to go anywhere within a
file and be able to treat the file as if it were a collection of records.

The RandomAccessFile class permits random access. The data is stored in binary format.
Using random access files improves performance and efficiency.

Object or non-object
Are you inputting or outputting the attributes of an object? If the data itself is an object, then
use the ObjectInputStream and ObjectOutputStream classes.

Sources and sinks for data
What is the source of your data? What will be consuming your output data, that is, acting as a
sink? You can input or output your data in a number of ways: sockets, files, strings, and arrays
of characters.

Any of these can be a source for an InputStream or Reader or a sink for an
OutputStream or Writer.

Filtering

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 4

Do you need filtering for your data? There are a couple ways to filter data.

Buffering is one filtering method. Instead of going back to the operating system for each byte,
you can use an object to provide a buffer.

Checksumming is another filtering method. As you are reading or writing a stream, you might
want to compute a checksum on it. A checksum is a value you can use later on to make sure
the stream was transmitted properly.

We cover the concepts and details of filtering in Filtering on page 30; and the details of
checksumming are in Checksumming on page 34.

Storing data records
A data record is a collection of more than one element, such as names or addresses. There
are three ways to store data records:

* Use delimited records, such as a mail-merge style record, to store values. On output,
data values are converted to strings separated by delimiters such as the tab character,
and ending with a new-line character. To read the data back into Java code, the entire
line is read and then broken up using the StringTokenizer class.

* Use fixed size records to store data records. Use the RandomAccessFile class to store
one or more records. Use the seek() method to find a particular record. If you choose
this option to store data records, you must ensure strings are set to a fixed maximum size.

* Alternatively, you can use variable length records if you use an auxiliary file to store the
lengths of each record. Use object streams to store data records. If object streams are
used, no skipping around is permitted, and all objects are written to a file in a sequential
manner.

Creating streams: Example code
Here is an example of how to create a stream that reads and writes characters using a TCP/IP
socket as the sink and source. The classes themselves are explained later.

First, we create a TCP/IP socket object that is connected to www.ibm.com and port 80. This is
the Web server port. The method getInputStream() in the Socket class returns an
InputStream, which represents byte-by-byte reading of the socket. The InputStream is
used to create an InputStreamReader, which transforms the bytes read from the socket into
characters. A BufferedReader class is created, which reads from the
InputStreamReader and buffers the characters into its own internal buffer. The object
named in then reads characters from that buffer, but the ultimate source of the characters is
the Web server at www.ibm.com.

On the other hand, the getOutputStream() method of the Socket class returns a
reference to an OutputStream, which writes a byte at a time. The PrinterWriter

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 5

constructor uses that OutputStream as the sink for the characters it writes out. When a
character is written to the object named out, it is ultimately sent to the Web server at
www.ibm.com.

This example treats the data stream as character data:

Socket a_socket = new Socket(www.ibm.com, 80);
InputStreamReader isr = new InputStreamReader(

a_socket.getInputStream());
BufferedReader in = new BufferedReader (isr);
PrinterWriter out = new PrinterWriter(

a_socket.getOutputStream());

A second way to use streams is to use them to transmit binary data. We create a TCP/IP
socket object that is connected to www.ibm.com and port 100. We construct a
DataInputStream using the InputStream returned by getInputStream() and a
DataOutputStream using the OutputStream returned by getOutputStream(). We can
send and receive integers or doubles or other binary data over these two streams.

This example treats the data stream as binary data:

Socket socket_data = new Socket(www.ibm.com, 100);
DataInputStream in_data = new DataInputStream(

socket_data.getInputStream());
DataOutputStream out_data = new DataOutputStream(

socket_data.getOutputStream());

Exceptions
Almost every input or output method throws an exception. Therefore, any time you do I/O, you
need to catch exceptions. There is a large hierarchy of I/O exceptions derived from
IOException. Typically you can just catch IOException, which catches all the derived
exceptions. However, some exceptions thrown by I/O methods are not in the IOException
hierarchy. One such exception is the java.util.zip.DataFormatException. This
exception is thrown when invalid or corrupt data is found while data being read from a zip file is
being uncompressed. java.util.zip.DataFormatException has to be caught explicitly
because it is not in the IOException hierarchy.

Remember, exceptions in Java code are thrown when something unexpected happens.

List of exceptions
This figure shows a list of exceptions:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 6

Let's look at a few examples:

* EOFException signals when you reach an end-of-file unexpectedly.
* UnknownHostException signals that you are trying to connect to a remote host that

does not exist.
* ZipException signals that an error has occurred in reading or writing a zip file.

Typically, an IOException is caught in the try block, and the value of the toString()
method of the Object class in the IOException is printed out as a minimum. You should
handle the exception in a manner appropriate to the application.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 7

Section 3. java.io class overview

Introduction
This section introduces the basic organization of the java.io classes, consisting of:

* Input and output streams
* Readers and writers
* Data and object I/O streams

Input stream classes
In the InputStream class, bytes can be read from three different sources:

* An array of bytes
* A file
* A pipe

Sources, such as ByteArrayInputStream and FilterInputStream, subclass the
InputStream class. The subclasses under InflatorInputStream and
FilterInputStream are listed in the figure below.

InputStream methods
Various methods are included in the InputStream class.

* abstract int read() reads a single byte, an array, or a subarray of bytes. It returns
the bytes read, the number of bytes read, or -1 if end-of-file has been reached.

* read(), which takes the byte array, reads an array or a subarray of bytes and returns a
-1 if the end-of-file has been reached.

* skip(), which takes long, skips a specified number of bytes of input and returns the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 8

number of bytes actually skipped.
* available() returns the number of bytes that can be read without blocking. Both the

input and output can block threads until the byte is read or written.
* close() closes the input stream to free up system resources.

InputStream marking
Some, but not all, InputStreams support marking. Marking allows you to go back to a
marked place in the stream like a bookmark for future reference. Remember, not all
InputStreams support marking. To test if the stream supports the mark() and reset()
methods, use the boolean markSupported() method.

The mark() method, which takes an integer read_limit, marks the current position in
the input stream so that reset() can return to that position as long as no more than the
specified number of bytes have been read between the mark() and reset().

OutputStream classes
Bytes can be written to three different types of sinks:

* An array of bytes
* A file
* A pipe

The following figure shows OutputStream classes.

Let's look at some examples of OutputStream classes. Before sending an OutputStream
to its ultimate destination, you can filter it. For example, the BufferedOutputStream is a
subclass of the FilterOutputStream that stores values to be written in a buffer and writes
them out only when the buffer fills up.

CheckedOutputStream and DigestOutputStream are part of the
FilterOutputStream class. They calculate checksums or message digests on the output.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 9

DeflatorOutputStream writes to an OutputStream and creates a zip file. This class does
compression on the fly.

The PrintStream class is also a subclass of FilterOutputStream, which implements a
number of methods for displaying textual representation of Java primitive types. For example:

* println(long)
* println(int)
* println(float)
* println(char)

DataOutputStream implements the DataOutput interface. DataOutput defines the
methods required for streams that can write Java primitive data types in a
machine-independent binary format.

OutputStream methods
The OutputStream class provides several methods:

* The abstract void write() method takes an integer byte and writes a single byte.
* The void write() method takes a byte array and writes an array or subarray of bytes.
* The void flush() method forces any buffered output to be written.
* The void close() method closes the stream and frees up system resources.

It is important to close your output files because sometimes the buffers do not get completely
flushed and, as a consequence, are not complete.

DataInput and DataOutput
The DataInput and DataOutput classes define the methods required for streams that can
read Java primitive data types in a machine-independent binary format. They are implemented
by RandomAccessFile.

The ObjectInput interface extends the DataInput interface and adds methods for
deserializing objects and reading bytes and arrays of bytes. You can learn more about
serialization in Object serialization on page 49.

The ObjectOutputStream class creates a stream of objects that can be deserialized by the
ObjectInputStream class.

The ObjectOutput interface extends the DataOutput interface and adds methods for
serializing objects and writing bytes and arrays of bytes.

ObjectOutputStream is used to serialize objects, arrays, and other values to a stream.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 10

read() APIs:

int read()

read (char[] buffer,
int offset, int length)

What are Readers?
Readers are character-based input streams that
read Unicode characters.

* read() reads a single character and returns
a character read as an integer in the range
from 0 to 65535 or a -1 if the end of the
stream is reached.

* abstract read() reads characters into a
portion of an array (starting at offset up to
length number of characters) and returns the
number of characters read or -1 if the end of
the stream is reached.

Character input streams
Let's take a look at the different character input streams in the java.io package.

* Strings
* Character arrays
* Pipes

InputStreamReader is a character input stream that uses a byte input stream as its data
source and converts it into Unicode characters.

LineNumberReader, a subclass of BufferedReader, is a character input stream that keeps
track of the number of lines of text that have been read from it.

PushbackReader, a subclass of FilterReader, is a character input stream that uses
another input stream as its input source and adds the ability to push characters back onto the
stream.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 11

write() APIs:

void write(int character)

void write(char[] buffer,
int offset, int length)

What are Writers?
Writers are character-based output streams that
write character bytes and turn Unicode into bytes.
The base class includes these methods:

* The void write() method, which takes a
character and writes single character in 16
low-order bits

* The abstract void write() method,
which takes a character array and writes a
portion of an array of characters

Character output streams
Let's take a look at the different character output streams in the java.io package. There are
several branches of this inheritance tree you can explore. Like Readers, any of the branches
are available. Sinks for Writer output can be:

* Strings
* CharArray
* Pipes

OutputStreamWriter uses a byte output stream as the destination for its data.

BufferedWriter applies buffering to a character output stream, thus improving output
efficiency by combining many small write requests into a single large request.

FilterWriter is an abstract class that acts as a superclass for character output streams.
The streams filter the data written to them before writing it to some other character output
stream.

PrintWriter is a character output stream that implements print() and println()
methods that output textual representations of primitive values and objects.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 12

Section 4. Sources and sinks

Introduction
This section focuses on sources and sinks. Code samples help you visualize how some of
these classes work:

* Byte arrays
* Pipes
* Sequences
* Char arrays

Byte arrays
Let's head toward byte array territory. Are bytes going to come from a byte array? When an
object of a ByteArrayInputStream is created, it is passed an array. You can then read
bytes from that array as an InputStream.

ByteArrayOutputStream writes to a byte array. Bytes that are written to the output stream
are added to an internal array. You may be wondering how you get to the byte array. The
toByteArray() method returns to you the byte array at any point in time. Also, a
toString() method is available, which returns the byte array as a String. Therefore, the
byte array can be either a source or a sink.

Pipes in Java code
What is a pipe? A pipe is a means of communication between two threads of a Java program.
One thread writes to a piped output stream and another thread reads from a piped input
stream, which is connected to the piped output stream.

A pipe between two threads works like a pipe works between two processes in UNIX and
MS-DOS. In those operating systems, the output from one process can be piped to the input
of another process. For example, in MS-DOS, the command "dir | more" pipes the output of
the "dir" command to the input of the "more" program.

Pipe: Example code

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 13

Although pipes are usually used with threads, this example simply writes data to a pipe and
then reads it back later.

First, a PipedReader is constructed, then a PipedWriter that writes to that PipedReader.
The attributes are written to the pipe as strings with a vertical bar as a delimiter and a new-line
character placed at the end. The entire contents of the PipedReader are read as a String
and displayed.

We'll show later, in Tokenizing on page 54, how to use a StringTokenizer to break up a
string that is delimited into individual values.

Here is the example code:

import java.io.*;
import java.util.*;
class PipedExample

{
static BufferedReader system_in = new BufferedReader

(new InputStreamReader(System.in));

public static void main(String argv[])
{
PipedReader pr = new PipedReader();
PipedWriter pw = null;
try {

pw = new PipedWriter(pr);
}

catch (IOException e)
{

System.err.println(e);
}

// Create it {
// Read in three hotels
for (int i = 0; i < 3; i++)

{
Hotel a_hotel = new Hotel();
a_hotel.input(system_in);
a_hotel.write_to_pw(pw);
}

}

// Print it
{
char [] buffer = new char[1000];
int length = 0;
try

{
length = pr.read(buffer);
}

catch (IOException e)
{
System.err.println(e);
}

String output =new String(buffer, 0, length);
System.out.println("String is ");

System.out.println(output);
}

}
}

class Hotel

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 14

{
private String name;
private int rooms;
private String location;
boolean input(BufferedReader in)

{
try

{
System.out.println("Name: ");
name = in.readLine();
System.out.println("Rooms: ");
String temp = in.readLine();
rooms = to_int(temp);
System.out.println("Location: ");
location = in.readLine();

}
catch(IOException e)

{
System.err.println(e);
return false;
}

return true;
}

boolean write_to_pw(PipedWriter pw)
{
try

{
pw.write(name);
Integer i = new Integer(rooms);
pw.write(i.toString());
pw.write(location);
pw.write('backslash n');

// red font indicates that an actual backslash n (carriage return character)
// should be inserted in the code.

}
catch(IOException e)

{
System.err.println(e);
return false;
}

return true;
}

void debug_print()
{
System.out.println("Name :" + name +

": Rooms : " + rooms + ": at :" + location+ ":");
}

static int to_int(String value)
{
int i = 0;
try

{
i = Integer.parseInt(value);
}

catch(NumberFormatException e)
{}

return i;
}

}

Sequences
SequenceInputStream combines input streams and reads each input stream until the end.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 15

You can use SequenceInputStream to read two or three streams as if they were one
stream. You can concatenate streams from various sources, such as two or more files. To
construct a SequenceInputStream, you can specify either two streams or an Enumeration,
which represents a set of input streams. A program such as "cat" in UNIX would use
something like this.

SequenceInputStream reads from the first underlying input stream that it is given. When the
first one is exhausted, it opens the next input stream and reads that one. When that one is
exhausted, it reads the next, and so on.

The user does not know when the input is transferred from one stream to the next stream;
another byte is simply read. When all the input streams have been read, an EOF is received
from the entire input stream.

Char arrays
Now let's explore Readers and Writers. The read and write methods input and output a
character. Similar to ByteArrayOutputStream, a CharArrayWriter writes characters to a
char array. As a character is written to a CharArrayWriter object, it's added to an array of
characters whose size is automatically incremented.

At any point in time, we can get the character array that we have filled up. The
toCharArray() method returns an array of characters. A CharArrayReader uses a
character array as a source. Typically, the array is one that has been created with a
CharArrayWriter object. With an alternative constructor, you can specify not only the array,
but where to start in the array (an offset) and how many bytes to read (a length) before you
return an EOF character.

String: Example code
StringWriter works like CharArrayWriter. An internal StringBuffer object is the
destination of the characters written. Methods associated with the class are getBuffer(),
which returns the StringBuffer itself, and toString(), which returns the current value of
the string.

StringReader works like CharArrayReader. It uses a String object as the source of the
characters it returns. When a StringReader is created, you must specify the String that it
is read from.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 16

In this example, instead of writing to a pipe, we are going to write to a String. A
StringWriter object is constructed. After the output is complete, we obtain the contents with
toString() and print it out. This works like the previous example with PipedReader and
PipedWriter, except a String is used to contain the data.

Here is the example code:

import java.io.*;
import java.util.*;
class StringExample

{
static BufferedReader system_in = new BufferedReader

(new InputStreamReader (System.in));

public static void main(String argv[])
{
StringWriter sw = new StringWriter();

// Create it
{
// Read in three hotels
for (int i = 0; i < 3; i++)

{
Hotel a_hotel = new Hotel();
a_hotel.input(system_in);
a_hotel.write_to_string(sw);
}

}

// Print it
{

String output = sw.toString();
System.out.println("String is ");
System.out.println(output);
}

}
}

class Hotel
{
private String name;
private int rooms;
private String location;
boolean input(BufferedReader in)

{
try

{
System.out.println("Name: ");
name = in.readLine();
System.out.println("Rooms: ");
String temp = in.readLine();
rooms = to_int(temp);
System.out.println("Location: ");
location = in.readLine();

}
catch(IOException e)

{
System.err.println(e);
return false;
}

return true;
}

boolean write_to_string(StringWriter sw)
{
sw.write(name);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 17

Integer i = new Integer(rooms);
sw.write(i.toString());
sw.write(location);
sw.write('backslash n');

// red font indicates that an actual backslash n (carriage return character)
// should be inserted in the code.

return true;
}

void debug_print()
{
System.out.println("Name :" + na

": Rooms : " + rooms + ": at :" + location+ ":");
}

static int to_int(String value)
{
int i = 0;
try

{
i = Integer.parseInt(value);
}

catch(NumberFormatException e)
{}

return i;
}

}

InputStreamReader
InputStreamReader reads bytes from an InputStream and converts them to characters.
An InputStreamReader uses the default character encoding for the bytes, which is usually
ASCII. If the bytes that are being read are ASCII bytes, only a byte at a time is used to form a
character.

If the bytes are not ASCII, such as Chinese or another language, you want conversion to
Unicode as well. Specific encoding of the byte stream is necessary, and the
InputStreamReader converts it to Unicode. With an alternate constructor, you can specify
the encoding of the bytes on the InputStream.

OutputStreamReader
OutputStreamWriter is similar to InputStreamReader. The output characters, which are
in Unicode, are converted to the underlying format of the machine using an
OutputStreamWriter. The converted characters are written to an OutputStream. The
underlying default format is typically ASCII. However, you can state a specific encoding
scheme with an alternate constructor.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 18

Section 5. Files

Introduction
This section examines the File class, an important non-stream class that represents a file or
directory name in a system-independent way. The File class provides methods for:

* Listing directories
* Querying file attributes
* Renaming and deleting files

The File classes
The File class manipulates disk files and is used to construct FileInputStreams and
FileOutputStreams. Some constructors for the File I/O classes take as a parameter an
object of the File type. When we construct a File object, it represents that file on disk. When
we call its methods, we manipulate the underlying disk file.

The methods for File objects are:

* Constructors
* Test methods
* Action methods
* List methods

Constructors
Constructors allow Java code to specify the initial values of an object. So when you're using
constructors, initialization becomes part of the object creation step. Constructors for the File
class are:

* File(String filename)
* File(String pathname, String filename)
* File(File directory, String filename)

Test Methods
Public methods in the File class perform tests on the specified file. For example:

* The exists() method asks if the file actually exists.
* The canRead() method asks if the file is readable.
* The canWrite() method asks if the file can be written to.
* The isFile() method asks if it is a file (as opposed to a directory).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 19

* The isDirectory() method asks if it is a directory.

These methods are all of the boolean type, so they return a true or false.

Action methods
Public instance methods in the File class perform actions on the specified file. Let's take a
look at them:

* The renameTo() method renames a file or directory.
* The delete() method deletes a file or directory.
* The mkdir() method creates a directory specified by a File object.
* The mkdirs() method creates all the directories and necessary parents in a File

specification.

The return type of all these methods is boolean to indicate whether the action was successful.

List methods
The list() method returns the names of all entries in a directory that are not rejected by an
optional FilenameFilter. The list() method returns null if the File is a normal file, or
returns the names in the directory. The list() method can take a FilenameFilter filter
and return names in a directory satisfying the filter.

FilenameFilter interface
The FilenameFilter interface is used to filter filenames. You simply create a class that
implements the FilenameFilter. There are no standard FilenameFilter classes
implemented by the Java language, but objects that implement this interface are used by the
FileDialog class and the list() method in the File class.

The implemented accept() method determines if the filename in a directory should be
included in a file list. It is passed the directory and a file name. The method returns true if the
name should be included in the list.

File class: Example code
This example shows a file being tested for existence and a listing of the C:\Windows directory.
The listing is performed for all files and then for files matching a filter.

Here is the example code:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 20

import java.io.*;
import java.util.*;

class FileClassExample
{
public static void main(String argv[])

{
File a_file = new File("test.txt");
if (a_file.canRead())

System.out.println("Can read file");
if (a_file.isFile())

System.out.println("Is a file");

File a_directory = new File("C:backslash, backslashWindows");
// red font indicates that an actual backslash n (carriage return character)
// should be inserted in the code.

if (a_directory.isDirectory())
{
System.out.println("Is a directory");
String names[] = a_directory.list();
for (int i = 0; i < names.length; i++)

{
System.out.println("Filename is " + names[i]);
}

}
System.out.println("Parent is " + a_directory.getParent());

if (a_directory.isDirectory())
{
String names[] = a_directory.list(new MyFilter());
for (int i = 0; i < names.length; i++)

{
System.out.println("Filename is " + names[i]);
}

}

}
}

class MyFilter implements FilenameFilter
{
public boolean accept(File directory, String name)

{
if (name.charAt(0) = = 'A' || name.charAt(0) = = 'a')
return true;

}
}

FileInputStream and FileOutputStream
You can open a file for input or output.

FileInputStream reads from a disk file. You can pass that constructor either the name of a
file or a File object that represents the file. The FileInputStream object is a source of
data.

FileOutputStream writes to a disk file. You can pass it a File object or a name. The
FileOutputStream object is a sink for data.

For FileInputStream and FileOutputStream, you read and write bytes of data.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 21

File: Example code
This example works like the previous examples, except the output is to a file. We open the file
and write the data as bytes. After closing the file, we open it for reading, read all the bytes in
the file, and print them as a string.

Here is the example code:

import java.io.*;
import java.util.*;
class FileExample

{
static BufferedReader system_in = new BufferedReader

(new InputStreamReader(System.in));

public static void main(String argv[])
{

// Create it
{
try

{
FileOutputStream fos = new FileOutputStream("file.dat");
// Read in three hotels
for (int i = 0; i < 3; i++)

{
Hotel a_hotel = new Hotel();
a_hotel.input(system_in);
a_hotel.write_to_fos(fos);
}

fos.close();
}

catch(IOException e)
{

System.out.println(e);
}

}

// Now display it
{
byte [] buffer = null;
File a_file = new File("file.dat");
System.out.println("Length is " + a_file.length());
System.out.println(" Can read " + a_file.canRead());
try

{
FileInputStream fis = new FileInputStream(a_file);
int length = (int) a_file.length();
buffer = new byte[length];
fis.read(buffer);
fis.close();
}
catch(IOException e)
{
System.out.println(e);
}

String s = new String(buffer);
System.out.println("Buffer is " + s);
}

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 22

class Hotel
{
private String name;
private int rooms;
private String location;
boolean input(BufferedReader in)

{
try

{
System.out.println("Name: ");
name = in.readLine();

System.out.println("Rooms: ");
String temp = in.readLine();
rooms = to_int(temp);
System.out.println("Location: ");
location = in.readLine();
}

catch(IOException e)
{
System.err.println(e);
return false;
}

return true;
}

boolean write_to_fos(FileOutputStream fos)
{
try

{
fos.write(name.getBytes());
Integer i = new Integer(rooms);
fos.write(i.toString().getBytes());
fos.write(location.getBytes());
fos.write(' ');
}

catch (IOException e)
{
System.err.println(e);
return false;
}

return true;
}
void debug_print()
{
System.out.println("Name :" + name +

": Rooms : " + rooms + ": at :" + location+ ":");
}

static int to_int(String value)
{
int i = 0;
try

{
i = Integer.parseInt(value);
}

catch(NumberFormatException e)
{}

return i;
}

}

FileReader and FileWriter
FileReader is a convenience subclass of InputStreamReader. FileReader is useful
when you want to read characters from a file. The constructors of FileReader assume a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 23

default character encoding and buffer size. FileReader constructors use the functionality of
InputStreamReader to convert bytes using the local encoding to the Unicode characters
used by Java code.

If you want to read Unicode characters from a file that uses encoding other than the default,
you must construct your own InputStreamReader on FileInputStream.

FileWriter is a convenience subclass of OutputStreamWriter for writing character files.
Constructors for FileWriter also assume default encoding and buffer size. If you want to
use encoding other than the default, you must create your own OutputStreamWriter on
FileOutputStream.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 24

Section 6. Buffering

Introduction
This section introduces buffering and covers the following topics:

* BufferedInputStream and BufferedOutputStream
* BufferedReader and BufferedWriter
* New-line characters
* Buffering input and output streams

What is buffering?
Reading and writing to a file, getting data one byte at a time, is slow and painstaking. One way
to speed up the process is to put a wrapper around the file and put a buffer on it.

Our BufferedInputStream is going to put a buffer onto an InputStream that is specified
in the constructor. The actual data source is what you pass it as an InputStream. The
BufferedInputStream reads large chunks of data from the InputStream. Then you read
individual bytes or small chunks of bytes from the BufferedInputStream. The default buffer
size is 512 bytes, but there's a constructor that allows you to specify the buffer size if you want
something different.

To improve your efficiency, you read from the object of BufferedInputStream instead of
reading directly from the underlying InputStream. And you won't have to go back to the
operating system to read individual bytes.

BufferedOutputStream
BufferedOutputStream extends FilterOutputStream. When you apply it to an
OutputStream, you have a buffered output stream. Instead of going to the operating system
for every byte you write, you have the intermediary that provides a buffer and you write to that.

When that buffer is full, it is written all at once to the operating system. And it is written
automatically if the buffer gets full, if the stream is full, or if the flush() method is used. The
flush() method forces any output buffered by the stream to be written to its destination. So
for a BufferedOutputStream, you have tell it:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 25

* The output stream you are going to use
* The buffer size if you don't like the default

BufferedReader and BufferedWriter
A BufferedReader and a BufferedWriter act like BufferedOutputStream and
BufferedInputStream, except they deal with reading and writing characters. For a
BufferedReader, you specify an underlying Reader and optionally a buffer size. For a
BufferedWriter, you specify an underlying Writer and optionally a buffer size.

BufferedReader has one additional method, called readLine(), which allows us to simply
read an entire line of characters from the underlying Reader.

BufferedReader: Example code
If you've been using Java 1.0, the readLine() method was actually part of
DataInputStream. Now you should be using a BufferedReader for readLine(), even
though you can still do that with a DataInputStream.

A DataInputStream reads bytes but you are really reading characters when you read lines,
so using readLine() and the BufferedReader is the preferred way.

Here is the example code:

import java.io.*;
import java.util.*;
class TextReaderWriterExample

{
static BufferedReader system_in = new BufferedReader

(new InputStreamReader(System.in));

public static void main(String argv[])
{
// Create it
{
try

{
FileOutputStream fos = new FileOutputStream("text.dat");
PrintWriter pw = new PrintWriter(fos);

for (int i = 0; i < 3; i++)
{
Hotel a_hotel = new Hotel();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 26

a_hotel.input(system_in);
a_hotel.write_to_pw(pw);
}

pw.close();
}

catch(IOException e)
{

System.err.println(e);
}

}

// Now read it
{
try

{
FileReader fr = new FileReader("text.dat");

BufferedReader br = new BufferedReader(fr);
Hotel a_hotel = new Hotel();
while (a_hotel.read_from_br(br))

{
a_hotel.debug_print();
}

br.close();
}

catch(IOException e)
{
System.err.println(e);
}

}

}
}

class Hotel
{
private String name;
private int rooms;
private String location;
boolean input(BufferedReader in)

{
try

{
System.out.println("Name: ");
name = in.readLine();
System.out.println("Rooms: ");
String temp = in.readLine();
rooms = to_int(temp);
System.out.println("Location: ");
location = in.readLine();
}

catch(IOException e)
{
System.err.println(e);
return false;
}

return true;
}
boolean write_to_pw(PrintWriter pw)
{
pw.print(name);
pw.print('|');
pw.print(rooms);
pw.print('|');
pw.print(location);
pw.println();
return true;
}

boolean read_from_br(BufferedReader br)
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 27

try
{
String line = br.readLine();
if (line == null)

return false;
StringTokenizer st = new StringTokenizer(line, "|");
int count = st.countTokens();
if (count < 3)

return false;
name = st.nextToken();
String temp = st.nextToken();
rooms = to_int(temp);
location = st.nextToken();
}
catch(IOException e)
{
System.err.println(e);
return false;
}

return true;
}

void debug_print()
{
System.out.println("Name :" + name +

": Rooms : " + rooms + ": at :" + location+ ":");
}

static int to_int(String value)
{
int i = 0;
try

{
i = Integer.parseInt(value);
}

catch(NumberFormatException e)
{}

return i;
}

BufferedWriter
As we mentioned, a BufferedWriter allows us to write to a buffer. It applies buffering to a
character output stream, improving output efficiency by combining many small write requests
into a single larger request.

This class has an interesting additional method that makes Java code portable. Most of the
time, a new line is represented by a \n, but it may not be in all operating systems. Because of
this, the Java language adds a method called newLine().

Instead of outputting the character \n, you call newLine() and that outputs the appropriate
new-line character for the particular operating system that you are running on. In most cases,
this will be \n. The new-line character that is written is the one returned by passing
line.separator to the getProperty() method in the System class.

Expressing a new line

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 28

So you may ask, how does the Java language know how to express a new line for a particular
operating system?

The Java newLine() method asks the system, "What is your new-line character?" In the
Java language, this is called a system property. There is a System class with properties.
When you say, "What's your new-line character?" by passing line.separator to the
getProperty() method in the System class, you get an answer back. Depending on the
platform, the new-line character can be a new-line character, a carriage-return character, or
both.

The newLine() method, which is part of BufferedWriter, outputs the platform-dependent
line separator to the stream by using such a call.

PrintWriter() APIs:

PrintWriter out = new

PrintWriter (new BufferedWriter
(new FileWriter ("file.out"));

When to use BufferedWriter
You typically use a BufferedWriter for your
output. The only time you don't want to have a
buffered output is if you are writing out a prompt for
the user. The prompt would not come up until the
buffer was full, so for those sorts of things you do
not want to use buffering.

Buffering input and output streams: Example code
Here's an example of some code that shows the efficiency of buffering. Typically the read()
method on InputStreamReader or FileReader performs a read from the underlying
stream.

It might be more efficient to wrap a BufferedReader around these Readers. With buffering,
the conversion from byte to character is done with fewer method invocations than if the
InputStreamReader read() method is called directly.

Likewise, the write() method on an OutputStreamWriter or FileWriter performs a
write to the underlying stream. It can be more efficient to wrap a BufferedWriter around
these Writers.

Here is the example code:

BufferedReader in=
newBufferedReader(newinputStreamReader(System.in));

Writer out=
newBufferedWriter(new FileWriter("file.out");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 29

Section 7. Filtering

Introduction
This section introduces filtering and covers the following topics:

* PushbackInputStream
* PushbackReader
* LineNumberReader
* PrintWriter

What is filtering?
Use filtering to read or write a subset of data from a much larger input or output stream. The
filtering can be independent of the data format (for example, you need to count the number of
items in the list) or can be directly related to the data format (for example, you need to get all
data in a certain row of a table). You attach a filter stream to an input or output stream to filter
the data.

FilterInputStream and FilterOutputStream filter input and output bytes. When a
FilterInputStream is created, an InputStream is specified for it to filter. Similarly, you
specify an OutputStream to be filtered when you create a FilterOutputStream. They
wrap around existing InputStream or OutputStream to provide buffering, checksumming,
and so on. (We covered buffering in Buffering on page 25 .)

For character I/O, we have the abstract classes FilterWriter and FilterReader.
FilterReader acts as a superclass for character input streams that read data from some
other character input stream, filter it, and then return the filtered data when its own read()
methods are called. FilterWriter is for character output streams that filter data written to
them before writing it to some other character output stream.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 30

Pushback APIs:

PushbackInputStream(InputStream is)
void unread(int byte)
void unread(byte [] array)

PushbackReader(Reader in)
void unread(int character)
void unread(char [] buffer)

Pushback
You use PushbackInputStream to implement a
one-byte pushback buffer or a pushback buffer of
a specified length. It can be used to parse data.
When would you use this?

Sometimes when you read a byte from an
InputStream, it signifies the start of a new block
of data (for example, a new token). You might say,
"I have read this byte, but I really cannot deal with
it at this time. I want to push it back on the
InputStream. When I come back later to read the
InputStream, I want to get that same byte
again."

You push the byte back onto the stream with the
unread() method. When you read it again, you
will read the data you unread before. You can
unread() a single byte, an array of bytes, or an
array of bytes with an offset and a length.

If you are reading characters, you can push back a
character instead of a byte. You use
PushbackReader, which works just like the
PushbackInputStream.

Use the unread() methods to unread a single
character, an array of characters, or an array of
characters with an offset and a length.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 31

LineNumberReader APIs:

LineNumberReader(Reader r)

LineNumberReader(Reader r,
int buffer_size)

String readLine()

int getLineNumber()

void setLineNumber(int line_num)

LineNumberReader versus
LineNumberInputStream
A LineNumberReader is a character input stream
that keeps track of the number of lines of text that
have been read from it. A line is considered
terminated by a new line (\n), a carriage return
), or a carriage return followed by a linefeed. The
readLine() method returns all the characters in
the line without the terminator. The
getLineNumber() method returns the number of
lines that have been read.

If, for some reason, you want to reset the line
number, you can do that with setLineNumber()
and start the line count again from that point.

LineNumberInputStream also keeps track of
the number of lines of data that have been read,
but this class was deprecated in Java 1.1 because
it reads bytes rather than characters.
LineNumberReader was introduced, which reads
characters.

PrintStream versus PrintWriter
PrintStream is used to output Java data as text. It implements a number of methods for
displaying textual representation of Java primitive data types.

You've probably used a PrintStream object since your earliest Java programming days.
System.out is a PrintStream object. Probably everyone has used that for debugging! That
being said, PrintStream has been superseded by PrintWriter in Java 1.1. The
constructors of this class have been deprecated, but the class itself has not because it is still
used by the System.out and System.err standard output streams.

The methods in PrintStream and PrintWriter are very similar. PrintWriter does not
have methods for writing raw bytes, which PrintStream has.

Flushing
Both the PrintStream and PrintWriter classes employ flushing, which moves data from
the internal buffers to the output stream. Flushing is employed in two ways:

* Automatic flushing, which says when you call println you get flushing

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 32

* Without automatic flushing, which says flushing occurs only when the flush() method is
called

With the PrintStream class, if a new-line character was written, the output is flushed. With
the PrintWriter class, if you enable automatic flushing, the output is flushed only when a
println() method is invoked. The println() methods of PrintWriter use the System
property line.separator instead of the new-line (\n) character that PrintStream uses.

PrintWriter() APIs:

PrinterWriter (Writer w)

PrinterWriter (Writer w,
Boolean autoflush)

PrinterWriter (OutputStream os)

PrinterWriter (OutputStream os,
Boolean autoflush)

PrintWriter process
Let's look at the whole process.

You can give the PrintWriter constructor a
Writer or you can give it an OutputStream.
With the latter, an OutputStreamWriter is
transparently created, which performs the
conversion for characters to bytes using the default
character encoding.

You can choose one of the two flushing options:
with autoflush or without. You can print integers,
strings, and characters without a new line with the
print() methods and with a new line with the
println() methods.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 33

Section 8. Checksumming

Introduction
This section explores checksumming. Checksum is an interface that several different classes
implement. Let's take a look at what this section covers:

* What is a checksum and how does it work?
* What is a message digest and how does it work?
* Checksum versus message digest

Checksum methods:

long getValue()

void reset()

void update(byte [] array,
in offset, int length)

What is checksumming?
What's a checksum? The Checksum interface
defines the methods required to compute a
checksum on a set of data. The computation of a
checksum is such that if a single bit or two bits in
the data are changed, the value for the checksum
changes.

A checksum is computed based on the bytes of
data supplied to the update() method. The
update() method updates the current checksum
with an array of bytes by adding it to an ultimate
value.

Additionally, the current value of the checksum can
be obtained at any time with the getValue()
method. Use the reset() method to reset the
default value to its initial value, usually 0.

There are two types of checksums. The most
common is the CRC32, that's Cycle Redundancy
Check. Another type of checksum is the Adler32,
used for computing Adler32 checksum. The
Adler32 has a faster computation. It's nearly as
reliable as the CRC32.

CheckedInputStream and CheckedOutputStream
Let's create a Checksum object and use it to filter an input or output stream. When writing a
byte to the CheckedOutputStream, the checksum is automatically computed.

CheckedOutputStream calls the update() method in the Checksum object. Then the byte

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 34

goes out to its ultimate destination. At any point in time, you can ask the Checksum object for
the current checksum. You can write all your bytes out and add that checksum to what you
have written out.

* CheckedInputStream implements FilterInputStream and maintains a checksum
on every read.

* CheckedOutputStream implements FilterOutputStream and maintains a
checksum on every write.

Adding checksum
Use a checksum to make sure that data was transmitted properly. Construct a
CheckedOutputStream using an OutputStream and an object of the Checksum type.
CRC32 and Adler32 are the two types of checksums you can choose from or you can create
your own. At periodic times, say every 512 bytes, retrieve the current value of the checksum
and send those four bytes over the stream.

On the receiving end, you construct a CheckedInputStream using an InputStream and an
object of the same type you used for the CheckedOutputStream. After reading 512 bytes,
retrieve the current value of the checksum and compare it to the next four bytes read from the
stream.

CheckedOutputStream: Example code
Let's look at some sample code. We are going to open a FileOutputStream, Temp1.tmp.
An object of the CRC32 type is constructed, and that is used to create a
CheckedOutputStream. When writing to the file output a byte at a time, the checksum is
computed. At the end, the Checksum object is then asked the current value of the checksum.

Checksumming only gives you a 32-bit value. If a single bit changes, you will notice it, but if
lots of bits change, you could possibly get the same checksum.

Here is the example code:

FileOutputputStream os =
new FileOutputStream("Temp1.tmp");

CRC32 crc32 = new CRC32();
CheckedOutputStream cos =

new CheckedOutputStream(os, crc32);
cos.write(1);
cos.write(2);
long crc = crc32.getValue();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 35

Digesting methods:

static MessageDigest
getInstance(String algorithm)

void update (byte [] array)

byte [] digest()

Digesting
Let's create something larger than a Checksum. A
larger set of bits that represents a sequence of
bytes is a message digest. A message digest
works like a checksum. It is a one-way hash that
takes a variable amount of data and creates a
fixed-length hash value. This is called a digital
fingerprint.

If somebody makes changes in the original
sequence of things and manipulates the contents,
the message digest is not going to look the same.
This is how we implement security. There is a
possibility, but it is very small, that if the message
were changed, you would get the same message
digest.

A sequence of bytes is transformed into a digest.
In the MessageDigest class, we have a static
function called getInstance. getInstance is
given the name of the MessageDigest that we
want to be using. There are two strings that you
can pass it: SHA1 and MD5. Their details are in
algorithmic books.

Additionally, the update() methods update the
digest with the byte or array of bytes. The
digest() method computes and returns the value
of digest. Digest is then reset.

DigestInputStream and DigestOutputStream
We have two equivalent methods for digest: the DigestInputStream and
DigestOutputStream. Give the DigestInputStream an input stream and the
MessageDigest that will be doing its calculations. You can turn digesting on or off for a
stream. You may want to input or output some data, but not calculate it as part of the
MessageDigest.

The read() and write() methods update the MessageDigest in DigestInputStream
and DigestOutputStream respectively.

MessageDigest: Example code
The first line creates a FileOutputStream going to the file temp.tmp. Create a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 36

MessageDigest object. As you can see in the code md =
MessageDigest.getInstance(), you're passing it the name of the message digesting
algorithm that you want to use. It returns back to you an object of a MessageDigest type. If
the string that you passed it is not the name of a digest, it throws a
NoSuchAlgorithmException.

After you have the MessageDigest, use that to construct a DigestOutputStream. Bytes
are written out to the underlying OutputStream and added to the digest. You can get
MessageDigest by calling md.digest(). It returns the digest or an array of bytes. Now you
can store that away or send it along.

Here is the example code:

FileOutputStream os = new FileOutputStream("Temp.tmp");
MessageDigest md = null;
try

{
md = MessageDigest.getInstance("SHA");
}

catch(NoSuchAlgorithmException e)
{
System.out.println(e);
}

DigestOutputStream dos = new DigestOutputStream(os, md);
dos.write(1);
dos.write(2);
byte [] digest = md.digest();

Checksum versus MessageDigest
Remember, a checksum is small. A checksum is typically used to verify the integrity of data
over a noisy transmission line or to verify whether a file contains the same data. A message
digest, on the other hand, is much larger. It is used more for security to insure that a message
has not been tampered with.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 37

Section 9. Inflating and deflating

Introduction
This section explores inflating and deflating in Java code. These terms have the same
meaning as compressing and uncompressing. Some of the key points in this section are:

* DeflaterInputStream and DeflaterOutputStream
* ZipInputStream and ZipOutputStream
* ZipFile

Deflater
Let's move into deflating territory. Deflating writes a compressed representation of bytes to an
output stream. Inflating takes those compressed bytes from an input stream, reads them in,
and automatically uncompresses them. This process is similar to zipping and unzipping on the
fly.

The algorithm of a Deflater is applied to the bytes output to a stream, and the corresponding
algorithm of an Inflater is applied to the bytes input from a stream. The default Deflater
and Inflater use the ZLIB compression library for compression and decompression. An
alternate constructor allows for GZIP and PKZIP compression.

DeflaterOutputStream
Let's journey into the output stream. You can simply create a DeflaterOutputStream with
an output sink. As we write to the DeflaterOutputStream, the bytes are compressed using
the Deflater algorithm and only the compressed bytes are sent to the underlying output
stream. The default constructor for DeflaterOutputStream uses ZLIB compression with a
default-sized buffer. With the other constructors, you can specify a different Deflater and a
different-sized buffer.

InflaterInputStream

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 38

On the receiving side, an InflaterInputStream is implemented. When we construct it, we
specify an input source. It uncompresses the bytes from that source as you go along. Once
again, you can specify your own Inflater if you use a different compression scheme.

If you decide to use your own Deflater or Inflater instead of the default, then it is up to
you to make sure the Inflater and Deflater match and understand each other.

GZIP input and output stream
A GZIPOutputStream outputs the compressed bytes to the underlying stream in GZIP
format. It is derived from the DeflaterOutputStream. The constructor is supplied an
OutputStream. Correspondingly, a GZIPInputStream inputs from a source that is in GZIP
format. It is derived from InflaterInputStream, and the constructor is supplied an
InputStream.

Use GZIPInputStream and GZIPOutputStream on a single stream, which could be a file.
However, it can be more efficient than a zip stream because it does not require creating a
directory of zipped files.

ZipFile: Example code
Let's look into the ZipFile and ZipEntry classes. These are not actually in the I/O hierarchy
but they are good to know about because lots of people have zip files.

The ZipFile class allows us to read a zip file. A zip file consists of two parts: a list of entries
of what's been zipped and the data itself. You read the set of entries using entries() and
pick out a particular one to unzip. A ZipEntry object represents the file you have selected to
uncompress. For that particular ZipEntry, you can obtain an InputStream using
getInputStream() which, when read, returns the uncompressed data. The Java library is
kept in a jar file, which is in zip file format. You can use a ZipFile to read a jar file if you
want.

Here is the example code:

import java.util.zip.*;
import java.util.*;
import java.io.*;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 39

class ZipFileExample
{
public static void main(String argv[])

{
try

{
ZipFile zf = new ZipFile("test.zip");
// Enumerate the entries
Enumeration zip_entries = zf.entries();
String last_name = null;
while(zip_entries.hasMoreElements())

{
ZipEntry ze = (ZipEntry) zip_entries.nextElement();
System.out.println("Entry " + ze.getName());
last_name = ze.getName();
}

// Lets unpack the last one as an example
// Its name is in last_name
ZipEntry ze = zf.getEntry(last_name);
if (ze == null)

System.out.println("Cannot find entry");
else

{
BufferedReader r =

new BufferedReader(new InputStreamReader(
zf.getInputStream(ze)));

long size = ze.getSize();
if (size > 0)

{
System.out.println("File is " + size);

String line = r.readLine();
if (line != null)

System.out.println("First line is " + line);
}

r.close();
}

}
catch(IOException e)

{
System.out.println(e);
}

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 40

ZipInputStream methods:

getNextEntry()

closeEntry()

read()

ZipInputStream
ZipInputStream is our next stop. You can read
a zip file in a stream using this class. You get the
first entry in the directory of what has been zipped.
You can then read the data for the first entry, which
is automatically unzipped. Then you get the next
entry and unzip it, and so forth. ZipInputStream
extends InflaterInputStream. The methods
include getting the next entry from the table and
closing off the entry. Closing the entry allows for
the next entry to be read without having to finish
reading the data for the current entry. The read()
method in ZIPInputStream will return -1 when
the last of the entries is read.

ZipInputStream: Example code
The code below is an example of unzipping a file. You are going to open test.zip, which is
our zip file. That file is the source of a ZipInputStream. So zis is pointing to test.zip.
The getNextEntry() method initially returns the first entry from the zip file table. A reference
to that entry is now available.

If the entry is null, it means that end-of-file has been reached. Reading from the zip file from
this point, data that is read corresponds to that entry and is automatically uncompressed. In
this case, a DataInputStream has been wrappered and used to read it. The dis object is
just going to read from the corresponding place in the zip file and close it. The next entry will
open the file and start reading from the zip file again, reading the next entry.

Here is the example code:

import java.util.zip.*;
import java.io.*;
class ZipInputStreamExample

{
public static void main(String argv[])

{
try

{
FileInputStream fis = new FileInputStream("test.zip");
ZipInputStream zis = new ZipInputStream(fis);
ZipEntry ze;
// Get the first entry
ze = zis.getNextEntry();
if (ze == null)

System.out.println("End entries");
else

{
// Use it as stream or reader

DataInputStream dis = new DataInputStream(zis);
int i = dis.readInt();

System.out.println("File contains " + i);
zis.closeEntry();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 41

}
zis.close();
}

catch(Exception e)
{
System.out.println(e);
}

}

ZipOutputStream methods:

putNextEntry()

closeEntry()

write()

ZipOutputStream
A ZipInputStream reads a zip-formatted
stream; a ZipOutputStream writes zip-formatted
streams. This class allows us to create a zip file.
ZipOutputStream extends
DeflaterOutputStream. One method in
ZipOutputStream is putNextEntry(), which
puts the next entry into the list of compressed files.
You need to create a zip entry for each file you are
compressing.

The putNextEntry() method writes an entry
and positions the stream for data output. You can
start writing the next set of compressed data.
Similar to the close() methods in other classes,
the closeEntry() method closes a finished
entry; you are ready to create the next one.

ZipOutputStream: Example code
In the code below, an output file is constructed called test.zip. A ZipOutputStream is
then constructed using that file. We want to compresss the file test.txt onto the zip file, so
we construct a ZipEntry using that name.

test.txt is going to show up in the directory for the zip file. At this point, anything written to
the ZipOutputStream is now data for that entry and is written in compressed form.

A DataOutputStream is wrappered around zos. Then we write an integer, and the entry is
closed. At this point, another ZipEntry could now be created and written out. You could use
WinZip to decompress this file or use the preceding example to read the file.

Here is the example code:

import java.util.zip.*;
import java.io.*;
class ZipOutputStreamExample

{
public static void main(String argv[])

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 42

{
try

{
FileOutputStream fos = new FileOutputStream("test.zip");
ZipOutputStream zos = new ZipOutputStream(fos);
ZipEntry ze = new ZipEntry("test.txt");
zos.putNextEntry(ze);
// Use it as output
DataOutputStream dos = new DataOutputStream(zos);
dos.writeInt (1);
zos.closeEntry();
// Put another entry or close it
zos.close();
}

catch(Exception e)
{
System.out.println(e);
}

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 43

Section 10. Data I/O

Introduction
This section introduces data input and output:

* DataInputStream
* DataOutputStream

What is Data I/O?
Several classes implement the DataInput and DataOutput interfaces. Let's talk about how
they work.

The primitive data types, such as ints, may be represented differently on the various
platforms that Java code runs on. For example, an int may be represented with the most
significant byte first (called Big Endian), as on an IBM mainframe, or with the least significant
byte first (called Little Endian), as on an IBM PC. If you wrote out an int in binary form with a
C program on one platform and tried to read it in on the other platform, the values would not
agree.

That's where DataInput and DataOutput come in. Now you can take a primitive, like an
int, and write it out. It is written in a platform-independent form. You can read that int back
in on any other Java virtual machine and, regardless of where it was produced, it will be turned
back into an int of the proper value.

All the primitives, such as doubles, ints, shorts, longs, and so forth, can be written in a
system platform-independent manner using the methods in DataOutput. Likewise, they can
be read using the methods in DataInput.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 44

Unicode methods:

void writeUTF(String s)

String readUTF()

Unicode Text Format
A String object is written in Unicode Text Format
or UTF for short. Strings are composed of
two-byte Unicode characters. UTF is a method for
compressing the most common Unicode values. If
the String contains just ASCII characters, the
values between 1 and 127 are written as a single
byte. Values 128 - 2047 are written as two bytes.
For some uncommon Unicode values, three bytes
are used to represent their value. This expansion
of some values is much rarer than the compression
of ASCII values, so using UTF to represent a
String is a net gain.

DataInputStream and DataOutputStream: Example code
Two classes, DataInputStream and DataOutputStream, implement DataInput and
DataOutput. Their methods include implementations for readInt(), writeInt(), and the
other methods in the interfaces. You wrapper a DataInputStream around an
. When readInt() is called, four bytes are read from the underlying stream and the resulting
int is returned. Correspondingly, you wrapper a DataOutputStream around an
OutputStream.

The code example below shows a DataOutputStream that uses a FileOutputStream as
its underlying stream. The file is opened using a FileInputStream, which has a
DataInputStream wrappered around it. The data.dat could be written on an IBM
mainframe and read back on an IBM PC.

Here is the example code:

import java.io.*;
class DataInputOutputExample

{

static BufferedReader system_in = new BufferedReader
(new InputStreamReader(System.in));

public static void main(String argv[])
{

// Create it
{
try

{
FileOutputStream fos = new FileOutputStream("data.dat");
DataOutputStream dos = new DataOutputStream(fos);
// Read in three hotels
for (int i = 0; i < 3; i++)

{
Hotel a_hotel = new Hotel();
a_hotel.input(system_in);
a_hotel.write_to_dos(dos);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 45

}
dos.close();

}
catch(IOException e)

{
System.err.println(e);
}

}

// Now read it
{
try

{
FileInputStream fis = new FileInputStream("data.dat");
DataInputStream dis = new DataInputStream(fis);
Hotel a_hotel = new Hotel();
while (a_hotel.read_from_dis(dis))

{
a_hotel.debug_print();
}

dis.close();
}

catch(IOException e)
{
System.err.println(e);
}

}

}
}

class Hotel
{
private String name;
private int rooms;
private String location;
boolean input(BufferedReader in)

{
try

{
System.out.println("Name: ");
name = in.readLine();
System.out.println("Rooms: ");
String temp = in.readLine();
rooms = to_int(temp);
System.out.println("Location: ");
location = in.readLine();
}

catch(IOException e)
{
System.err.println(e);

return false;
}

return true;
}

boolean write_to_dos(DataOutputStream dos)
{
try

{
dos.writeUTF(name);
dos.writeInt(rooms);
dos.writeUTF(location);
}

catch(IOException e)
{
System.err.println(e);
return false;
}

return true;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 46

}
boolean read_from_dis(DataInputStream dis)

{
try

{
name = dis.readUTF();

rooms = dis.readInt();
location = dis.readUTF();
}

catch(EOFException e)
{
return false;
}

catch(IOException e)
{
System.err.println(e);
return false;
}

return true;
}

void debug_print()
{
System.out.println("Name :" + name +

": Rooms : " + rooms + ": at :" + location+ ":");
}

static int to_int(String value)
{
int i = 0;
try

{
i = Integer.parseInt(value);
}

catch(NumberFormatException e)
{}

return i;
}

}

RandomAccessFile: Example code
RandomAccessFile implements both DataInput and DataOutput. You construct
RandomAccessFile with a file name. Then you can use both read and write methods, as
readInt() and writeInt(), on a RandomAccessFile.

Random access means you can position the next read or write to occur at a particular byte
position within the file. You can obtain the current position with getFilePointer(). Later on,
you can go back to that same position by passing it to seek().

The example code below shows writing three ints to a file. The file position before the second
write is stored in the pointer. After writing the next two ints, the position is restored to that
pointer. The readInt() returns the value 15.

Here is the example code:

import java.io.*;

class RandomAccessFileExample
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 47

public static void main(String argv[])
{
try

{
RandomAccessFile raf =

new RandomAccessFile("random.dat", "rw");
raf.writeInt(12);
long pointer = raf.getFilePointer();
raf.writeInt(15);
raf.writeInt(16);
// Now read back the 2nd one
raf.seek(pointer);
int i = raf.readInt();
System.out.println("Read " + i);
}

catch (IOException e)
{
System.out.println(e);
}

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 48

Section 11. Object serialization

Introduction
This section introduces object serialization and covers the following topics:

* What is object serialization and how does it work?
* Features of a serializable class
* Externalizable

What is object serialization?
Object serialization lets you take all the data attributes, write them out as an object, and read
them back in as an object. Object serialization is quite useful when you need to use object
persistence. GUI builders of JavaBeans use serialization to store the attributes of a JavaBean
so that it can be accessed or modified by others.

You could actually use DataOuputStreams and DataInputStreams to write each attribute
out individually, and then you could read them back in on the other end. But you want to deal
with the entire object, not its individual attributes. You want to be able to simply store away an
object or send it over a stream of objects. Object serialization takes the data members of an
object and stores them away or retrieves them, or sends them over a stream.

You have the ObjectInput interface, which extends the DataInput interface, and
ObjectOutput interface, which extends DataOutput, so you are still going to have the
methods readInt() and writeInt() and so forth. ObjectInputStream, which
implements ObjectInput, is going to read what ObjectOutputStream produces.

How object serialization works
If you want to use the ObjectInput and ObjectOutput interface, the class must be
serializable. How is a class serializable?

The serializable characteristic is assigned when a class is first defined. Your class must
implement the Serializable interface. This marker interface says to the Java virtual
machine that you want to allow this class to be serializable. You don't have to add any
additional methods or anything.

There are a couple of other features of a serializable class. First, it has to have a zero
parameter constructor. When you read the object, it needs to be able to construct and allocate
memory for an object, and it is going to fill in that memory from what it has read from the serial
stream.

The static fields, or class attributes, are not saved because they are not part of an object. If

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 49

you do not want a data attribute to be serialized, you can make it transient. That would save on
the amount of storage or transmission required to transmit an object.

Using ObjectOutputStream: Example code
Let's see how this works.

A FileObjectStream is created using object.dat, which is going to be used to store
away objects.

You create ObjectOutputStream using that file. Any other OutputStream, such as that
returned by getOutputStream() for a socket, could have been used. And now you have
YourClass. This is whatever class you have made up. You create an object of that class. If
you want to store that away on the ObjectOutputStream, you simply call writeObject()
and pass it the object. That's it!

The class could have 20 attributes in it or 50 attributes; it doesn't matter. All of those attributes
are automatically stored away. The class information is stored automatically.

The Java code knows what's in a class and knows the attributes in a class. In fact, the first
time the code stores such an object, it stores a couple of markers about what the class is.
Calling writeObject() is all that is necessary to store an object.

Here is the example code:

FileOutputSream fos = new FileOutputStream("object.dat");
ObjectOutputStream oos = new ObjectOutputStream(fos);
YourClass yc = new YourClass();
oos.writeObject(yc);

Reading an object from a file: Example code
Now let's read that object from the file. Create a FileInputStream using the file
object.dat that was written in the previous panel. That file is used as the source for an
ObjectInputStream. You want to read the object, so we call readObject() and the object
is read off the file. The attributes of the YourClass object are filled in with the data we have
stored away.

The readObject() method returns a reference to an Object class object. You wrote out a
YourClass object, so you have to cast the reference to YourClass. You have to keep track
of the order in which you wrote things out. If you stored away a YourClass object, and then
you stored away an AnotherClass object, you have to read them back in the same
sequence.

Typically, you would write things out in a sequence, and then you would read them back in the
same sequence. However, there are some alternative approaches, discussed in the next

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 50

panel.

Here is the example code:

FileInputStream fis = new FileInputStream ("object.dat");
ObjectInputStream ois = new ObjectInputStream (fis);
YourClass yc;
yc = (YourClass) ois.readObject();

Alternative ways to read back: Example code
If you do not know the order in which the objects were stored, you can test for the class of the
object that was returned by readObject() using instanceof, or you can use the
getClass() method to determine the class of the object. Then you can assign the returned
value to the appropriate object using a cast. You can do more elaborate reading and writing as
you read back an object, test what it is, and then do an appropriate cast.

That's all you have to do to store away an object in a file. Now, you want to transmit it over a
socket. All the values in that object are transmitted over a socket if you used the appropriate
input and output streams from the socket object. Remote method invocation (RMI) passes
objects using object serialization over a socket.

Here is the example code:

FileInputStream fis = FileinputStream("object.dat");
ObjectInputStream ois = new ObjectInputStream(fis);
Object object;
object = ois.readObject();
if (object instanceof YourClass)

{
YourClass yc = object;
// Perform operations with yc;
}

else if (object instance of AnotherClass)
{
AnotherClass ac = object;
// Perform operations with ac
}

Add serializable: Example code
We said before that if the base class implements Serializable, all you have to do is mark
your derived class Serializable. But what if your base class doesn't implement it? You can
still implement Serializable in your derived class.

If the base class does not implement Serializable but you want to use serialization, you
simply have to get all the attributes out of the base class and store them away. Your additional
attributes are stored automatically, but the base class attributes are not. You have to use
get() methods, and if the base class does not have gets and sets for its attributes, then you
won't be able to serialize the base class. You need to define your own readObject() and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 51

writeObject() methods, which we describe next.

Here is the example code;

class ABaseClass
{
private int value;
int getValue()

{
return value;
}

void setValue(int value)
{
this.value = value;
}

}

class YourClass extends ABaseClass implements Serializable
{
//..
}

Custom serialization: Example code
You may want to use custom serialization if the base class does not support serialization and
for some reason you don't like the default customization. Define your own readObject() and
writeObject() methods. The fields or attributes are no longer automatically serialized if you
define these methods. You have to take care of saving and restoring each of your attributes.

To store away the non-transient and non-static attributes for each object, call
defaultWriteObject(). The attributes can be loaded with defaultReadObject(). You
can store and load additional values in your method, for instance, ones that you have declared
to be transient. If the class you derived from is serializable, then your data for the super class
is already taken care of. All you have to do then is add your own custom code.

The example code below shows how readObject() and writeObject() are coded. Note
that ABaseClass does not implement Serializable, but it does have getValue() and
setValue().

Here is the example code:

class ABaseClass
{
private int value;
int getValue()

{
return value;
}

void setValue(int value)
{
this.value = value;
}

}

class YourClass extends ABaseClass implements Serializable

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 52

{
int another;
private void readObject(ObjectInputStream ois)

throws IOException, ClassNotFoundException
{
ois.defaultReadObject();
setValue(ois.readInt());
}

private void writeObject(ObjectOutputStream oos)
throws IOException
{
oos.defaultWriteObject();
oos.writeInt(getValue());
}

}

Externalizable: Example code
As you become more experienced with Java programming, you may decide you would like to
customize the way things are done. You want to implement your own complete way of doing
data persistence.

If you want to add your own custom code for storing away base class or superclass data, you
must implement Externalizable. Externalizable has two methods: readExternal()
and writeExternal(). In this case, you are fully responsible for everything.

Here is the example code:

private void readExternal
(ObjectInputStream ois)
throws IOException, ClassNotFoundException

private void writeExternal(
ObjectOutputStream os)
throws IOException

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 53

Section 12. Tokenizing

Introduction
This last stop on our journey introduces string tokenizing and covers the following topics:

* StringTokenizer
* StreamTokenizer

StringTokenizer APIs:

StringTokenizer(String string_to_tokenize,
String delimiters)

boolean hasMoreTokens()
String nextToken()

String nextToken(String new_delimiters)

int countTokens()

Using StringTokenizer
Remember earlier when you wrote lines that
contain data items separated by delimiters? The
delimiters, which separate the data items (or
tokens, as they are called), might be commas or
semicolons or tab characters.

When you read each line back in, you need to
separate the tokens. Each line might represent a
name and address, such as in a mail-merge file.
We want to break that line up into its individual
parts, such as name, street, city, state, and zip.

The way to do that is to use the
StringTokenizer class. Although this is not part
of the I/O hierarchy, we'll cover it here because it is
useful in reading delimited streams. Here's how
that class works.

Constructing a StringTokenizer object
You construct an object of StringTokenizer, giving it the string you want to break up and
what the delimiters are. That is, you tell it what characters are going to be used to break up the
tokens in the string. After we have constructed an object of that type, we have a couple of
things we can ask it:

* How many tokens are in this string?
* Have I used up all my tokens in this string?
* Give me the next token in the string.

StringTokenizer will break up the string and return to you as a String the characters up
to the next delimiter. Its methods will throw a NoSuchElementException if there are no
more tokens. Because this exception is derived from RuntimeException so that it is not
declared with a throws clause, you do not need to catch it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 54

One more thing: you can switch delimiters for each token. In other words, even though you
have created a StringTokenizer object that is looking for particular delimiters, you can say,
"For this next token, change the delimiter."

The example on the next panel illustrates this process.

StringTokenizer: Example code
Look at the code below. Notice our string has a vertical bar and a question mark. Those are
our delimiters. We are going to create a new StringTokenizer, and we are going to pass it
the string abc (bar) def (question mark) ghi. We are going to use as our delimiters
a bar and a question mark.

The StringTokenizer hasMoreTokens() returns true if there are still more tokens. If it is
true, we are going to call nextToken(). This returns a String, and s will have the value
abc in it the first time around the while loop.

We come around the loop a second time and hasMoreTokens() is still true. Now when we
get the next token, def is the value of the string that is returned.

Go around the loop a third time and hasMoreTokens() is still true; ghi is returned.

Now go around the loop one more time and hasMoreTokens() is false. At this point, we
drop out of the loop. So we have broken up the string without too much effort.

Here is the example code:

import java.io.*;
import java.util.*;
public class StringTokenizerExample

{
public static void main(String args[])

{
String line = \"abc|def?ghi\";
StringTokenizer st = new StringTokenizer(line, \"|?\");
while (st.hasMoreTokens())

{
String s = st.nextToken();
System.out.println(\"Token is \" + s);
}

}
}

StreamTokenizer
You can parse an entire input stream. Unlike the StringTokenizer, which parses a String,
the StreamTokenizer reads from a Reader and breaks the stream into tokens. The parsing
process is controlled by syntax tables and flags.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 55

Each token that is parsed is placed in a category. The categories include identifiers, numbers,
quoted strings, and various comment styles. The parsing that is performed is suitable for
breaking a Java, C, or C++ source file into its tokens. StreamTokenizer is not in the I/O
hierarchy, but because it is used with streams, we cover it here.

The StreamTokenizer recognizes characters in the range from u0000 through u00FF. Each
character value can have up to five possible attributes. The attributes are white space,
alphabetic, numeric, string quote, and comment character.

* A character that is white space is used to separate tokens.
* An alphabetic character is part of an identifier.
* A numeric character can be part of an identifier or a number.
* A string quote character surrounds a quoted string.
* A comment character precedes or surrounds a comment.
* A character that does not have any of these attributes is an ordinary character. When an

ordinary character is encountered, it is treated as a single character token.

Flags can be set to alter the parsing. Line terminators can either be tokens or white space
separating tokens. C-style and C++-style comments can be recognized and skipped.
Identifiers are converted to lower case or left as is.

Use of StreamTokenizer
To use a StreamTokenizer, you construct it with the underlying Reader. Then you set up
the syntax tables and flags. Next, you loop on the tokens, calling nextToken() until it returns
TT_EOF.

The nextToken() method parses the next token.The type is both returned by the method
and also placed in the type field. The value of the token is placed in the sval field (String
value) if the token is a word or in the nval field (numeric value) if the token is a number.

The token type can be either a character or a value, which represents the type of the token. If
a token consists of a single character, the value of the type is the character value. If the token
is a quoted string, the value is the value of the quote character. Otherwise it is one of the
following:

* TT_EOF means the end of the stream has been read.
* TT_EOL means the end of the line has been read (if end of line characters are treated as

tokens).
* TT_NUMBER means that a number token has been read.
* TT_WORD means that a word token has been read.

Methods of StreamTokenizer
There are many methods in StreamTokenizer to set up the syntax tables. We'll only

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 56

mention two here. The first is resetSyntax(), which sets all characters to ordinary. The
second is wordChars(), which gives a set of characters the alphabetic attribute.

StreamTokenizer: Example code
This example is a simple one that shows the use of the StreamTokenizer. It breaks a file
into words consisting of lower- or upper-case letters. When a word is found, nextToken()
returns TT_EOF.

If an ordinary character is found (in this case, anything not set as alphabetic), nextToken()
returns the value of that character.

import java.io.*;
import java.util.*;
public class StreamTokenizerExample

{
public static void main(String args[])

{
try

{
FileReader fr = new FileReader(t.txt);
BufferedReader br = new BufferedReader(fr);
StreamTokenizer st = new StreamTokenizer(br);
st.resetSyntax();
st.wordChars(\'A\', \'Z\');
st.wordChars(\'a\', \'z\');
int type;
while ((type = st.nextToken()) != StreamTokenizer.TT_EOF)

{
if (type == StreamTokenizer.TT_WORD)

System.out.println(st.sval);
}

}
catch (IOException e)

{
System.out.println(e);
}

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 57

Section 13. Lab

Setup
The purpose of this lab is to give you a chance to use the JDK on some real code.

If you worked through the topics, you're familiar with the code samples. The code was
developed in Java. You can download the code samples and the JDK, then make your own
modifications to the code. Then you'll recompile and run it. Let's begin the setup now. Make
sure you are online so you can download the Java Development Kit. You may select any JDK,
but we suggest selecting Java Development Kit 1.1 Platform (JDK 1.1). JDK 1.1 runs more
programs than JDK 1.02 but is much smaller than JDK 1.2. Follow the instructions in the
package to install the JDK.

In the gray scrolling text box, scroll down until you see the hypertext link to download the JDK.
When you've finished downloading the JDK, come back to this part of the course to get the
sample code and a database associated with the code.

Download the JDK .

If you already have the JDK, click Next to continue.

Download Samples
Now let's download the samples . Move the archive file to your computer hard drive into a
directory such as Java IO Lab. From your computer operating system, unpack the zip file into
the Java IO Lab directory. In the directory you will see code sample files.

There are no special instructions with this lab. You may change the code any way you wish,
then compile and run it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 58

http://java.sun.com/products/OV_jdkProduct.html
http://java.sun.com/products/OV_jdkProduct.html
http://java.sun.com/products/OV_jdkProduct.html
javaio-code.zip
javaio-code.zip
javaio-code.zip

Section 14. Wrapup

In summary
This rounds out our tour of the java.io package, a core API in the Java platform. We've
covered a lot of ground in this tutorial. You've learned that input and ouput in the Java
language is organized around the concept of streams, and that all input is done through
subclasses of InputStream and that all output is done through subclasses of
OutputStream. (Well, that's not quite true. You also learned about the one exception, class
RandomAccessFile, which handles files that allow random access and perhaps intermixed
reading and writing of the file.)

We've covered all the basics from buffering and filtering to checksumming, data compression,
and serializing objects. We encourage you to reinforce this knowledge by working with the
sample code until you feel comfortable.

Resources
Learn more about the Java programming language and Java I/O from these resources:

* The Java Tutorial: Essential Java Classes has an excellent lesson on I/O.
* " Java I/O " by Elliotte Rusty Harrold (O'Reilly, 1999) is the quintessential guide to

streaming in the Java language.
* Popular Java technology writer Todd Sundsted wrote an interesting article on Readers

and Writers: Use the two "R"s of Java 1.1 -- Readers and Writers .
* Review the java.io 1.1 package specification .
* You may also want to review the I/O specification for the Java 2 platform .
* If you are relatively new to Java programming, the Java language essentials tutorial

(developerWorks, November 2000) is an excellent resource.

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics, and
two PDF files. Our ability to generate multiple text and binary formats from a single source file
illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java I/O Page 59

http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://www.amazon.com/exec/obidos/ASIN/1565924851/qid%3D988047598/002-4395788-9584816
http://www.amazon.com/exec/obidos/ASIN/1565924851/qid%3D988047598/002-4395788-9584816
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument

