Introduction to Java |/O

Presented by developerWorks, your source for great tutorials

| bm coni devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. An overview of the java.io package 3

3. java.io class overview 8

4. Sources and sinks 13
5. Files 19
6. Buffering 25
7. Filtering 30
8. Checksumming 34
9. Inflating and deflating 38
10. Data I/O 44
11. Object serialization 49
12. Tokenizing 54
13. Lab 58
14. Wrapup 59

Introduction to Java I/O Page 1



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 1. Tutorial tips

Should | take this tutorial?

This tutorial is an overview of Java I/O and all the classes in the j ava. i 0 package. We
journey through the maze of the j ava. i o package, examining I/O classes, methods, and
various techniques for handling 1/O in your Java code.

This tutorial assumes you have a basic knowledge of 1/0O, including | nput St r eamand

Qut put St r eam If you have training and experience in Java programmming, take this course
to add to your knowledge. If you do not have Java programming experience, we suggest you
take Introduction to Java for COBOL Programmers , Introduction to Java for C or C++
Programmers , or other introductory Java courses available on the Web.

In this tutorial, we provide examples of code to show details of Java I/O. If you want to compile
and run the same code and you do not have a Java compiler, you can download the Java
Development Kit (JDK) from Sun Microsystems. (See Setup on page 58.) You may use either
the JDK 1.1 or JDK 1.2 (also known as Java 2).

Introduction to Java I/O Page 2


http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/2010DDEDBE4DBD6C852567580009AE12?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 2. An overview of the java.io package

Introduction

This section introduces the j ava. i o package.
Here are some basic points about 1/O:

* Data in files on your system is called persistent data because it persists after the program
runs.
Files are created through streams in Java code.
A stream is a linear, sequential flow of bytes of input or output data.
Streams are written to the file system to create files.
Streams can also be transferred over the Internet.
*  Three streams are created for us automatically:
Syst*m out - standard output stream
Syst*m i n - standard input stream
Syst*em err - standard error

*  *  *

*

* Input/output on the local file system using applets is dependent on the browser's security
manager. Typically, /O is not done using applets. On the other hand, stand-alone
applications have no security manager by default unless the developer has added that
functionality.

Basic input and output classes

The j ava. i 0 package contains a fairly large number of classes that deal with Java input and
output. Most of the classes consist of:

* Byte streams that are subclasses of | nput St r eamor Qut put St r eam
* Character streams that are subclasses of Reader and Wit er

The Reader and Wi t er classes read and write 16-bit Unicode characters. | nput St r eam
reads 8-bit bytes, while Qut put St r eamwrites 8-bit bytes. As their class name suggests,
(bj ect | nput St r eamand Obj ect Qut put St r eamtransmit entire objects.

bj ect | nput St r eamreads objects; Cbj ect Qut put St r eamwrites objects.

Unicode is an international standard character encoding that is capable of representing most of
the world's written languages. In Unicode, two bytes make a character.

Using the 16-bit Unicode character streams makes it easier to internationalize your code. As a
result, the software is not dependent on one single encoding.

What to use

Introduction to Java I/O Page 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

There are a number of different questions to consider when dealing with the j ava. i o
package:

What is your format: text or binary?

Do you want random access capability?

Are you dealing with objects or non-objects?
What are your sources and sinks for data?
Do you need to use filtering?

* * X X X

Text or binary

What's your format for storing or transmitting data? Will you be using text or binary data?

*  If you use binary data, such as integers or doubles, then use the | nput St r eamand
Qut put St r eamclasses.
* If you are using text data, then the Reader and Wit er classes are right.

Random access

Do you want random access to records? Random access allows you to go anywhere within a
file and be able to treat the file as if it were a collection of records.

The RandomAccessFi | e class permits random access. The data is stored in binary format.
Using random access files improves performance and efficiency.

Object or non-object

Are you inputting or outputting the attributes of an object? If the data itself is an object, then
use the Cbj ect | nput St r eamand Obj ect Qut put St r eamclasses.

Sources and sinks for data

What is the source of your data? What will be consuming your output data, that is, acting as a
sink? You can input or output your data in a number of ways: sockets, files, strings, and arrays
of characters.

Any of these can be a source for an | nput St r eamor Reader or a sink for an
Qut put St reamor Wi ter.

Filtering

Introduction to Java I/O Page 4



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Do you need filtering for your data? There are a couple ways to filter data.

Buffering is one filtering method. Instead of going back to the operating system for each byte,
you can use an object to provide a buffer.

Checksumming is another filtering method. As you are reading or writing a stream, you might
want to compute a checksum on it. A checksum is a value you can use later on to make sure
the stream was transmitted properly.

We cover the concepts and details of filtering in Filtering on page 30; and the details of
checksumming are in Checksumming on page 34.

Storing data records

A data record is a collection of more than one element, such as names or addresses. There
are three ways to store data records:

* Use delimited records, such as a mail-merge style record, to store values. On output,
data values are converted to strings separated by delimiters such as the tab character,
and ending with a new-line character. To read the data back into Java code, the entire
line is read and then broken up using the St ri ngTokeni zer class.

*  Use fixed size records to store data records. Use the RandomAccessFi | e class to store
one or more records. Use the seek() method to find a particular record. If you choose
this option to store data records, you must ensure strings are set to a fixed maximum size.

*  Alternatively, you can use variable length records if you use an auxiliary file to store the
lengths of each record. Use object streams to store data records. If object streams are
used, no skipping around is permitted, and all objects are written to a file in a sequential
manner.

Creating streams: Example code

Here is an example of how to create a stream that reads and writes characters using a TCP/IP
socket as the sink and source. The classes themselves are explained later.

First, we create a TCP/IP socket object that is connected to www.ibm.com and port 80. This is
the Web server port. The method get | nput St r ean() in the Socket class returns an

I nput St r eam which represents byte-by-byte reading of the socket. The | nput St r eamis
used to create an | nput St r eanReader , which transforms the bytes read from the socket into
characters. A Buf f er edReader class is created, which reads from the

| nput St r eanReader and buffers the characters into its own internal buffer. The object
named i n then reads characters from that buffer, but the ultimate source of the characters is
the Web server at www.ibm.com.

On the other hand, the get Qut put St r ean{) method of the Socket class returns a
reference to an Qut put St r eam which writes a byte at a time. The Pri nter Witer

Introduction to Java I/O Page 5



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

constructor uses that Qut put St r eamas the sink for the characters it writes out. When a
character is written to the object named out , it is ultimately sent to the Web server at
www.ibm.com.

This example treats the data stream as character data:

Socket a_socket = new Socket (www. i bm com 80);
| nput StreanReader isr = new | nput StreanReader (
a_socket.getlnputStream());
Buf f eredReader in = new BufferedReader (isr);
PrinterWiter out = new PrinterWiter(
a_socket.getQutput Strean());

A second way to use streams is to use them to transmit binary data. We create a TCP/IP
socket object that is connected to www.ibm.com and port 100. We construct a

Dat al nput St r eamusing the | nput St r eamreturned by get | nput St reanm() and a

Dat aCut put St r eamusing the CQut put St r eamreturned by get Qut put St rean{) . We can
send and receive integers or doubles or other binary data over these two streams.

This example treats the data stream as binary data:

Socket socket_data = new Socket (www. i bm com 100);
Dat al nput Stream i n_data = new Dat al nput St r ean(
socket _data. getlnputStream());
Dat aCut put St ream out _data = new Dat aCut put St r ean(
socket _dat a. get Qut put Streamn());

Exceptions

Almost every input or output method throws an exception. Therefore, any time you do I/O, you
need to catch exceptions. There is a large hierarchy of 1/O exceptions derived from

| OExcept i on. Typically you can just catch | OExcept i on, which catches all the derived
exceptions. However, some exceptions thrown by 1/0O methods are not in the | OExcept i on
hierarchy. One such exception is the j ava. uti | . zi p. Dat aFor mat Excepti on. This
exception is thrown when invalid or corrupt data is found while data being read from a zip file is
being uncompressed. j ava. uti |l . zi p. Dat aFor mat Except i on has to be caught explicitly
because it is not in the | CExcept i on hierarchy.

Remember, exceptions in Java code are thrown when something unexpected happens.

List of exceptions

This figure shows a list of exceptions:

Introduction to Java I/O Page 6



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

jave.lang, Exception H java.io, |OException HChaleuasianwePﬁan‘ —( InvalidClassException
T EOFException 1 InvalidObjectException
| InterruptediOExesption | —  NolActiveException
| ObjectStraamExcaption — NotSarializableE:
- ProtocolException —{ OplionalDataException
— Famaote Exception 1 StreamCormuptedException
SocketException L WriteAbonedException
SyncFailadException
UnknownHaostExcaption
UnknownSarvicaExcaption
UTFDataFormatException
ZipException

Let's look at a few examples:

* ECFExcept i on signals when you reach an end-of-file unexpectedly.

* UnknownHost Except i on signals that you are trying to connect to a remote host that
does not exist.

*  Zi pExcepti on signals that an error has occurred in reading or writing a zip file.

Typically, an | OExcept i on is caught in the t r y block, and the value of thet oSt ri ng()

method of the Obj ect class in the | OExcept i on is printed out as a minimum. You should
handle the exception in a manner appropriate to the application.

Introduction to Java I/O Page 7



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 3. java.io class overview

Introduction

This section introduces the basic organization of the j ava. i o classes, consisting of:

Input and output streams
* Readers and writers
* Data and object I/O streams

Input stream classes

In the | nput St r eamclass, bytes can be read from three different sources:

*  An array of bytes
*  Afile
*  Apipe

Sources, such as Byt eArrayl nput St reamand Fi | t er | nput St r eam subclass the
| nput St r eamclass. The subclasses under | nf | at or | nput St r eamand
Fi | terl nput St r eamare listed in the figure below.

| java.lang. Objact H javalio. InputStream " ByteArraylnputStream T BufteredinputStream
- FilalnputStream 1 CheckedinputStream
— FipadinputStraam e DigestinputStraam
1 SequencelnputStream — InflatarnputStream
— StringBufferinputStream | —{ LineMNumberlinputStream
— FiltednputStraarm —— PushbackinputStrearn
L DatalnputStream
GZIPInputStream
ZiplnputStream

InputStream methods

Various methods are included in the | nput St r eamclass.

* abstract int read() reads a single byte, an array, or a subarray of bytes. It returns
the bytes read, the number of bytes read, or -1 if end-of-file has been reached.

*  read(), which takes the byte array, reads an array or a subarray of bytes and returns a
-1 if the end-of-file has been reached.

*  skip(), which takes | ong, skips a specified number of bytes of input and returns the

Introduction to Java I/O Page 8



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

number of bytes actually skipped.

* avail abl e() returns the number of bytes that can be read without blocking. Both the
input and output can block threads until the byte is read or written.

* ¢l ose() closes the input stream to free up system resources.

InputStream marking

Some, but not all, | nput St r eans support marking. Marking allows you to go back to a
marked place in the stream like a bookmark for future reference. Remember, not all

| nput St r eans support marking. To test if the stream supports the mar k() and r eset ()
methods, use the boolean mar kSuppor t ed() method.

The mar k() method, which takes an i nt eger read_|i m t, marks the current position in
the input stream so that r eset () can return to that position as long as no more than the
specified number of bytes have been read between the mar k() and r eset ().

OutputStream classes

Bytes can be written to three different types of sinks:
*  An array of bytes

*  Afile

* A pipe

The following figure shows OutputStream classes.

java.lang.Oblect H java e OutputStream BteArrayDutputStraam 4‘ ButeredOutputStraarm

FileOutputStrearm —{ CheckedOutputStream

FilterCutputStream ——{ DigestCutputStream

FipedCutputStream 4‘ DeflatorQutputStream

PrintStream

DatalutputStream

GZIPOutputStream

Let's look at some examples of Qut put St r eamclasses. Before sending an Qut put St r eam
to its ultimate destination, you can filter it. For example, the Buf f er edCQut put St r eamis a
subclass of the Fi | t er Qut put St r eamthat stores values to be written in a buffer and writes
them out only when the buffer fills up.

CheckedCQut put St r eamand Di gest Qut put St r eamare part of the
Fi | t er Qut put St r eamclass. They calculate checksums or message digests on the output.

Introduction to Java I/O Page 9



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Def | at or Qut put St r eamwrites to an Qut put St r eamand creates a zip file. This class does
compression on the fly.

The Pri nt St r eamclass is also a subclass of Fi | t er Qut put St r eam which implements a
number of methods for displaying textual representation of Java primitive types. For example:

printin(long)
printin(int)

printin(float)
printin(char)

* X k¥

Dat aCut put St r eamimplements the Dat aQut put interface. Dat aQut put defines the
methods required for streams that can write Java primitive data types in a
machine-independent binary format.

OutputStream methods

The Qut put St r eamclass provides several methods:

The abstract voi d writ e() method takes an integer byte and writes a single byte.
Thevoi d wite() method takes a byte array and writes an array or subarray of bytes.
The voi d flush() method forces any buffered output to be written.

The voi d cl ose() method closes the stream and frees up system resources.

* % % %

It is important to close your output files because sometimes the buffers do not get completely
flushed and, as a consequence, are not complete.

Datalnput and DataOutput

The Dat al nput and Dat aQut put classes define the methods required for streams that can
read Java primitive data types in a machine-independent binary format. They are implemented
by RandomAccessFi | e.

The Qbj ect | nput interface extends the Dat al nput interface and adds methods for
deserializing objects and reading bytes and arrays of bytes. You can learn more about
serialization in Object serialization on page 49.

The Obj ect Qut put St r eamclass creates a stream of objects that can be deserialized by the
bj ect | nput St r eamclass.

The hj ect Qut put interface extends the Dat aCut put interface and adds methods for
serializing objects and writing bytes and arrays of bytes.

(Cbj ect Qut put St r eamis used to serialize objects, arrays, and other values to a stream.

Introduction to Java I/O Page 10



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

What-are Readers?

int read() Readers are character-based input streams that
read (char[] buffer, read Unicode characters.
int offset, int |ength)

*  read() reads a single character and returns
a character read as an integer in the range
from O to 65535 or a -1 if the end of the
stream is reached.

* abstract read() reads charactersinto a
portion of an array (starting at offset up to
length number of characters) and returns the
number of characters read or -1 if the end of
the stream is reached.

Character input streams

Let's take a look at the different character input streams in the j ava. i o package.

*  Strings
Character arrays
* Pipes

| nput St r eanReader is a character input stream that uses a byte input stream as its data
source and converts it into Unicode characters.

Li neNunber Reader , a subclass of Buf f er edReader , is a character input stream that keeps
track of the number of lines of text that have been read from it.

PushbackReader, a subclass of Fi | t er Reader, is a character input stream that uses
another input stream as its input source and adds the ability to push characters back onto the
stream.

Introduction to Java I/O Page 11



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

What.ase Writers?
void write(int character) Writers are character-based output streams that
void wite(char[] buffer, write character bytes and turn Unicode into bytes.
int offset, int Iength) The base class includes these methods:

*  Thevoid wite() method, which takes a
character and writes single character in 16
low-order bits

* Theabstract void wite() method,
which takes a character array and writes a
portion of an array of characters

Character output streams

Let's take a look at the different character output streams in the j ava. i o package. There are
several branches of this inheritance tree you can explore. Like Reader s, any of the branches
are available. Sinks for Wi t er output can be:

*  Strings
*  CharArray
* Pipes

Qut put Stream i t er uses a byte output stream as the destination for its data.

Buf f eredW i t er applies buffering to a character output stream, thus improving output
efficiency by combining many small write requests into a single large request.

FilterWiter isan abstract class that acts as a superclass for character output streams.
The streams filter the data written to them before writing it to some other character output
stream.

Print Wi ter isacharacter output stream that implements print () and println()
methods that output textual representations of primitive values and objects.

Introduction to Java I/O Page 12



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 4. Sources and sinks

Introduction

This section focuses on sources and sinks. Code samples help you visualize how some of
these classes work:

Byte arrays
Pipes

Sequences
Char arrays

* X % ¥

Byte arrays

Let's head toward byte array territory. Are bytes going to come from a byte array? When an
object of a Byt eArr ayl nput St r eamis created, it is passed an array. You can then read
bytes from that array as an | nput St r eam

Byt eAr r ayQut put St r eamwrites to a byte array. Bytes that are written to the output stream
are added to an internal array. You may be wondering how you get to the byte array. The

t oByt eArray() method returns to you the byte array at any point in time. Also, a
toString() method is available, which returns the byte array as a St ri ng. Therefore, the

byte array can be either a source or a sink.

—
ByteArayOutputStream )
Byte()
toByteAray()

—
BytedrrayinputStreami{byle[] array)

EENEEEEERE
EEEEEEENE >
EEEEEEEN G

Pipes in Java code

What is a pipe? A pipe is a means of communication between two threads of a Java program.
One thread writes to a piped output stream and another thread reads from a piped input
stream, which is connected to the piped output stream.

A pipe between two threads works like a pipe works between two processes in UNIX and
MS-DOS. In those operating systems, the output from one process can be piped to the input
of another process. For example, in MS-DOS, the command "dir | more" pipes the output of
the "dir" command to the input of the "more" program.

Pipe: Example code

Introduction to Java I/O Page 13



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Although pipes are usually used with threads, this example simply writes data to a pipe and
then reads it back later.

First, a Pi pedReader is constructed, then a Pi pedW i t er that writes to that Pi pedReader .
The attributes are written to the pipe as strings with a vertical bar as a delimiter and a new-line
character placed at the end. The entire contents of the Pi pedReader arereadasa Stri ng
and displayed.

We'll show later, in Tokenizing on page 54, how to use a St ri ngTokeni zer to break up a
string that is delimited into individual values.

Here is the example code:

import java.io.*;
import java.util.*;
cl ass Pi pedExanpl e
{
static BufferedReader system.in = new BufferedReader
(new | nput St reanReader (Systemin));

public static void main(String argv[])

Pi pedReader pr = new Pi pedReader ();
Pi pedWiter pw = null;

try {
pw = new Pi pedWiter(pr);
}

catch (I Cexception e)
{

Systemerr.println(e);

/]l Create it {

/'l Read in three hotels

for (int i =0; i <3; i++)
{
Hotel a_hotel = new Hotel ();
a_hotel .input(systemin);
a_hotel .wite_to_pw pw);
}

}

/] Print it

{
char [] buffer = new char[1000];
int length = 0;
try
{

length = pr.read(buffer);

}
catch (I CeException e)
{

Systemerr.printin(e);
String output =new String(buffer, 0, length);
Systemout.printIn("String is ");
System out. println(output);
}

}
}

cl ass Hotel

Introduction to Java I/O Page 14



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

{

private String nane;

private int roons;

private String | ocation;

bool ean i nput (Buf f er edReader in)

{

try
{
System out. println("Nane: ");
name = in.readLine();

System out. println("Roons: ");
String tenp = in.readLine();
rooms = to_int(tenp);

System out. println("Location: ");
| ocation = in.readLine();

}
catch(1l Cexception e)

Systemerr.printin(e);
return fal se;

}

return true;

}
bool ean wite_to_pw( Pi pedWiter pw)

{
try

pw. write(nane);

Integer i = new I nteger(roons);

pw.wite(i.toString());

pw. write(location);

pw. write('backslash n');
/1 red font indicates that an actual backslash n (carriage return character)
/1 should be inserted in the code.

cat ch(| OException e)

Systemerr.println(e);
return fal se;

}
return true;
}
voi d debug_print()
{
Systemout.println("Nane :" + name +
": Rooms : " + rooms + ": at :" + location+ ":");

static int to_int(String val ue)

{
int i =0;
try

{

= I nteger. parselnt(val ue);

-~ —-

cat ch( Nunmber For mat Excepti on e)
{}

return i;

}

Sequences

Sequencel nput St r eamcombines input streams and reads each input stream until the end.

Introduction to Java I/O Page 15



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

You can use Sequencel nput St r eamto read two or three streams as if they were one
stream. You can concatenate streams from various sources, such as two or more files. To
construct a Sequencel nput St r eam you can specify either two streams or an Enumeration,
which represents a set of input streams. A program such as "cat" in UNIX would use
something like this.

Sequencel nput St r eamreads from the first underlying input stream that it is given. When the
first one is exhausted, it opens the next input stream and reads that one. When that one is
exhausted, it reads the next, and so on.

The user does not know when the input is transferred from one stream to the next stream;
another byte is simply read. When all the input streams have been read, an EOF is received
from the entire input stream.

Char arrays

Now let's explore Reader s and Wi t er s. The read and write methods input and output a
character. Similar to Byt eAr r ayQut put St ream a Char ArrayW i t er writes characters to a
char array. As a character is written to a Char ArrayW i t er object, it's added to an array of
characters whose size is automatically incremented.

At any point in time, we can get the character array that we have filled up. The

t oChar Array() method returns an array of characters. A Char Arr ayReader uses a
character array as a source. Typically, the array is one that has been created with a

Char ArrayW i t er object. With an alternative constructor, you can specify not only the array,
but where to start in the array (an offset) and how many bytes to read (a length) before you
return an EOF character.

N — CharArray —

FiarAr i

. BArrayviritar EEE CharArrayReadar(char(] buffer)
i ?r[] EEE CharArrayReadar{char[] buffer,
toCharArray() EEE it oftsat

L 1] int length)

String: Example code

StringWiter works like Char ArrayWi t er. Aninternal St ri ngBuf f er object is the
destination of the characters written. Methods associated with the class are get Buf fer (),
which returns the St ri ngBuf f er itself, and t oSt ri ng() , which returns the current value of
the string.

St ri ngReader works like Char Arr ayReader . It uses a St ri ng object as the source of the
characters it returns. When a St r i ngReader is created, you must specify the St ri ng that it
is read from.

Introduction to Java I/O Page 16



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

In this example, instead of writing to a pipe, we are going to writetoa Stri ng. A
StringWiter objectis constructed. After the output is complete, we obtain the contents with
toString() and print it out. This works like the previous example with Pi pedReader and

Pi pedWi ter, excepta Stri ng is used to contain the data.

Here is the example code:

import java.io.*;
import java.util.*;
class StringExanple

static BufferedReader system.in = new BufferedReader
(new I nput StreanReader (Systemin));

public static void main(String argv[])

{
StringWiter sw = new StringWiter();

/1l Create it

{

/!l Read in three hotels
for (int i =0; i < 3; i++)

Hotel a_hotel = new Hotel ();
a_hotel .input(systemin);
a_hotel .wite_to_string(sw);
}

}

/[l Print it

String output = sw.toString();
Systemout.printIn("String is ");
System out . println(output);

}

}
}

cl ass Hotel
{
private String nane;
private int roons;
private String | ocation;
bool ean i nput ( Buf f er edReader in)

{

try
{
Systemout.println("Nane: ");
nanme = in.readLine();

System out. println("Roons: ");
String tenmp = in.readLine();
rooms = to_int(tenp);

System out. println("Location: ");
| ocation = in.readLine();

}
catch(1l Cexception e)
{

Systemerr.printin(e);
return fal se;

}
return true;
bool ean wite_to_string(StringWiter sw)

sw. wite(nane);

Introduction to Java I/O Page 17



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Integer i = new I nteger(roons);

sw.wite(i.toString());

sw.wite(location);

sw. write(' backslash n');
/1 red font indicates that an actual backslash n (carriage return character)
/1 should be inserted in the code.

return true;

}
voi d debug_print()
{

Systemout.println("Nane :" + na
": Rooms : " + rooms + ": at :" + location+ ":");

static int to_int(String val ue)

{
int i =0;
try

{

i

}
cat ch( Nunmber For mat Excepti on e)

{}

return i;

}

= I nteger. parselnt(val ue);

InputStreamReader

| nput St r eanReader reads bytes from an | nput St r eamand converts them to characters.
An | nput St r eanReader uses the default character encoding for the bytes, which is usually
ASCII. If the bytes that are being read are ASCII bytes, only a byte at a time is used to form a
character.

If the bytes are not ASCII, such as Chinese or another language, you want conversion to

Unicode as well. Specific encoding of the byte stream is necessary, and the
I nput St r eanReader converts it to Unicode. With an alternate constructor, you can specify
the encoding of the bytes on the | nput St r eam

OutputStreamReader

Qut put Stream i t er is similar to | nput St r earReader . The output characters, which are
in Unicode, are converted to the underlying format of the machine using an

Qut put St reamW i t er. The converted characters are written to an Qut put St r eam The
underlying default format is typically ASCIl. However, you can state a specific encoding
scheme with an alternate constructor.

Introduction to Java I/O Page 18



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 5. Files

Introduction

This section examines the Fi | e class, an important non-stream class that represents a file or
directory name in a system-independent way. The Fi | e class provides methods for:

*  Listing directories
* Querying file attributes
* Renaming and deleting files

The File classes

The Fi | e class manipulates disk files and is used to construct Fi | el nput St r eans and

Fi | eQut put St r eans. Some constructors for the Fi | e 1/0O classes take as a parameter an
object of the Fi | e type. When we construct a Fi | e object, it represents that file on disk. When
we call its methods, we manipulate the underlying disk file.

The methods for Fi | e objects are:

* Constructors

* Test methods

* Action methods
* List methods
Constructors

Constructors allow Java code to specify the initial values of an object. So when you're using
constructors, initialization becomes part of the object creation step. Constructors for the Fi | e
class are:

* File(String fil enane)
* File(String pathname, String fil enane)
* File(File directory, String fil enane)

Test Methods

Public methods in the Fi | e class perform tests on the specified file. For example:

The exi st s() method asks if the file actually exists.

The canRead() method asks if the file is readable.

The canW i t e() method asks if the file can be written to.

Thei sFil e() method asks if it is a file (as opposed to a directory).

* X *  *

Introduction to Java I/O Page 19



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

*  TheisDirectory() method asks if it is a directory.

These methods are all of the boolean type, so they return a true or false.

Action methods

Public instance methods in the Fi | e class perform actions on the specified file. Let's take a
look at them:

The r enanmeTo() method renames a file or directory.

The del et e() method deletes a file or directory.

The nkdi r () method creates a directory specified by a File object.

The nkdi r s() method creates all the directories and necessary parents in a File
specification.

* X X X

The return type of all these methods is boolean to indicate whether the action was successful.

List methods

Thel i st () method returns the names of all entries in a directory that are not rejected by an
optional Fi | enameFi | ter. Theli st () method returns null if the Fi | e is a normal file, or
returns the names in the directory. The | i st () method can take a Fi | enaneFi | t er filter
and return names in a directory satisfying the filter.

FilenamekFilter interface

The Fi | enaneFi | t er interface is used to filter filenames. You simply create a class that
implements the Fi | enanmeFi | t er. There are no standard Fi | enaneFi | t er classes
implemented by the Java language, but objects that implement this interface are used by the
Fi | eDi al og class and the | i st () method in the Fi | e class.

The implemented accept () method determines if the filename in a directory should be
included in a file list. It is passed the directory and a file name. The method returns true if the
name should be included in the list.

File class: Example code

This example shows a file being tested for existence and a listing of the C:\Windows directory.
The listing is performed for all files and then for files matching a filter.

Here is the example code:

Introduction to Java I/O Page 20



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

import java.io.*;
import java.util.*;

class Fil eC asskExampl e
public static void main(String argv[])

File a_file = new File("test.txt");

if (a_file.canRead())
Systemout.println("Can read file");

if (a_file.isFile())
Systemout.printin("ls a file");

File a_directory = new Fil e("C: backsl ash, backsl ashW ndows");
/1 red font indicates that an actual backslash n (carriage return character)
/1 should be inserted in the code.

if (a_directory.isDirectory())

Systemout.printIn("ls a directory");
String nanes[] = a_directory.list();

for (int i =0; i < names.length; i++)
{
Systemout.printin("Filename is " + names[i]);
}

Systemout.printIn("Parent is " + a_directory.getParent());
if (a_directory.isDirectory())

String nanes[] = a_directory.list(new MyFilter());

for (int i =0; i < names.length; i++)
{Systemout.printIn("FiIename is " + names[i]);
} }
}
}

class MyFilter inplements FilenaneFilter

public bool ean accept(File directory, String name)
{
if (nanme.charAt(0) = ="'A || nane.charAt(0) = ="'a")
return true;

}

FileInputStream and FileOutputStream

You can open a file for input or output.

Fi | el nput St r eamreads from a disk file. You can pass that constructor either the name of a
file or a Fi | e object that represents the file. The Fi | el nput St r eamobject is a source of
data.

Fi | eQut put St r eamwrites to a disk file. You can pass it a Fi | e object or a name. The
Fi | eQut put St r eamobiject is a sink for data.

For Fi | el nput St reamand Fi | eQut put St r eam you read and write bytes of data.

Introduction to Java I/O Page 21



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

File: Example code

This example works like the previous examples, except the output is to a file. We open the file
and write the data as bytes. After closing the file, we open it for reading, read all the bytes in
the file, and print them as a string.

Here is the example code:

import java.io.*;
import java.util.*;
cl ass Fil eExanpl e

static BufferedReader system.in = new BufferedReader
(new I nput StreanReader (Systemin));

public static void main(String argv[])

{

/]l Create it

{
try

Fi | eQut put Stream fos = new Fil eQutput Strean("file.dat");
/'l Read in three hotels
for (int i =0; i < 3; i++)

{

Hotel a_hotel = new Hotel ();

a_hotel .input(systemin);

a_hotel .wite_to_fos(fos);

fos.close();
cat ch(| OException e)

Systemout.println(e);
}
}

/1 Now display it

{
byte [] buffer = null;
File a_file = new File("file.dat");
Systemout.printin("Length is " + a file.length());
Systemout.printin(" Can read " + a_file.canRead());
try

{

FilelnputStreamfis = new FilelnputStream(a_file);
int length = (int) a_file.length();

buffer = new byte[l ength];

fis.read(buffer);

fis.close();

cat ch(| OException e)
{

Systemout.println(e);

}

String s = new String(buffer);
Systemout.printIn("Buffer is " + s);

}
}

Introduction to Java I/O Page 22



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

cl ass Hot el
{
private String naneg;
private int roons;
private String |ocation;
bool ean i nput (Buf f er edReader in)
{
try
{
System out. println("Nane: ");
nanme = in.readLine();
System out. println("Roons: ");
String tenp = in.readLine();
rooms = to_int(tenp);
System out.println("Location: ");
| ocation = in.readLine();

}

cat ch(| OException e)
{
Systemerr.printin(e);
return fal se;

}

return true;

bool ean wite_to_fos(FileQutputStream fos)
{
try
{

fos.wite(nane. getBytes());
Integer i = new I nteger(roons);
fos.wite(i.toString().getBytes());
fos.wite(location.getBytes());
fos.wite('" ');

catch (I CException e)
{

Systemerr.println(e);
return fal se;

}

return true;

}
voi d debug_print()
{

Systemout.println("Nane :" + name +
": Rooms : " + rooms + ": at :" + location+ ":");

static int to_int(String val ue)

{
int i =0;
try

{

i = Integer.parselnt(value);

cat ch( Nurber For mat Excepti on e)
{}

return i;

}

FileReader and FileWriter

Fi | eReader is a convenience subclass of | nput St r eanReader . Fi | eReader is useful
when you want to read characters from a file. The constructors of Fi | eReader assume a

Introduction to Java I/O Page 23



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

default character encoding and buffer size. Fi | eReader constructors use the functionality of
| nput St r eanrReader to convert bytes using the local encoding to the Unicode characters
used by Java code.

If you want to read Unicode characters from a file that uses encoding other than the default,
you must construct your own | nput St r eanReader on Fi | el nput St ream

Fil eWiter isaconvenience subclass of Qut put St reanmWW it er for writing character files.
Constructors for Fi | eW it er also assume default encoding and buffer size. If you want to
use encoding other than the default, you must create your own Qut put St reanWW it er on

Fi | eQut put Stream

Introduction to Java I/O Page 24



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 6. Buffering

Introduction

This section introduces buffering and covers the following topics:

Buf f er edl nput St r eamand Buf f er edQut put St r eam
Buf f er edReader and Buf f eredWiter

New-line characters

Buffering input and output streams

* X *  *

What is buffering?

Reading and writing to a file, getting data one byte at a time, is slow and painstaking. One way
to speed up the process is to put a wrapper around the file and put a buffer on it.

Our Buf f er edl nput St r eamis going to put a buffer onto an | nput St r eamthat is specified
in the constructor. The actual data source is what you pass it as an | nput St r eam The

Buf f er edl nput St r eamreads large chunks of data from the | nput St r eam Then you read
individual bytes or small chunks of bytes from the Buf f er edl nput St r eam The default buffer
size is 512 hytes, but there's a constructor that allows you to specify the buffer size if you want
something different.

To improve your efficiency, you read from the object of Buf f er edl nput St r eaminstead of
reading directly from the underlying | nput St r eam And you won't have to go back to the
operating system to read individual bytes.

BufieredinputStream

r;:;gaaf EEE HEE readsanentie
a tima EEE EEE ey ofbytes

EER EER

EER EEE

EER EER

HER HER

EER EER

HER HER

BufferedOutputStream

Buf f er edQut put St r eamextends Fi | t er Qut put St r eam When you apply it to an
Qut put St r eam you have a buffered output stream. Instead of going to the operating system
for every byte you write, you have the intermediary that provides a buffer and you write to that.

When that buffer is full, it is written all at once to the operating system. And it is written
automatically if the buffer gets full, if the stream is full, or if the f | ush() method is used. The
f1 ush() method forces any output buffered by the stream to be written to its destination. So
for a Buf f er edQut put St r eam you have tell it:

Introduction to Java I/O Page 25



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

*  The output stream you are going to use
*  The buffer size if you don't like the default

BufferedOutputStream

— Buffer —_— Output

writes a writa

byte at | 1 1] (buftar) | 1 1]

a time EER L1
EER EER
EEE HER
EER EER
EEE EEE
EER EER
HER HER

array of bytes

BufferedReader and BufferedWriter

A Buf f er edReader and a Buf f eredW i t er act like Buf f er edQut put St r eamand
Buf f er edl nput St r eam except they deal with reading and writing characters. For a
Buf f er edReader , you specify an underlying Reader and optionally a buffer size. For a
Buf f eredWi t er, you specify an underlying Wi t er and optionally a buffer size.

Buf f er edReader has one additional method, called r eadLi ne( ), which allows us to simply
read an entire line of characters from the underlying Reader .

BufferedReader: Example code

If you've been using Java 1.0, the r eadLi ne() method was actually part of
Dat al nput St r eam Now you should be using a Buf f er edReader for r eadLi ne(), even
though you can still do that with a Dat al nput St r eam

A Dat al nput St r eamreads bytes but you are really reading characters when you read lines,
so using r eadLi ne() and the Buf f er edReader is the preferred way.

Here is the example code:

import java.io.*;
import java.util.*;
cl ass Text Reader Wit er Exanpl e

static BufferedReader system.in = new BufferedReader
(new | nput StreanReader (Systemin));

public static void main(String argv[])

{
/]l Create it

{
try

{
Fil eCut put Stream fos = new Fil eQut put Stream("text.dat");

PrintWiter pw = new PrintWiter(fos);
for (int i =0; i <3; i++)

{
Hotel a_hotel = new Hotel ();

Introduction to Java I/O Page 26



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

a_hotel .input(systemin);
a_hotel .wite_to_pw pw;

pw. cl ose();
catch(l CException e)

Systemerr.println(e);

}
}
/1 Now read it
{
try

Fil eReader fr = new Fil eReader("text.dat");
Buf f eredReader br = new BufferedReader(fr);
Hotel a_hotel = new Hotel ();
while (a_hotel.read_frombr(br))

{
a_hot el . debug_print();

br.close();
}
catch(| CException e)

Systemerr.printin(e);

}

cl ass Hotel
{
private String nane;
private int roons;
private String |ocation;
bool ean i nput (Buf f er edReader in)

{

try
{
System out. println("Nane: ");
name = in.readLine();
System out. println("Roons: ");
String temp = in.readLine();
rooms = to_int(tenp);
Systemout. println("Location: ");
| ocation = in.readLine();
}

catch(| CException e)
{

Systemerr.printin(e);
return fal se;

}

return true;

bool ean write_to_pw(PrintWiter pw)
{

pw. print (nane) ;

pw.print(*[");

pw. print (roons);

pw.print('|"');

pw. print (location);

pw. println();

return true;

bool ean read_from br (BufferedReader br)

{

Introduction to Java I/O Page 27



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

try
{
String line = br.readLine();
if (line == null)
return fal se;
StringTokeni zer st = new StringTokenizer(line, "|");

int count = st.countTokens();
if (count < 3)

return fal se;
name = st.next Token();
String tenp = st.nextToken();
rooms = to_int(tenp);
| ocation = st.nextToken();

}
catch(| CException e)
{

Systemerr.printin(e);
return fal se;

}

return true;
}

voi d debug_print()
{

Systemout.println("Nane :" + name +
": Roons : " + rooms + ": at :" + location+ ":");

static int to_int(String val ue)

int i =0;
try

{

i

}
cat ch( Nurmber For mat Excepti on e)

{}

return i;

}

= | nteger. parsel nt(val ue);

BufferedWriter

As we mentioned, a Buf f er edW i t er allows us to write to a buffer. It applies buffering to a
character output stream, improving output efficiency by combining many small write requests
into a single larger request.

This class has an interesting additional method that makes Java code portable. Most of the
time, a new line is represented by a \ n, but it may not be in all operating systems. Because of
this, the Java language adds a method called newLi ne() .

Instead of outputting the character \ n, you call newLi ne() and that outputs the appropriate
new-line character for the particular operating system that you are running on. In most cases,
this will be \ n. The new-line character that is written is the one returned by passing

| i ne. separ at or to the get Property() method in the Syst emclass.

Expressing a new line

Introduction to Java I/O Page 28



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

So you may ask, how does the Java language know how to express a new line for a particular
operating system?

The Java newLi ne() method asks the system, "What is your new-line character?" In the
Java language, this is called a system property. There is a Syst emclass with properties.
When you say, "What's your new-line character?" by passing | i ne. separ at or to the

get Property() method in the Syst emclass, you get an answer back. Depending on the
platform, the new-line character can be a new-line character, a carriage-return character, or
both.

The newLi ne() method, which is part of Buf f er edW i t er, outputs the platform-dependent
line separator to the stream by using such a call.

When.to sse BufferedWriter

PrintWiter out = new You typically use a Buf f er edW i t er for your
PrintWiter (new BufferedWiter output. The only time you don't want to have a
(new Filewiter ("file.out")); puffered output is if you are writing out a prompt for
the user. The prompt would not come up until the
buffer was full, so for those sorts of things you do
not want to use buffering.

Buffering input and output streams: Example code

Here's an example of some code that shows the efficiency of buffering. Typically the r ead()
method on | nput St r eanReader or Fi | eReader performs a read from the underlying
stream.

It might be more efficient to wrap a Buf f er edReader around these Reader s. With buffering,
the conversion from byte to character is done with fewer method invocations than if the
I nput St r eanReader read() method is called directly.

Likewise, the wri t e() method on an Qut put StreanWiter orFil eWiter performs a
write to the underlying stream. It can be more efficient to wrap a Buf f er edW i t er around
these Witers.

Here is the example code:

Buf f er edReader in=

newBuf f er edReader (newi nput St r eanReader (Systemin));
Witer out=

newBuf feredWiter(new FileWiter("file.out");

Introduction to Java I/O Page 29



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Filtering

Introduction

This section introduces filtering and covers the following topics:

Pushbackl nput St r eam
PushbackReader

Li neNummber Reader
PrintWiter

* X *  *

What is filtering?

Use filtering to read or write a subset of data from a much larger input or output stream. The
filtering can be independent of the data format (for example, you need to count the number of
items in the list) or can be directly related to the data format (for example, you need to get all
data in a certain row of a table). You attach a filter stream to an input or output stream to filter
the data.

FilterlnputStreamandFil ter Qut put St r eamfilter input and output bytes. When a

Fi | t er I nput St r eamis created, an | nput St r eamis specified for it to filter. Similarly, you
specify an Qut put St r eamto be filtered when you create a Fi | t er Qut put St r eam They
wrap around existing | nput St r eamor Qut put St r eamto provide buffering, checksumming,
and so on. (We covered buffering in Buffering on page 25 .)

For character 1/0, we have the abstract classes Fi | ter Wi ter and Fi | t er Reader.

Fi | t er Reader acts as a superclass for character input streams that read data from some
other character input stream, filter it, and then return the filtered data when its own r ead()
methods are called. Fi | t er Wi t er is for character output streams that filter data written to
them before writing it to some other character output stream.

Introduction to Java I/O Page 30



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Pushback APIs: PUShbaCk

Pu_shbackl nput Strean( | nput Stream i s)

zg:g Emggggwtebﬁ e;rray) You use Pushback! nput St r eamto implement a
one-byte pushback buffer or a pushback buffer of

PushbackReader (Reader i n) a specified length. It can be used to parse data.

voi d unread(int character)

voi d unread(char [] buffer) When would you use this?

Sometimes when you read a byte from an

I nput St r eam it signifies the start of a new block
of data (for example, a new token). You might say,
"l have read this byte, but | really cannot deal with
it at this time. | want to push it back on the

I nput St r eam When | come back later to read the
| nput St r eam | want to get that same byte
again."

You push the byte back onto the stream with the
unr ead() method. When you read it again, you
will read the data you unread before. You can
unr ead() a single byte, an array of bytes, or an
array of bytes with an offset and a length.

If you are reading characters, you can push back a
character instead of a byte. You use
PushbackReader , which works just like the
Pushbackl nput St r eam

Use the unr ead() methods to unread a single
character, an array of characters, or an array of
characters with an offset and a length.

Introduction to Java I/O Page 31



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

- netmhereader AR LineNumberReader versus
Li neNunber Reader ( Reader r) LlneNumbermpUtStream

Li neNunber Reader ( Reader r,
Int buffer_size) A Li neNurber Reader is a character input stream
String readLine() that keeps track of the number of lines of text that
have been read from it. A line is considered
terminated by a new line (\ n), a carriage return
void setLineNunber(int line_num) ) or a carriage return followed by a linefeed. The
r eadLi ne() method returns all the characters in
the line without the terminator. The
get Li neNunber () method returns the number of
lines that have been read.

i nt getLineNunber()

If, for some reason, you want to reset the line
number, you can do that with set Li neNunber ()
and start the line count again from that point.

Li neNunber | nput St r eamalso keeps track of
the number of lines of data that have been read,
but this class was deprecated in Java 1.1 because
it reads bytes rather than characters.

Li neNunber Reader was introduced, which reads
characters.

PrintStream versus PrintWriter

Pri nt St r eamis used to output Java data as text. It implements a number of methods for
displaying textual representation of Java primitive data types.

You've probably used a Pri nt St r eamobject since your earliest Java programming days.
Syst em out is a Pri nt St r eamobject. Probably everyone has used that for debugging! That
being said, Pri nt St r eamhas been superseded by Pri nt Wi ter inJava 1.1. The
constructors of this class have been deprecated, but the class itself has not because it is still
used by the Syst em out and Syst em err standard output streams.

The methods in Pri nt St reamand Pri nt Wit er are very similar. Pri nt Wit er does not
have methods for writing raw bytes, which Pri nt St r eamhas.

Flushing

Both the Pri nt St reamand Pri nt Wi t er classes employ flushing, which moves data from
the internal buffers to the output stream. Flushing is employed in two ways:

*  Automatic flushing, which says when you call pri nt | n you get flushing

Introduction to Java I/O Page 32



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

*  Without automatic flushing, which says flushing occurs only when the f | ush() method is
called

With the Pri nt St r eamclass, if a new-line character was written, the output is flushed. With
the Pri nt Wit er class, if you enable automatic flushing, the output is flushed only when a
printl n() method is invoked. The pri ntl n() methods of Pri nt Wit er use the System
property | i ne. separ at or instead of the new-line (\ n) character that Pri nt St r eamuses.

Printwiter() APls: PrintWriter process

PrinterWiter (Witer w)

PrinterWiter (Witer w Let's look at the whole process.

Bool ean aut of | ush)
You can give the Pri nt Wi t er constructor a
Wit er oryou can give it an Qut put St r eam
PrinterWiter (QutputStream os, With the latter, an Qut put StreamWiter is
Bool ean aut of | ush) transparently created, which performs the
conversion for characters to bytes using the default
character encoding.

PrinterWiter (CQutputStream os)

You can choose one of the two flushing options:
with autoflush or without. You can print integers,
strings, and characters without a new line with the
print () methods and with a new line with the
println() methods.

Introduction to Java I/O Page 33



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 8. Checksumming

Introduction

This section explores checksumming. Checksumis an interface that several different classes
implement. Let's take a look at what this section covers:

*  What is a checksum and how does it work?
*  What is a message digest and how does it work?
* Checksum versus message digest

Checksum met hods: What is checksumming?

| ong get Val ue()
What's a checksum? The Checksuminterface
defines the methods required to compute a

voi d update(byte [] array, checksum on a set of data. The computation of a

in offset, int |ength) . . . . ..

checksum is such that if a single bit or two bits in
the data are changed, the value for the checksum
changes.

void reset ()

A checksum is computed based on the bytes of
data supplied to the updat e() method. The
updat e() method updates the current checksum
with an array of bytes by adding it to an ultimate
value.

Additionally, the current value of the checksum can
be obtained at any time with the get Val ue()
method. Use the r eset () method to reset the
default value to its initial value, usually 0.

There are two types of checksums. The most
common is the CRC32, that's Cycle Redundancy
Check. Another type of checksum is the Adler32,
used for computing Adler32 checksum. The
Adler32 has a faster computation. It's nearly as
reliable as the CRC32.

CheckedlnputStream and CheckedOutputStream

Let's create a Checksumobject and use it to filter an input or output stream. When writing a
byte to the CheckedCQut put St r eam the checksum is automatically computed.

CheckedCQut put St r eamcalls the updat e() method in the Checksumobject. Then the byte

Introduction to Java I/O Page 34



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

goes out to its ultimate destination. At any point in time, you can ask the Checksumobiject for
the current checksum. You can write all your bytes out and add that checksum to what you
have written out.

*  Checkedl nput St reamimplements Fi | t er | nput St r eamand maintains a checksum
on every read.

*  CheckedCQut put St r eamimplements Fi | t er Qut put St r eamand maintains a
checksum on every write.

Adding checksum

Use a checksum to make sure that data was transmitted properly. Construct a

CheckedCQut put St r eamusing an Qut put St r eamand an object of the Checksumtype.
CRC32 and Adler32 are the two types of checksums you can choose from or you can create
your own. At periodic times, say every 512 bytes, retrieve the current value of the checksum
and send those four bytes over the stream.

On the receiving end, you construct a Checkedl nput St r eamusing an | nput St r eamand an
object of the same type you used for the CheckedCQut put St r eam After reading 512 bytes,
retrieve the current value of the checksum and compare it to the next four bytes read from the
stream.

CheckedOutputStream: Example code

Let's look at some sample code. We are going to open a Fi | eQut put St ream Tenpl. t np.
An object of the CRC32 type is constructed, and that is used to create a

CheckedCQut put St r eam When writing to the file output a byte at a time, the checksum is
computed. At the end, the Checksumobiject is then asked the current value of the checksum.

Checksumming only gives you a 32-bit value. If a single bit changes, you will notice it, but if
lots of bits change, you could possibly get the same checksum.

Here is the example code:

Fi | eQut put put Stream os =

new Fi | eQut put Strean(" Tenpl.tnp");
CRC32 crc32 = new CRC32();
CheckedQut put Stream cos =

new CheckedQut put Strean(os, crc32);

cos.wite(1);
cos.write(2);
long crc = crc32. get Val ue();

Introduction to Java I/O Page 35



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Di gesti ng net hods: I:)igesting
stati c MessageDi gest

getlnstance(String al gorithm Let's create something larger than a Checksum A
void update (byte [] array) larger set of bits that represents a sequence of
bytes is a message digest. A message digest
works like a checksum. It is a one-way hash that
takes a variable amount of data and creates a
fixed-length hash value. This is called a digital
fingerprint.

byte [] digest()

If somebody makes changes in the original
sequence of things and manipulates the contents,
the message digest is not going to look the same.
This is how we implement security. There is a
possibility, but it is very small, that if the message
were changed, you would get the same message
digest.

A sequence of bytes is transformed into a digest.
In the MessageDi gest class, we have a static
function called get | nst ance. get | nst ance is
given the name of the MessageDi gest that we
want to be using. There are two strings that you
can pass it: SHAL1 and MD5. Their details are in
algorithmic books.

Additionally, the updat e() methods update the
digest with the byte or array of bytes. The

di gest () method computes and returns the value
of digest. Digest is then reset.

DigestinputStream and DigestOutputStream

We have two equivalent methods for digest: the Di gest | nput St r eamand

Di gest Qut put St r eam Give the Di gest | nput St r eaman input stream and the
MessageDi gest that will be doing its calculations. You can turn digesting on or off for a
stream. You may want to input or output some data, but not calculate it as part of the
MessageDi gest .

Theread() and wite() methods update the MessageDi gest in Di gest | nput St ream
and Di gest Qut put St r eamrespectively.

MessageDigest: Example code

The first line creates a Fi | eQut put St r eamgoing to the file t enp. t np. Create a

Introduction to Java I/O Page 36



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

MessageDi gest object. As you can see in the code nd =

MessageDi gest . get |l nstance(), you're passing it the name of the message digesting
algorithm that you want to use. It returns back to you an object of a MessageDi gest type. If
the string that you passed it is not the name of a digest, it throws a

NoSuchAl gori t hmExcepti on.

After you have the MessageDi gest , use that to construct a Di gest Qut put St r eam Bytes
are written out to the underlying Qut put St r eamand added to the digest. You can get
MessageDi gest by calling nd. di gest () . It returns the digest or an array of bytes. Now you
can store that away or send it along.

Here is the example code:

Fi | eQut put Stream os = new Fi | eCut put Strean{" Tenp.tnp");
MessageDi gest nd = nul | ;
try

{

nmd = MessageDi gest. getlnstance("SHA");

}

cat ch(NoSuchAl gorit hmException e)
{
Systemout.println(e);

}

Di gest Qut put St ream dos = new Di gest Qut put Strean{os, nd);
dos.write(l);

dos.write(2);

byte [] digest = nd.digest();

Checksum versus MessageDigest

Remember, a checksum is small. A checksum is typically used to verify the integrity of data
over a noisy transmission line or to verify whether a file contains the same data. A message
digest, on the other hand, is much larger. It is used more for security to insure that a message
has not been tampered with.

Introduction to Java I/O Page 37



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 9. Inflating and deflating

Introduction

This section explores inflating and deflating in Java code. These terms have the same
meaning as compressing and uncompressing. Some of the key points in this section are:

* Def | at er | nput St r eamand Def | at er Qut put St r eam
*  Zi pl nput St r eamand Zi pQut put St r eam
* Zi pFile

Deflater

Let's move into deflating territory. Deflating writes a compressed representation of bytes to an
output stream. Inflating takes those compressed bytes from an input stream, reads them in,
and automatically uncompresses them. This process is similar to zipping and unzipping on the

fly.

The algorithm of a Def | at er is applied to the bytes output to a stream, and the corresponding
algorithm of an | nf | at er is applied to the bytes input from a stream. The default Def | at er
and | nf | at er use the ZLIB compression library for compression and decompression. An
alternate constructor allows for GZIP and PKZIP compression.

DeflaterOutputStream

Let's journey into the output stream. You can simply create a Def | at er Qut put St r eamwith
an output sink. As we write to the Def | at er Qut put St r eam the bytes are compressed using
the Def | at er algorithm and only the compressed bytes are sent to the underlying output
stream. The default constructor for Def | at er Qut put St r eamuses ZLIB compression with a
default-sized buffer. With the other constructors, you can specify a different Def | at er and a
different-sized buffer.

DeflaterOutputStream

wWrite wwirite

—_— deflater \
sink

compressed
/ SOURGE

*_ e

read
uncompressed

InflaterinputStream

Introduction to Java I/O Page 38



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

On the receiving side, an | nf | at er | nput St r eamis implemented. When we construct it, we
specify an input source. It uncompresses the bytes from that source as you go along. Once
again, you can specify your own | nf | at er if you use a different compression scheme.

If you decide to use your own Def | at er or | nfl at er instead of the default, then it is up to
you to make sure the | nf | at er and Def | at er match and understand each other.

InflaterOutputStream

write write
— N
sink

/ source

read

o+ inflater

read
uncompressed

GZIP input and output stream

A &ZI PQut put St r eamoutputs the compressed bytes to the underlying stream in GZIP
format. It is derived from the Def | at er Qut put St r eam The constructor is supplied an

Qut put St r eam Correspondingly, a GZI Pl nput St r eaminputs from a source that is in GZIP
format. It is derived from | nf | at er | nput St r eam and the constructor is supplied an

| nput St ream

Use &ZI Pl nput St r eamand &ZI PQut put St r eamon a single stream, which could be a file.
However, it can be more efficient than a zip stream because it does not require creating a
directory of zipped files.

ZipFile: Example code

Let's look into the Zi pFi | e and Zi pEnt ry classes. These are not actually in the 1/0O hierarchy
but they are good to know about because lots of people have zip files.

The Zi pFi | e class allows us to read a zip file. A zip file consists of two parts: a list of entries
of what's been zipped and the data itself. You read the set of entries using entri es() and
pick out a particular one to unzip. A Zi pEnt r y object represents the file you have selected to
uncompress. For that particular Zi pEnt ry, you can obtain an | nput St r eamusing

get I nput St r ean() which, when read, returns the uncompressed data. The Java library is
kept in a jar file, which is in zip file format. You can use a Zi pFi | e to read a jar file if you
want.

Here is the example code:

import java.util.zip.*;
inport java.util.*;
import java.io.*;

Introduction to Java I/O Page 39



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

cl ass ZipFil eExanpl e

public static void main(String argv[])

{
try
ZipFile zf = new ZipFile("test.zip");
// Enurerate the entries
Enurmeration zip_entries = zf.entries();
String last_name = null;
whi | e(zi p_entries. hasMreEl emrents())
{
ZipEntry ze = (ZipEntry) zip_entries.nextEl ement();
Systemout.printin("Entry " + ze.getNanme());
| ast_nane = ze. get Nane();
}
/'l Lets unpack the | ast one as an exanple
/1 1ts name is in |last_nanme
ZipEntry ze = zf.getEntry(last_nane);
if (ze == null)
System out. println("Cannot find entry");
el se
{
Buf f eredReader r =
new Buf f er edReader (new | nput St r eanReader (
zf.getl nput Streanfze)));
long size = ze.getSize();
if (size > 0)
{
Systemout.printin("File is " + size);
String line = r.readLi ne();
if (line !'=null)
Systemout.printIn("First lineis " + line);
r.close();
}
catch(1l Cexception e)
{
Systemout.println(e);
}
}

Introduction to Java I/O Page 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Zi pl nput Stream net hods: lelnputStream

get Next Entry()

Zi pl nput St r eamis our next stop. You can read

a zip file in a stream using this class. You get the

read() first entry in the directory of what has been zipped.
You can then read the data for the first entry, which
is automatically unzipped. Then you get the next
entry and unzip it, and so forth. Zi pl nput St r eam
extends | nf | at er | nput St r eam The methods
include getting the next entry from the table and
closing off the entry. Closing the entry allows for
the next entry to be read without having to finish
reading the data for the current entry. The r ead()
method in ZI Pl nput St r eamwill return -1 when
the last of the entries is read.

cl oseEntry()

ZiplnputStream: Example code

The code below is an example of unzipping a file. You are going to open t est . zi p, which is
our zip file. That file is the source of a Zi pl nput St r eam So zi s is pointingto t est . zi p.
The get Next Ent ry() method initially returns the first entry from the zip file table. A reference
to that entry is now available.

If the entry is null, it means that end-of-file has been reached. Reading from the zip file from
this point, data that is read corresponds to that entry and is automatically uncompressed. In
this case, a Dat al nput St r eamhas been wrappered and used to read it. The di s object is
just going to read from the corresponding place in the zip file and close it. The next entry will
open the file and start reading from the zip file again, reading the next entry.

Here is the example code:

import java.util.zip.*;
i nport java.io.*;
cl ass Zipl nput StreanExanpl e
{
public static void main(String argv[])
{
try

FilelnputStreamfis = new Fil el nputStream"test. zip");
Zi pl nput Stream zi s = new Zi pl nput Strean(fis);
Zi pEntry ze;
/1 Get the first entry
ze = zis.getNextEntry();
if (ze == null)
Systemout.println("End entries");
el se

/1 Use it as stream or reader
Dat al nput Stream di s = new Dat al nput Strean( zi s);
int i =dis.readlnt();
Systemout.printIn("File contains " + i);
zis.closeEntry();

Introduction to Java I/O Page 41



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

zis.close();
cat ch(Exception e)

Systemout.printin(e);

}

Zi pQut put St r eam net hods: ZipoutputStream

put Next Entry()
A Zi pl nput St r eamreads a zip-formatted
stream; a Zi pQut put St r eamwrites zip-formatted
wite() streams. This class allows us to create a zip file.
Zi pQut put St r eamextends
Def | at er Qut put St r eam One method in
Zi pQut put St r eamis put Next Entry(), which
puts the next entry into the list of compressed files.
You need to create a zip entry for each file you are
compressing.

cl oseEntry()

The put Next Ent r y() method writes an entry
and positions the stream for data output. You can
start writing the next set of compressed data.
Similar to the cl ose() methods in other classes,
the cl oseEnt ry() method closes a finished
entry; you are ready to create the next one.

ZipOutputStream: Example code

In the code below, an output file is constructed called t est . zi p. A Zi pQut put St r eamis
then constructed using that file. We want to compresss the file t est . t xt onto the zip file, so
we construct a Zi pEnt r y using that name.

test. t xt is going to show up in the directory for the zip file. At this point, anything written to
the Zi pQut put St r eamis now data for that entry and is written in compressed form.

A Dat aQut put St r eamis wrappered around zos. Then we write an integer, and the entry is
closed. At this point, another Zi pEnt r y could now be created and written out. You could use
W nZi p to decompress this file or use the preceding example to read the file.

Here is the example code:

import java.util.zip.*;
import java.io.*;
cl ass Zi pQut put St reanExanpl e

public static void main(String argv[])

Introduction to Java I/O Page 42



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Fil eCut put Stream fos = new Fil eCut put Stream("test. zip");
Zi pQut put Stream zos = new Zi pQut put Strean(fos);

ZipEntry ze = new ZipEntry("test.txt");

zos. put Next Entry(ze);

/1 Use it as output

Dat aCut put Stream dos = new Dat aCut put Strean(zos);
dos.writelnt (1);

zos. cl oseEntry();

/1 Put another entry or close it

zos. cl ose();

}
cat ch(Exception e)

Systemout.printin(e);
}

Introduction to Java I/O Page 43



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 10. Data I/O

Introduction

This section introduces data input and output:

* Dat al nput St r eam
* Dat aCut put St r eam

What is Data I/0?

Several classes implement the Dat al nput and Dat aCut put interfaces. Let's talk about how
they work.

The primitive data types, such as i nt s, may be represented differently on the various
platforms that Java code runs on. For example, an i nt may be represented with the most
significant byte first (called Big Endian), as on an IBM mainframe, or with the least significant
byte first (called Little Endian), as on an IBM PC. If you wrote out an i nt in binary form with a
C program on one platform and tried to read it in on the other platform, the values would not
agree.

That's where Dat al nput and Dat aQut put come in. Now you can take a primitive, like an

i nt, and write it out. It is written in a platform-independent form. You can read that i nt back
in on any other Java virtual machine and, regardless of where it was produced, it will be turned
back into an i nt of the proper value.

All the primitives, such as doubl es, i nts, short s, | ongs, and so forth, can be written in a
system platform-independent manner using the methods in Dat aCut put . Likewise, they can
be read using the methods in Dat al nput .

Introduction to Java I/O Page 44



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

i eode methods: Unicode Text Format

void witeUTF(String s)

A Stri ng object is written in Unicode Text Format
or UTF for short. Strings are composed of
two-byte Unicode characters. UTF is a method for
compressing the most common Unicode values. If
the St ri ng contains just ASCII characters, the
values between 1 and 127 are written as a single
byte. Values 128 - 2047 are written as two bytes.
For some uncommon Unicode values, three bytes
are used to represent their value. This expansion
of some values is much rarer than the compression
of ASCII values, so using UTF to represent a

Stri ng is a net gain.

String readUTF()

DatalnputStream and DataOutputStream: Example code

Two classes, Dat al nput St r eamand Dat aQut put St r eam implement Dat al nput and
Dat aQut put . Their methods include implementations for r eadl nt (), wi tel nt (), and the
other methods in the interfaces. You wrapper a Dat al nput St r eamaround an

. When r eadl nt () is called, four bytes are read from the underlying stream and the resulting
i nt is returned. Correspondingly, you wrapper a Dat aQut put St r eamaround an
OutputStream.

The code example below shows a Dat aQut put St r eamthat uses a Fi | eQut put St r eamas
its underlying stream. The file is opened using a Fi | el nput St r eam which has a

Dat al nput St r eamwrappered around it. The dat a. dat could be written on an IBM
mainframe and read back on an IBM PC.

Here is the example code:

import java.io.*;
cl ass Dat al nput Qut put Exanpl e
{

static BufferedReader system.in = new BufferedReader
(new I nput StreanReader (Systemin));

public static void main(String argv[])

{

/]l Create it
{
try

Fil eCut put Stream fos = new Fil eQut put Strean("data. dat");
Dat aCut put St ream dos = new Dat aCut put St rean(fos);
/'l Read in three hotels
for (int i =0; i <3; i++)
{
Hotel a_hotel = new Hotel ();
a_hotel .input(systemin);
a_hotel .wite_to_dos(dos);

Introduction to Java I/O Page 45



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

dos. cl ose();
}
catch(l Cexception e)

Systemerr.println(e);

}

}

// Now read it

{

try
FilelnputStreamfis = new Fil el nputStream"data.dat");
Dat al nput Stream di s = new Dat al nput Strean(fis);
Hotel a_hotel = new Hotel ();
while (a_hotel.read_fromdis(dis))

{
a_hotel . debug_print();

di s.close();
}

catch(l Cexception e)
{
Systemerr.printin(e);
}

}
}
}
cl ass Hot el
{

private String naneg;

private int roons;

private String | ocation;

bool ean i nput (Buf f er edReader in)

{

try
{
System out. println("Nane: ");
nanme = in.readLine();

System out. println("Roons: ");
String tenp = in.readLine();
rooms = to_int(tenp);

System out.println("Location: ");
| ocation = in.readLine();

}
cat ch(| OException e)
{

Systemerr.printin(e);
return fal se;
}

return true;

bool ean write_to_dos(DataCutput Stream dos)
{
try
{
dos. writ eUTF( nane) ;
dos.writelnt(roons);
dos.writeUTF(l ocation);

catch(l Cexception e)
Systemerr.println(e);

return fal se;

}

return true;

Introduction to Java I/O Page 46



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

bool ean read_from di s(Dat al nput Stream di s)
{
try
{
nanme = di s.readUTF();
rooms = dis.readlnt();
| ocation = dis.readUTF();

}
cat ch( EOFException e)
{

return fal se;
}
catch(l Cexception e)

Systemerr.println(e);
return fal se;

}

return true;
}

voi d debug_print()
{

Systemout.println("Nane :" + name +
": Rooms : " + rooms + ": at :" + |location+ ":");

static int to_int(String val ue)

int i =0;
try
{

i = Integer.parselnt(val ue);

cat ch( Nurmber For mat Excepti on e)

{}

return i;

}

RandomAccessFile: Example code

RandomAccessFi | e implements both Dat al nput and Dat aCut put . You construct
RandomAccessFi | e with a file name. Then you can use both read and write methods, as
readlnt () andwitelnt(),onaRandomAccessFil e.

Random access means you can position the next read or write to occur at a particular byte
position within the file. You can obtain the current position with get Fi | ePoi nt er () . Later on,
you can go back to that same position by passing it to seek() .

The example code below shows writing three i nt s to a file. The file position before the second

write is stored in the pointer. After writing the next two i nt s, the position is restored to that
pointer. The r eadl nt () returns the value 15.

Here is the example code:

import java.io.*;

cl ass RandomAccessFi | eExanpl e
{

Introduction to Java I/O Page 47



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public static void main(String argv[])

{
try

{
RandomAccessFil e raf =

new RandomAccessFil e("randomdat”", "rw');
raf .witelnt(12);
| ong pointer = raf.getFilePointer();
raf.writelnt(15);
raf .witelnt(16);
/1 Now read back the 2nd one
raf.seek(pointer);
int i =raf.readlnt();
Systemout.println("Read " + i);

catch (1 OException e)
{

Systemout.println(e);

}

Introduction to Java I/O Page 48



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 11. Object serialization

Introduction

This section introduces object serialization and covers the following topics:

*  What is object serialization and how does it work?
* Features of a serializable class
* Externalizable

What is object serialization?

Object serialization lets you take all the data attributes, write them out as an object, and read
them back in as an object. Object serialization is quite useful when you need to use object
persistence. GUI builders of JavaBeans use serialization to store the attributes of a JavaBean
so that it can be accessed or modified by others.

You could actually use Dat aQuput St r eans and Dat al nput St r eans to write each attribute
out individually, and then you could read them back in on the other end. But you want to deal
with the entire object, not its individual attributes. You want to be able to simply store away an
object or send it over a stream of objects. Object serialization takes the data members of an
object and stores them away or retrieves them, or sends them over a stream.

You have the Obj ect | nput interface, which extends the Dat al nput interface, and
Obj ect Qut put interface, which extends Dat aQut put , so you are still going to have the
methods readl nt () andwritel nt () and so forth. Cbj ect | nput St r eam which
implements Qbj ect | nput, is going to read what Obj ect Qut put St r eamproduces.

How object serialization works

If you want to use the Qbj ect | nput and Cbj ect Qut put interface, the class must be
serializable. How is a class serializable?

The serializable characteristic is assigned when a class is first defined. Your class must
implement the Ser i al i zabl e interface. This marker interface says to the Java virtual
machine that you want to allow this class to be serializable. You don't have to add any
additional methods or anything.

There are a couple of other features of a serializable class. First, it has to have a zero
parameter constructor. When you read the object, it needs to be able to construct and allocate
memory for an object, and it is going to fill in that memory from what it has read from the serial
stream.

The static fields, or class attributes, are not saved because they are not part of an object. If

Introduction to Java I/O Page 49



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

you do not want a data attribute to be serialized, you can make it transient. That would save on
the amount of storage or transmission required to transmit an object.

Using ObjectOutputStream: Example code

Let's see how this works.

A Fi | eQbj ect St r eamis created using obj ect . dat , which is going to be used to store
away objects.

You create Cbj ect Qut put St r eamusing that file. Any other Qut put St r eam such as that
returned by get Qut put St r ean() for a socket, could have been used. And now you have
Your O ass. This is whatever class you have made up. You create an object of that class. If
you want to store that away on the Cbj ect Qut put St r eam you simply call wri t eCbj ect ()
and pass it the object. That's it!

The class could have 20 attributes in it or 50 attributes; it doesn't matter. All of those attributes
are automatically stored away. The class information is stored automatically.

The Java code knows what's in a class and knows the attributes in a class. In fact, the first
time the code stores such an object, it stores a couple of markers about what the class is.
Callingwri t eQbj ect () is all that is necessary to store an object.

Here is the example code:

Fi | eQut put Sream fos = new Fi | eCQut put Strean("obj ect.dat");
hj ect Qut put Stream oos = new Obj ect Qut put Strean(fos);
Your Cl ass yc = new YourC ass();

oos.writeQhject(yc);

Reading an object from a file: Example code

Now let's read that object from the file. Create a Fi | el nput St r eamusing the file

obj ect . dat that was written in the previous panel. That file is used as the source for an

bj ect | nput St r eam You want to read the object, so we call r eadCbj ect () and the object
is read off the file. The attributes of the Your Cl ass object are filled in with the data we have

stored away.

The r eadObj ect () method returns a reference to an Obj ect class object. You wrote out a
Your Cl ass object, so you have to cast the reference to Your Cl ass. You have to keep track
of the order in which you wrote things out. If you stored away a Your Cl ass object, and then
you stored away an Anot her Cl ass object, you have to read them back in the same
sequence.

Typically, you would write things out in a sequence, and then you would read them back in the
same sequence. However, there are some alternative approaches, discussed in the next

Introduction to Java I/O Page 50



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

panel.

Here is the example code:

Filelnput Streamfis = new Fil el nput Stream ("object.dat");
bj ectl nput Stream oi s = new Cbj ect | nput Stream (fis);
Your Cl ass yc;

yc = (YourC ass) ois.readQject();

Alternative ways to read back: Example code

If you do not know the order in which the objects were stored, you can test for the class of the
object that was returned by r eadObj ect () using i nst anceof , or you can use the

get d ass() method to determine the class of the object. Then you can assign the returned
value to the appropriate object using a cast. You can do more elaborate reading and writing as
you read back an object, test what it is, and then do an appropriate cast.

That's all you have to do to store away an object in a file. Now, you want to transmit it over a
socket. All the values in that object are transmitted over a socket if you used the appropriate
input and output streams from the socket object. Remote method invocation (RMI) passes
objects using object serialization over a socket.

Here is the example code:

FilelnputStreamfis = FileinputStrean{"object.dat");
bj ectl nput Stream oi s = new Cbj ect | nput Strean(fis);
Obj ect obj ect;
obj ect = ois.readObject();
if (object instanceof Yourd ass)

{

Yourd ass yc = object;

/] Performoperations with yc;

else if (object instance of Anotherd ass)
Anot her d ass ac = object;

/1 Performoperations with ac

}

Add serializable: Example code

We said before that if the base class implements Seri al i zabl e, all you have to do is mark
your derived class Seri al i zabl e. But what if your base class doesn't implement it? You can
still implement Ser i al i zabl e in your derived class.

If the base class does not implement Ser i al i zabl e but you want to use serialization, you
simply have to get all the attributes out of the base class and store them away. Your additional
attributes are stored automatically, but the base class attributes are not. You have to use

get () methods, and if the base class does not have gets and sets for its attributes, then you
won't be able to serialize the base class. You need to define your own r eadbj ect () and

Introduction to Java I/O Page 51



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

writeQbject() methods, which we describe next.

Here is the example code;

cl ass ABased ass

{

private int val ue;
int getVal ue()

return val ue;
voi d setVal ue(int val ue)

this.value = val ue;

}
}

cl ass Yourd ass extends ABased ass inplenments Serializable

{
1.

Custom serialization: Example code

You may want to use custom serialization if the base class does not support serialization and
for some reason you don't like the default customization. Define your own r eadQbj ect () and
writeQbject() methods. The fields or attributes are no longer automatically serialized if you
define these methods. You have to take care of saving and restoring each of your attributes.

To store away the non-transient and non-static attributes for each object, call

defaul t Wit eQbject (). The attributes can be loaded with def aul t ReadObj ect (). You
can store and load additional values in your method, for instance, ones that you have declared
to be transient. If the class you derived from is serializable, then your data for the super class
is already taken care of. All you have to do then is add your own custom code.

The example code below shows how r eadCbj ect () and wri t ebj ect () are coded. Note
that ABaseCl ass does not implement Ser i al i zabl e, but it does have get Val ue() and
set Val ue().

Here is the example code:

cl ass ABased ass

{

private int val ue;
i nt getVal ue()

return val ue;
voi d setVal ue(int val ue)

{

this.value = val ue;

}
}

cl ass YourC ass extends ABaseC ass inplenents Serializable

Introduction to Java I/O Page 52



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

{

i nt anot her;
private void readCbject (Objectlnput Stream oi s)
throws | OException, C assNot FoundException

oi s. def aul t ReadObj ect () ;
set Val ue(ois.readlnt());

}

private void witeObject(ObjectQutputStream 0os)
throws | OException

oos. defaul t WiteObject();
oos.writelnt(getValue());

}

Externalizable: Example code

As you become more experienced with Java programming, you may decide you would like to
customize the way things are done. You want to implement your own complete way of doing
data persistence.

If you want to add your own custom code for storing away base class or superclass data, you
must implement Ext er nal i zabl e. Ext er nal i zabl e has two methods: r eadExt er nal ()
and w i t eExt ernal (). In this case, you are fully responsible for everything.

Here is the example code:

private void readExternal

(Onj ect | nput St ream oi s)

throws | OException, C assNot FoundException
private void witeExternal (

Obj ect Qut put St r eam 0s)

throws | CException

Introduction to Java I/O Page 53



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 12. Tokenizing

Introduction

This last stop on our journey introduces string tokenizing and covers the following topics:

* StringTokeni zer
* St r eaniTokeni zer

StringTokent zer APLs: Using StringTokenizer
StringTokeni zer(String string_to_tokenize,
String delimters) Remember earlier when you wrote lines that
contain data items separated by delimiters? The
bool ean hasMor eTokens() delimiters, which separate the data items (or

String nextToken() tokens, as they are called), might be commas or

String next Token(String new delinite@micolons or tab characters.

i nt count Tokens()
When you read each line back in, you need to
separate the tokens. Each line might represent a
name and address, such as in a mail-merge file.
We want to break that line up into its individual
parts, such as name, street, city, state, and zip.

The way to do that is to use the

StringTokeni zer class. Although this is not part
of the 1/O hierarchy, we'll cover it here because it is
useful in reading delimited streams. Here's how
that class works.

Constructing a StringTokenizer object

You construct an object of St ri ngTokeni zer, giving it the string you want to break up and
what the delimiters are. That is, you tell it what characters are going to be used to break up the
tokens in the string. After we have constructed an object of that type, we have a couple of
things we can ask it:

* How many tokens are in this string?
* Have | used up all my tokens in this string?
*  Give me the next token in the string.

StringTokeni zer will break up the string and return to you as a St ri ng the characters up
to the next delimiter. Its methods will throw a NoSuchEl enent Except i on if there are no
more tokens. Because this exception is derived from Runt i meExcept i on so that it is not
declared with a throws clause, you do not need to catch it.

Introduction to Java I/O Page 54



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

One more thing: you can switch delimiters for each token. In other words, even though you
have created a St ri ngTokeni zer object that is looking for particular delimiters, you can say,
"For this next token, change the delimiter."

The example on the next panel illustrates this process.

StringTokenizer: Example code

Look at the code below. Notice our string has a vertical bar and a question mark. Those are
our delimiters. We are going to create a new St ri ngTokeni zer, and we are going to pass it
the string abc (bar) def (question mark) ghi.We are going to use as our delimiters
a bar and a question mark.

The St ri ngTokeni zer hasMor eTokens() returns t r ue if there are still more tokens. If it is
t rue, we are going to call next Token() . This returns a St ri ng, and s will have the value
abc in it the first time around the whi | e loop.

We come around the loop a second time and hasMor eTokens() is still true. Now when we
get the next token, def is the value of the string that is returned.

Go around the loop a third time and hasMor eTokens() is still t rue; ghi is returned.

Now go around the loop one more time and hasMor eTokens() is f al se. At this point, we
drop out of the loop. So we have broken up the string without too much effort.

Here is the example code:

import java.io.*;
import java.util.*;
public class StringTokeni zer Exanpl e

public static void main(String args[])
{
String line = \"abc| def ?2ghi\";
StringTokeni zer st = new StringTokenizer(line, \"|?\");
whi |l e (st.hasMreTokens())
{
String s = st.nextToken();
Systemout.println(\"Token is \" + s);
}
}
}

StreamTokenizer

You can parse an entire input stream. Unlike the St ri ngTokeni zer , which parses a String,
the St r eanifokeni zer reads from a Reader and breaks the stream into tokens. The parsing
process is controlled by syntax tables and flags.

Introduction to Java I/O Page 55



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Each token that is parsed is placed in a category. The categories include identifiers, numbers,
quoted strings, and various comment styles. The parsing that is performed is suitable for
breaking a Java, C, or C++ source file into its tokens. St r eamTokeni zer is not in the 1/O
hierarchy, but because it is used with streams, we cover it here.

The St r eanmTokeni zer recognizes characters in the range from u0000 through uOOFF. Each
character value can have up to five possible attributes. The attributes are white space,
alphabetic, numeric, string quote, and comment character.

A character that is white space is used to separate tokens.

An alphabetic character is part of an identifier.

A numeric character can be part of an identifier or a number.

A string quote character surrounds a quoted string.

A comment character precedes or surrounds a comment.

A character that does not have any of these attributes is an ordinary character. When an
ordinary character is encountered, it is treated as a single character token.

E

Flags can be set to alter the parsing. Line terminators can either be tokens or white space
separating tokens. C-style and C++-style comments can be recognized and skipped.
Identifiers are converted to lower case or left as is.

Use of StreamTokenizer

To use a St reanifokeni zer, you construct it with the underlying Reader . Then you set up
the syntax tables and flags. Next, you loop on the tokens, calling next Token() until it returns
TT_EOF.

The next Token() method parses the next token.The type is both returned by the method
and also placed in the type field. The value of the token is placed in the sval field (Stri ng
value) if the token is a word or in the nval field (nurer i c value) if the token is a number.

The token type can be either a character or a value, which represents the type of the token. If
a token consists of a single character, the value of the type is the character value. If the token
is a quoted string, the value is the value of the quote character. Otherwise it is one of the
following:

*  TT_EOF means the end of the stream has been read.

*  TT_EOL means the end of the line has been read (if end of line characters are treated as
tokens).

*  TT_NUMBER means that a number token has been read.

*  TT_WORD means that a word token has been read.

Methods of StreamTokenizer

There are many methods in St r eaniTokeni zer to set up the syntax tables. We'll only

Introduction to Java I/O Page 56



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

mention two here. The firstis r eset Synt ax() , which sets all characters to ordinary. The
second is wor dChar s( ) , which gives a set of characters the alphabetic attribute.

StreamTokenizer: Example code

This example is a simple one that shows the use of the St r eanifokeni zer . It breaks a file
into words consisting of lower- or upper-case letters. When a word is found, next Token()
returns TT_EOF.

If an ordinary character is found (in this case, anything not set as alphabetic), next Token()
returns the value of that character.

inport java.io.*;
import java.util.*;
public class StreanTokeni zer Exanpl e
{
public static void main(String args[])
{
try

Fil eReader fr = new Fil eReader(t.txt);

Buf f er edReader br = new BufferedReader (fr);

St reanifokeni zer st = new Streanifokeni zer (br);

st.reset Syntax();

st.wordChars(\' A", \"2\");

st.wordChars(\'a\', \'z\");

int type;

while ((type = st.nextToken()) != StreanilTokenizer. TT_EOF)

if (type == Streaniokenizer. TT_WORD)
System out. println(st.sval);
}

}
catch (I Cexception e)
{
Systemout.printin(e);
}
}
}

Introduction to Java I/O Page 57



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 13. Lab
Setup

The purpose of this lab is to give you a chance to use the JDK on some real code.

If you worked through the topics, you're familiar with the code samples. The code was
developed in Java. You can download the code samples and the JDK, then make your own
modifications to the code. Then you'll recompile and run it. Let's begin the setup now. Make
sure you are online so you can download the Java Development Kit. You may select any JDK,
but we suggest selecting Java Development Kit 1.1 Platform (JDK 1.1). JDK 1.1 runs more
programs than JDK 1.02 but is much smaller than JDK 1.2. Follow the instructions in the
package to install the JDK.

In the gray scrolling text box, scroll down until you see the hypertext link to download the JDK.
When you've finished downloading the JDK, come back to this part of the course to get the
sample code and a database associated with the code.

Download the JDK .

If you already have the JDK, click Next to continue.

Download Samples

Now let's download the samples . Move the archive file to your computer hard drive into a
directory such as Java IO Lab. From your computer operating system, unpack the zip file into
the Java IO Lab directory. In the directory you will see code sample files.

There are no special instructions with this lab. You may change the code any way you wish,
then compile and run it.

Introduction to Java I/O Page 58


http://java.sun.com/products/OV_jdkProduct.html
http://java.sun.com/products/OV_jdkProduct.html
http://java.sun.com/products/OV_jdkProduct.html
javaio-code.zip
javaio-code.zip
javaio-code.zip

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 14. Wrapup

In summary

This rounds out our tour of the j ava. i 0 package, a core API in the Java platform. We've
covered a lot of ground in this tutorial. You've learned that input and ouput in the Java
language is organized around the concept of streams, and that all input is done through
subclasses of | nput St r eamand that all output is done through subclasses of

Qut put St r eam (Well, that's not quite true. You also learned about the one exception, class
RandomAccessFi | e, which handles files that allow random access and perhaps intermixed

reading and writing of the file.)

We've covered all the basics from buffering and filtering to checksumming, data compression,
and serializing objects. We encourage you to reinforce this knowledge by working with the
sample code until you feel comfortable.

Resources

Learn more about the Java programming language and Java I/O from these resources:

*  The Java Tutorial: Essential Java Classes has an excellent lesson on 1/O.

* " Java l/O " by Elliotte Rusty Harrold (O'Reilly, 1999) is the quintessential guide to
streaming in the Java language.

* Popular Java technology writer Todd Sundsted wrote an interesting article on Reader s
and Wit ers: Use the two "R"s of Java 1.1 -- Readers and Writers .

* Review the java.io 1.1 package specification .

*  You may also want to review the 1/O specification for the Java 2 platform .

* If you are relatively new to Java programming, the Java language essentials tutorial
(developerWorks, November 2000) is an excellent resource.

Feedback

Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics, and
two PDF files. Our ability to generate multiple text and binary formats from a single source file
illustrates the power and flexibility of XML.

Introduction to Java I/O Page 59


http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://www.amazon.com/exec/obidos/ASIN/1565924851/qid%3D988047598/002-4395788-9584816
http://www.amazon.com/exec/obidos/ASIN/1565924851/qid%3D988047598/002-4395788-9584816
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://www.javaworld.com/jw-11-1997/jw-11-howto.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.1/docs/api/Package-java.io.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/java/io/package-summary.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument

