P

C++.mkr Page 1 Wednesday, December 9, 1998 727 AM

C++ Review for COP-3530

This material is excer pted from Data Structures and Algorithm Analysisin C++ (Second
Edition) by Mark Allen Weissand is copyrighted. All rights arereserved.

1 C++ Classes

In this course, we will write many data structures. All of the data structures will
be objedsthat store data (usually a collection d identicdly typed items), and pro-
vide functions that manipulate the wlledion. In C++ (and aher languages), this
isaacomplished by using aclass. This sction describes the C++ class

/**

*Ac lassf ors inulatingani ntegermenoryc ell.

*/
class| ntCell
{
p ublic:
/**
*Constructt hel ntCell.
*I nitialv aluei sO.
*/
I ntCell ()
{s toredvalue=0 ;}
/**
*C onstructt hel ntCell.
*I nitialv aluei si nitial Val ue.
*/
I ntCell (i nti nitialValue)
{s toredValue=i nitialValue;}
/**
*Returnt hes toredv al ue.
*/
i ntr ead()
{r eturns toredVal ue;}
/**
*C hanget hestoredv aluet ox .
*/
voidwrite(i ntx)
{s toredvalue=x ;}
private:
i nts toredVal ue;
.
Figurel A complete declaration of an | Nt Cel | dlass

<

b

C++.mkr Page 2 Wednesday, December 9, 1998 727 AM

1.1 Basiccl ass Syntax

A classin C++ consists of its members. These members can be ather data or
functions. The functions are cdled member functions. Each instance of a dassis
an dbjed. Each dbjed contains the data components ecified in the class(unless
the data components are static , detail that can be safely ignored for now). A
member function is used to ad on an dbjed. Sometimes member functions are
called methods.

Asan example, Figure 1isthel nt Cel | class Inthel nt Cel | class each
instance of thel nt Cel | — an| nt Cel | objed — contains a single data mem-
ber named st or edVal ue. Everything else in this particular class is a method.
In our example, there ae four methods. Two o these methods are r ead and
write. The other two are spedal methods known as constructors. Let us
describe some key feaures.

First, notice the two labels publ i ¢ and pri vat e. These labels determine
visihility of class members. In this example, everything except the st or ed-
Val ue data member ispubl i c. st or edVal ue ispri vat e. A member that
ispubl i ¢ may be acessd by any method in any class A member that ispri -
vat e may only be acessed by methodsin its class Typicdly, data members are
dedared pri vat e, thus restricting accessto internal details of the dass while
methods intended for general use are made publ i c. Thisis known as informa-
tion hiding. By usingpr i vat e data members, we @n change the internal repre-
sentation o the object, without having an effect on ather parts of the program that
use the object. Thisis becaise the objed is accessed throughthe publ i ¢ mem-
ber functions, whaose viewable behavior remains unchanged. The users of the
classdo na need to know internal details of how the dassis implemented. In
many cases having this accessleads to trouble. For instance, in a dassthat stored
dates using month, day, and yea, by making the monith, day, and year pri vat e,
we prohibit an outsider from setting these data members to illegal dates, such as
Feb 29, 2001. However, some methods may be for internal use, andcan bepri -
vat e. Ina dass al membersarepri vat e by default, so theinitial publ i c is
not optional.

Semnd, we see two constructors. A constructor is a method that describes
how an instance of the dassis constructed. If no constructor is explicitly defined,
one that initializes the data members using language defaults is automatically
generated. Thel nt Cel | classdefines two constructors. The first is called if no
parameter is gedfied. Thesecondiscdled if ani nt parameter is provided, and
usesthat i nt toinitializethest or edVal ue member.

1.2 ExtraConstructor Syntax and Accessors
Althoughthe dass works as written, there is some extra syntax that makes for

better code. Four changes are shown in Figure 2 (we omit comments for brevity).
The differences are & follows:

&

b

C++.mkr Page 3 Wednesday, December 9, 1998 727 AM

/**

*Ac lassf ors inulatingani ntegermenoryc ell.
*/

class| ntCell

{

p ublic:
[*1 */ explicitl ntCell (i nti nitialValue=0)
[*2 */ . storedValue(i nitial Value)({}
/*3 */ i ntr ead()c onst
[*4 *] {r eturns toredVal ue;}
/*5 */ voidwrite(i ntx)
/*6 */ {s toredvValue=x ;}

private:
[*7 *] ints toredVal ue;

.

Figure?2 I nt Cel | classwithrevisions

Default parameters

Thel nt Cel | constructor illustrates the default parameter. As aresult, there ae
still two | ntCe | | constructors defined. One accgotsani niti alvVa | ue. The
other is the zero-parameter constructor, which isimplied because the one-param-
eter constructor says that i nitia | Valu e isoptional. The default value of 0
signifies that 0 is used if no parameter is provided. Default parameters can be
used in any function, but they are most commonly used in constructors.

Initializer list

Thel nt Cel | constructor uses an initializer list (line 2) prior to the body o the
constructor. The initializer list is used to initiali ze the data members directly. In
the example aove, there’' shardly adifference but using initiaizer listsinstead of
an assgnment statement in the body savestime in the cae where the data mem-
bers are dasstypesthat have complex initiali zations. In some casesit is required.
For instance, if a data member isconst (meaningit is not changeable dter the
objed has been constructed), then the data member’ s value can orly be initialized
intheinitializer list. Also, if adatamember isitself a dasstype that does not have
a zero-parameter constructor, then it must be initialized in the initiali zer list.
We'll see examples of mandatory use of theinitidizer list starting in Chapter 4.

expl i cit constructor

Thel nt Cel | constructor isexpl i cit. Youshould make dl one-parameter
constructorsexpli ci t toavoid behind the scenes type-conversions. Otherwise,
there ae somewhat lenient rules that will allow type-conversions without expli cit
casting operations. Usually thisis unwanted behavior, that destroys grong-typ-
ing, and can lea to hard-to-find bugs. As an example consider the foll owing:

&

b

C++.mkr Page4 Wednesday, December 9, 1998 727 AM

IntCello bj; /1o bj isanl ntCell
obj=3 7; /1S houldnotc omgle:t ypemis match

The wode fragment above cnstructsan | nt Cel | object obj andthen performs
an assgnment statement. But the assgnment statement should not work, because
the right-hand side of the assgnment operator is not another | nt Cel | . obj ’s
write method shoud have been used instead. However, C++ has lenient rules.
Normally a one-parameter constructor defines an implicit type conversion, in
which atemporary objed is creaed that makes an assignment (or parameter to a
function) compatible. In this case, the compiler would attempt to convert

obj=3 7; /1S houldnotc ompgle:t ypemis match
into

IntCellt enporary=3 7;
obj=t enporary;

Noticethat the construction d the temporary can be performed by wsing the
one-parameter constructor. The use of explicit means that a one parameter con-
structor cannot be used to generate an implicit temporary. Thus, since
I nt Cel | "sconstructor is dedared explicit, the compiler will corredly complain
that there is a type mismatch.

In Section 7.8, we'll see a example where the lenient rules are helpful, but
thisisthe exception, rather than the rule.

Theexpl i cit keywordisnew, and na al compilers support it. However,
the preprocesor can be used to replace dl occurrences of expl i ¢i t with white
space’, so there’s no reason rot to put expl i ci t in your code.

Constant member function

A member function that examines but does not change the state of its objed isan
accessor. A member function that changes the state is a mutator (because it
mutates the state of the object). In the typical collection class for instance,
i sSEnpt y isan accesoor, while mak eEnpt y isamutator.

In C++, we can mark each member function as being an accesor or a muta-
tor. Doing so is an important part of the design process and should na be viewed
as smply a omment. Indeed, there ae important semantic consequences. For
instance, mutators cannot be gplied to constant objects. By default, all member
functions are mutators. To make amember function an accessor, we must add the
keyword const after the dosing parenthesis that ends the parameter type list.
The mnst-nessis part of the signature. const can be used with many diff erent
meanings. The function dedaration can have const in threedifferent contexts.

1 Usethe foll owing statement:
#definee xplicit

EB C++.mkr Page5 Wednesday, December 9, 1998 727 AM

Only the const after a closing parenthesis ggnifies an aceswor. Other uses are
described in Sedions 2.2 and 2.3.

Inthel nt Cel | class re ad is clealy an acassor: it does nat change the
state of the I nt Cel | . Thusit is made a onstant member function at line 3. If a
member function is marked as an accessor but has an implementation that
changes the value of any data member, a compiler error is generated.?

#ifndef _ IntCell _H_
#define _IntCell _H_

/**

*Ac lassf ors inulatingani ntegermenoryc ell.
*/

class| ntCell

{
p ublic:
explicitl ntCell (i nti nitialValue=0)
intr ead()c onst;
voidwrite(i ntx)
private:
i nts toredVal ue;

b
$ # endi f

Figure3 | nt Cel | classinterface, infile IntCell.h

1.3 Separation of Interface and Implementation

The dassin Figure 2 contains all the corred syntadic constructs. However, in
C++ it ismore common to separate the dassinterface from its implementation.
The interfacelists the dassand its members (data and functions). The implemen-
tation provides implementations of the functions.

Figure 3 shows the dassinterface for | nt Cel | , Figure 4 shows the imple-
mentation, and Figure 5 shows a mai n routine that uses the | nt Cel | . Some
important points follow:

Preprocessor commands

The interface is typicdly placed in afile that ends with . h. Source code that
reguires knowledge of the interfacemust #in clude the interfacefile. In our
case, thisis both the implementation file and the fil e that contains main . Occa-
sionally, a complicated project will have files including other files, and there is

2. Datamembers can be marked mt abl e to indicate that const-nessshould not apply to them. Thisis anew
feaure, that is not supported on all compilers.

P &

EB C++.mkr Page 6 Wednesday, December 9, 1998 727 AM

the danger that an interfacemight be read twicein the curse of compiling afile.
This can beillegal. To guard against this, each header file uses the preprocessor
to define asymbol when the dassinterfaceisread. Thisis srown on the first two
linesin Figure 3. The symbol name, _Int Cell _H_, should not appear in any
other file; usualy we nstruct it from the filename. Thefirst line of the interface
file testsif the symbadl is undefined. If so, we can processthe file. Otherwise, we
do not processthe file (by skipping to the #endi f), because we know that we
have dready rea thefile.

Scoping operator

In theimplementationfile, which typically endsin. cpp, . cc, or. C, ead mem-
ber function must identify the class that it is part of. Otherwise, it would be
asaumed that the function isin gobal scope (and zillions of errors would result).
The syntax isCl assNane: : nenber . The: : iscadled the scoping operator.

#include" IntCell.h"

/**
*Constructt hel ntCellw ithi nitial Val ue
*/
$ IntCell::IntCell (i nti nitialValue):s toredValue(i nitial Value)
{
}
/**

*Returnt hes toredv al ue.

*
/
intl ntCell::read()c onst
{
r eturns toredVal ue;
}
/**
*Storex .
*/
voidl ntCell::wite(i ntx)
{
s toredVal ue=x ;
}
Figure 4 | nt Cel | classimplementationin file IntCell.cpp

b

C++.mkr Page 7 Wednesday, December 9, 1998 727 AM

#include" IntCell.h"

intmain()

{

I ntCellm ; /1O r,lI ntCellm (0) ;b utn otl ntCellm () ;

m.wite(5)
cout< <" Cellc ontents:"< <m.read()< <endl;

returnoO;

Figure5 Program that uses IntCell infile TestIntCell.cpp

Signatures must match exactly

The signature of an implemented member function must match exadly the signa-
ture listed in the classinterface Recall that whether a member function is an
accesor (viathe const at the end) or amutator is part of the signature. Thus an
error would result if, for example, the const was omitted from exadly one of
ther ead signaturesin Figures 3 and 4. Note that default parameters are specified
in theinterface only. They are omitted in the implementation.

Objects are declared like primitive types

In C++, an objed is dedared just like a primitive type. Thus, the following are
legal dedarationsof anl nt Cel | object:

IntCello bj1; /1Z erop araneter constructor
IntCello bj2(1 2); [//0O ne paranmeter constructor

On the other hand, the following are incorred:

IntCello bj3=37 ; //C onstructori s explicit
IntCel lo bj4() ; //F unctiond eclaration

The dedaration o obj 3 isillegal because the one-parameter constructor is
explicit.Itwould belega otherwise. (In ather words, a dedaration that uses
the one parameter constructor must use the parentheses to signify the initia
value.) The declaration for obj 4 states that it is a function (defined elsewhere)
that takesno parametersandreturnsan | nt Cel | .

14 vector andstring

The new C++ standard defines two classes. thevect or andstri ng. vect or
is intended to replace the built-in C++ array that causes no end d troube. The

&

’

EB C++.mkr Page 8 Wednesday, December 9, 1998 727 AM

problem with the built-in C++ array is that it does not behave like afirst-class
objed. For instance, built-in arrays cannot be copied with =, abuilt-in array does
not remember how many items it can store, and its indexing operator does not
chedk that the index is valid. The built-in string is smply an array of characters,
and thus has the liabilities of arrays plus a few more. For instance == does not
correctly compare two strings.

Thevect or andst ri ng classesinthe STL tred arrays and strings as first-
classobjeds. A vect or knows how large it is. Two st ri ng objects can be
compared with ==, <, and so on. Bath vect or and st ri ng can be cpied with
=. If possble, you should avoid using the built-in C++ array and string. Because
thisis not dways possble, we discussthe built-in array and string in Section 2.6.

Unfortunately, thevect or does not come with index-range checing, andis
also not available onall compil ers. Fortunately, it is easy to write avect or class
with bounds-chedks, and a reasonable subset of vect or featuresis provided in
Appendix B. We use that class throughaut. Likewise, the st ri ng classis not
universally avail able; we provide asimple versionin Appendix B.

vect or andstri ng areeasy to use. The awdein Figure 6 reads a bunch of
strings into a vector<string> (natice that we spedfy the type of
vect or) andthen ouputsthem in reverse order. We usether esi ze method to
doudethevect or 'scapaaty if itisfull. Notice also, that siz e isamethod that
returnsthe sizeof thevect or . Without avect or andst ri ng class thiscode

$ would be much more mmplex.

#include<iostream h>

#i ncl ude " vector. h" /lv ector(ourv ersion,i nAppendixB)
#include" nystring.h" /ls tring(ourv ersion,i nAppendi xB)
intm ain()

{
v ector<string>v (5)
i nti tensRead=0 ;
stringx;

while(c in>>x)

{
i f(i temsRead==v .size())
v.resize(v .size()*2)
v[i tenmsRead++]=x

}

for(i nti=i temsRead-1 ;i> =0;i --)
cout< <v[i]< <endl;
returnoO;

Figure 6 Usingthevector class: Read some strings and output them in reverse
order.

P &

b

C++.mkr Page 9 Wednesday, December 9, 1998 727 AM

stringisasoeasy to use, and has al the relational and equality operators
to compare the states of two strings. Thusst r 1==str 2 ist ru e if the value of
the strings are the same. It also has a | engt h method that returns the string
length.

2 C++ Detalls

Like any language, C++ has its dare of detail s and language features. Some of
these are discusd in this section.

2.1 Pointers

A pointer variable is a variable that stores the address where another object
resides. It is the fundamental mechanism used in many data structures. For
instance, to store alist of items, we @uld use a @ntiguous array, but insertion
into the middle of the contiguous array requires relocation of many items. Rather
than store the collectionin an array, it iscommonto store each item in a separate,
noncontiguous piece of memory, that is allocated as the program runs. Along
with each object is alink to the next object. Thislink is a pointer variable,
because it stores a memory location of another object. Thisis the dasdc linked
list that is discussed in more detail in Chapter 16.

To illustrate the operations that apply to pointers, we rewrite Figure 5 to
dynamicdly alocae the | nt Cel | . It must be emphasized that for a simple
I nt Cel | classthereisno goal reason to write the C++ code thisway. We doiit
only to illustrate dynamic memory allocation in a simple context. Later in the
text, we will see more complicated classes where thistechniqueis useful and rec
essry. The new version is shawnin Figure 7.

i ntm ain()
{
[*1 */ I ntCell* m
[*2 %] m=n ewl ntCell (0)
[*3 */ m->wite(5)
[*4 *] cout< <" Cellc ontents:"< <m->read()< <endl;
/*5 */ deletem;
/*6 */ returnO;
}
Figure7 Program that uses pointersto IntCell (thereis no compelling reasonto do
this)

&

EB C++.mkr Page 10 Wednesday, December 9, 1998 727 AM

Declaration

Line 1illustrates the dedaration of m The* indicates that mis a pointer variable;
it isallowed topointat anIn t Cel | objed. The value of misthe aldressof the
object that it points at. mis uninitialized at this point. In C++, no such check is
performed to verify that mis assgned a value prior to being used (however, sev-
eral vendors make products that do additional chedks, including this one). Use of
uninitialized pointers typicaly crash programs because they result in accessof
memory locations that do not exist. In general, it isagood ideato provide an ini-
tial value, either by combining lines 1 and 2, or by initializing mto the NULL
pointer.

Dynamic object creation

Line 2 illustrates how objects can be aeaded dyramicdly. In C++ newreturns a
pointer to the newly creded oljed. In C++, there ae two ways to create an object
using its zero-parameter constructor. Both of the foll owing would be legal:

m=newl ntCell () ; /10 K
m=newl ntCell; //P referredi nt hist ext

We generdly use the second form becaise of the problem illustrated by
3} obj 4 in Sedion 12.

Garbage collection and del et e

In some languages, when an object is no longer referenced, it is aubject to auto-
matic garbage colledion. The programmer does not have to worry abou it. C++
does not have garbage mlledion. When an object that is allocated by new isno
longer referenced, thedel et e operation must be applied to the objed (througha
pointer). Otherwise, the memory that it consumesislost (until the program termi-
nates). This is known as a memory leak. Memory leaks are, unfortunately, com-
mon accurrences in many C++ programs. Fortunately, many sources of memory
leaks can be automaticaly removed with care. One important rule is to not use
newwhen an automatic variable can be used instead. In the original program, the
I nt Cel I was not allocated by new, but instead was allocated as alocd vari-
able. Its memory is automaticdly reclaimed when the function in which it was
dedared returns. The del et e operator isillustrated at line 5.

Assignment and comparison of pointers

Assgnment and comparison d pointer variables in C++ is based onthe value of
the pointer, meaning the memory address that it stores. Thus two panter vari-
ables are equal if they pant at the same objed. If they pant at different objeds,
the pointer variables are not equal, even if the objects being panted at are them-
selves equal. If | hs andr hs are pointer variables (of compatible types), then
| hs=r hs makes| hs point at the same object that r hs points at.

P &

EB C++.mkr Page 11 Wednesday, December 9, 1998 727 AM

Accessing members of an object through a pointer

If a pointer variable points at a classtype, then a member of the object being
pointed at can be acessd viathe - > operator. Thisisillustrated at line 3.

Other pointer operations

C++ dlows all sorts of bizarre operations on pdntersthat are occasionally useful.
For instance, < is defined. For pointers| hs andrhs , | hs<rhs istrueif the
objed pointed at by lhs is gored at a lower memory location than the objed
pointed at by r hs. There is rarely agoodreason to use this construct. However,
one example of an equally unusual operation isillustrated in Section 7.8.

One important operator is the address-of operator &. This operator returns
the memory locaion where an oljed resides and is useful for implementing an
aliastest that is discussed in Sedion 2.5.

2.2 Parameter Passing

Many langueges, C and Javaincluded, passall parametersusing cdl by value: the
actual argument is copied into the formal parameter. However, parametersin C++
could be large complex objeds, for which copyingisinefficient. Additionaly,
$ sometimes it is desirable to be aleto ater the value being passed in. As aresult
of this, C++ has three different ways to passparameters. However, thereisasim-
pleruleto dedde which methodto use.
The three parameter passng medchanisms are illustrated in the following
function dedaration that returns the aserage of the first n integersin ar r, and
setserror Fl agtotrue if nislargerthenarr. si ze() or smaller than 1.

doublea vg(c onstv ector<int>&a rr,in tn ,b ool& errorFlag);

Herearr isof typevect or <i nt > and ispassed using call by constant ref-
erence, n isof typein t andis passed usingcall by value, and er r or Fl ag is of
type bool and is passd using call by reference. The parameter passng mecha-
nism can generally be decided by atwo-part test.

1. If theformal parameter shoud be ale to change the value of the
actual argument, then you must use call by reference.

2. Otherwise, the value of the adual argument cannot be changed by
the formal parameter. If the typeis aprimitive type, use cdl by
value. Otherwise, the type is a dasstype and would generally be
passd using cdl by constant reference®

3 However, classtypesthat are small (for instance, those that store only a single built-in type) can be passed
using cdl by value instead of call by constant reference.

P &

EB C++.mkr Page 12 Wednesday, December 9, 1998 727 AM

consts tring&f indvax(c onstv ector<string>&a)

{
i ntm axl ndex=0 ;
for(i nti=1 vi<a .size() ;i ++)
i f(a [maxlndex]<a [i])
max| ndex =i
r eturna[m axl ndex] ;
}
consts tring&f indvaxWong(c onstv ector<string>&a)
{
stringmaxValue=a [0]
for(i nti=1 vi<a .size() ;i ++)
i f(maxValue<a [i])
maxVal ue=a [i]
r eturnmaxVal ue;
}
Figure8 Two versions to find the maximum string. Only thefirst is corred.
$ In the dedaration of avg, er r orF | ag is passed by reference, so that the new

value of er r or Fl ag will be reflected in the actual argument. ar r and n will
not be changed by avg. ar r ispassd by constant referencebecause it isa dass
type, and making a awpy would be too expensive. n is passed by value because it
isaprimitive type and is chegply copied.

To summarize the parameter-passng options:

« Call by valueis appropriate for small objeds that should na be dtered by
the function.

» Cadll by constant referenceis appropriate for large objeds that shoud not
be dtered bythe function.

» Call by referenceis appropriate for all objects that may be altered bythe
function.

2.3 Return Passing

Objeds can also be returned using return by value, return by constant reference,
and occasionally, return by reference For the most part, do not use return by ref-
erence In Sedion 43 we will seeone example where it is useful, but thisisrare.

Itisaways sfeto use return by value. However, if the object being returned
is aclasstype, it may be better to use return by constant reference, to avoid the

P &

EB C++.mkr Page 13 Wednesday, December 9, 1998 727 AM

overheal of a apy.* However, this is only possble if it is guaranteed that the
expresgon in the return statement has lifetime that extends past the return o the
function. Thisisavery tricky part of C++, and many compilers will fail to give a
warning message for incorred use.

As an example, consider the amde in Figure 8, which contains two nealy
identicd functions to find the largest (alphabetically) st ri ng in an array. Both
attempt to return the value by constant reference The first version, f i ndMax,
shows aaceptable use: the expresson a[max| ndex] indexes avect or that
alreay exists outside of f i ndMax, and will exist long after the cdl returns. The
second wersioniswrong maxVal ue isalocal variable that does not exist when
the function returns. Thus it is improper to return without making a copy of it. If
the compiler fails to complain, then the return value may or may not contain use-
ful information, depending on how quickly the compiler deddes to redaim the
memory that was used by maxVal ue. This makes for a difficult debugging job.

2.4 ReferenceVariables

References and constant reference variables are cmmonly used for parameter
passng. But they can also be used as local variables or as classdata members. In
these cases, they variable names become synonyms for the objects that they refer-

$ ence (much like the formal parameters become synonyms for actual argumentsin
cdl by reference). Aslocal variables, they avoid the st of a wpy and thus are
useful when querying a data structure that contains a olledion d class types.
Thus, in many cases, client code such as

stringx=fi ndMvax(a);
coiji.< <x< < endl;
is better written as
consts tring &x=f indMax(a) ;
coiji.< <x< < endl;

A second use, that we will seein Chapter 5, isto use alocal reference vari-
able solely for the purpose of renaming an dbject that is known by a complicaed
expresson. The code we will seeis smilar to the foll owing:

Li st<T>&w hi chLi st=t heLis ts[h ash(x,thelLists.size())] ;
Listlt r<T>i tr= whichList.f ind(x) ;
if(it r.isPastEnd())

whi chLi st.insert(x ,w hichList.zeroth()) ;

4 Theconst heremeansthat the object being returned cannot itself be modified later on. It is different from the
const inthe parameter list and the const that signifies an acaessor.

P &

EB C++.mkr Page 14 Wednesday, December 9, 1998 727 AM

A reference variable is used so that the considerably more complex expresson,
t heList s[h ash(x,t heLi st s.size())] ,doesnot haveto be written three
times.

Reference variables can be used as classdata members, though we do na do
this in the text (however, an Exercise in Chapter 3 suggests a design that uses a
reference variable as a data member). References must be initialized by the con-
structor to the objed that they will reference.

25 TheBig Three: destructor, copy constructor, oper at or =

In C++, classes come with threespedal functionsthat are dready written for you.
These ae the destructor, copy constructor, and oper at or =. In many cases you
can accept the default behavior provided bythe compil er. Sometimes you cannd.

Destructor

The destructor is cdled whenever an dbjed goes out of scope or is subjeced to a

delete . Typically, the only responsibility of the destructor is to free up any

resources that were allocated during the use of the objed. This includes calling

del et e for any correspondng news, closing any files that were opened, and so
$ on. The default simply applies the destructor on ead data member.

Copy constructor

Thereisaspedal constructor that is required to construct a new objed, initialized
to acopy d the same type of objed. Thisis the copy constructor. For any ohjed,
such as an IntCell object, a mpy constructor is called in the foll owing
instances:

» adedaration with initializaion, such as

IntCelIB=C ;

IntCellIB (C) ;

but not

B=C; /1 As signnentop erator,d iscussed| ater

» anobjed passed using cdl by value (instead of by &or const&), which,
as mentioned earlier, should never be done ayway.

* anobjed returned by value (instead of by & or const &)

The first caseis the simplest to understand because the mnstructed oljeds were
explicitly requested. The second and third cases construct temporary objeds that
are never seen by the user. Even so, a onstructionis a mnstruction, and in bah
caseswe ae @pying an object into anewly creaed ohjed.

P &

EB C++.mkr Page 15 Wednesday, December 9, 1998 727 AM

By default the apy constructor is implemented by applying copy construc-
tors to eat data member in turn. For data members that are primitive types (for
instance, i nt, doubl e, or pointers), simple adgnment is done. This would be
the case for the st or edVal ue data member in aur In t Cel | class For data
members that are themselves class objects, the copy constructor for each data
member’s classis applied to that data member.

oper at or =

The copy assignment operator, opera t or=, is called when = is applied to two
objects, after they have bath been previously constructed. | hs=r hs is intended
to copy that state of rhs into | hs. By default the oper ato r = isimplemented
by applying oper at or = to ead data member in turn.

Problems with the defaults

If we examinethel ntCe | | class we seethat the defaults are perfedly accept-
able, and so we do nd have to doanything. Thisis often the case. If a dasscon
sists of data members that are exclusively primitive types and djects for which
the defaults make sense, the dassdefaults will usually make sense. Thus, a dass

whose data members are int , doubl e, vector<int> , string , and even
vect or <st ri ng> can accept the defaults.
$ The main problem occurs in a dassthat contains a data member that is a

pointer. We will describe the problem and solutions in detail in Chapter 3; for
now we can sketch the problem. Suppaose the dasscontains a single data member
that isapointer. This pointer points at adynamicdly allocated objed. The default
destructor for pointers does nothing (for good reason — recdl that we must
del et e ourselves). Furthermore, the mpy constructor and oper at or = bath
copy not the objeds being pointed at, but simply the value of the pointer. Thuswe
will simply have two classinstances that contain pointers that point to the same
objed. Thisis aso-cdled shallow copy. Typicdly, we would exped a deep copy,
inwhich a done of the entire object is made. Thus, when a dasscontains pointers
as data members, and degp semantics are important, we typicaly must implement
the destructor, oper at or=, and copy constructor ourselves.
For | nt Cel | , the signatures of these operations are:

~IntCell () ; /1d estructor
IntCell (c onstl ntCell &r hs) ; /lc opyc onstr uctor
constl ntCell&o perator=(c onstin tCell&r hs);

Although the defaults for | nt Cel | are aceptable, we can write the imple-
mentations anyway, as $own in Figure 9. For the destructor, after the body is
exeauted, the destructors are alled for the data members. So the default is an
empty body. For the mpy constructor, the default isan initializer list of copy con
structors, foll owed by execution of the body.

b

C++.mkr Page 16 Wednesday, December 9, 1998 727 AM

oper at or = isthe most interesting. Line 1 is an alias test, to make sure we
are not copying to ourselves. Asauming we ae not, we gply oper at or = to
each data member (at line 2). We then return a reference to the current objed, at
line 3, so assgnments can be chained, asin a=b=c.

In the routines that we write, if the defaults make sense, we will always
accept them. However, if the defaults do not make sense, we will need to imple-
ment the destructor, and oper at or =, and the @py constructor. When the
default does not work, the cpy constructor can generaly be implemented by
mimicing namal construction and then cdling oper at or =. Another often-used
option is to dgve a reasonable working implementation of the copy constructor,
but then placeit inthe pri vat e sedion, to dsalow call by value.

When The Defaults Do Not Work

The most common situation in which the defaults do not work occurs when adata
member is a pointer type, and the pointeeis allocaed by some objed member
function (such as the constructor). As an example, suppose we implement the
I nt Cel | bydynamicdly allocaingani nt, as srownin Figure 10. For simplic-
ity, we do na separate the interface ad implementation.

I ntCell::~IntCell()

{
/ 1D oesnothingsincel ntCellc ontainsonlyani ntd ata
/ Imenber.l fl ntCellc ontainedanyc lasso bjectst heir
/ /d estructorswouldb ec alled.

}

I ntCell::IntCell(c onstl ntCell&r hs)

{

}

constl ntCell&l ntCell::operator=(c onstl ntCell&r hs)

[*1 */ i f(t his! =&rhs) /1S tandardaliast est
[*2 %] s toredVal ue=r hs. st oredVal ue;
[*3 */ return* this;
}
Figure9 The defaults for the big three

<

b

C++.mkr Page 17 Wednesday, December 9, 1998 727 AM

classl ntCell

{
p ublic:
explicitl ntCell (i nti nitialValue=0)
{s toredValue=n ewi nt(i nitialValue) ;}

intr ead()c onst;

{r eturn* storedVal ue;}
voidwrite(i ntx) ;

{* storedvalue=x ;}
private:

i nt* storedVal ue;

}

Figure 10 Data member is a pointer; default are no good

There ae now numerous problems that are exposed in Figure 11. First, the
output is three4s, even though logicaly only a should be 4. The problem is that
the default opera t or = and copy constructor copy the pointer st or edVal ue.
Thus a. st or edVal ue, b. st or edVal ue, and c. st or edVal ue al point
at the same i nt value. These wpies are shallow: the pointers, rather than the
pointees are mpied. A second lessobvious problem is a memory le&k. Thei nt
initially al ocated bya’s constructor remains allocaed and neals to be redaimed.
The i nt allocaed by b and ¢’s constructor is no longer referenced by any
pointer variable. They also need to be redaimed, but we no longer have apointer
toit.

To fix these problems, we implement the big three The result (with the inter-
face and implementation separated) is shown in Figure 12. Generaly spe&king, if
a destructor is necessary to redaim memory, then the defaults for copy assgn
ment and copy construction are not acceptable.

If the dasscontains data members that do nd have the aility to copy them-
selves, then the default oper at or = will not work. We will see some examples
of thislater in the text.

i ntf ()
{

I ntCella (2)
I ntCellb=a ;
I ntCellc ;
c=b ;

a.wite(4) ;

cout< <a.read()< <endl< <b.read()< <endl< <c.read()

returnoO;

Figure 11 Simple function that exposes problemsin Figure 10

&

<<e ndl;

C++.mkr Page 18 Wednesday, December 9, 1998 727 AM

classl ntCell
{
p ublic:
explicitl ntCell (i nti nitialValue=0) ;
I ntCell(c onstl ntCell&r hs) ;
~IntCell () ;

constl ntCell&o perator=(c onstl ntCell&r hs) ;

intr ead()c onst;
voidwrite(i ntx) ;
private:

i nt* storedVal ue;

.
I ntCell::IntCell (i nti nitialValue)
{
storedValue=n ewi nt(i nitialValue) ;
}
I ntCell::IntCell(c onstl ntCell&r hs)
{
storedValue=n ewi nt(* rhs.storedValue) ;
}
I ntCell::~IntCell()
{
deletes toredVal ue;
}
constl ntCell&l ntCell::operator=(c onstl ntCell&r
{
i f(t his! =&rhs)
* storedVal ue=* rhs. storedVal ue;
return* this;
}
i ntl ntCell::read()c onst
{
r eturn* storedVal ue;
}
voidl ntCell::wite(i ntx)
{
* storedVal ue=x ;
}
Figure 12 Data member is a pointer; big three neads to be written

hs)

EB C++.mkr Page 19 Wednesday, December 9, 1998 727 AM

26 TheWorldof C

C++ inherits its basic syntax from C. Some C-style mnstructs are occasionally
seen in C++, even though C++ provides alternatives. We list afew of these.

structs

In C++, astruct isexactly like acl ass except that by default, all members
arepubl i c. Thereisno other semantic difference Asaresult, it is essy to write
a C++ program that never uses st r uct . Even so, astr uct iscommonly used
tosignal acl ass that containsonly publi ¢ data and constructors, since such a
cl ass behaveslike aC-stylest r uct .

t ypedef

Thet ypedef isusedtoindicaethat asymba should be asynonym for an exist-
ing type. For instance,

typedefs tring* ptr_to_stri ng;

saysthat ptr_ to_string isasynonym for the string* type. typedef is
lessoften used in C++ than C becaise in many cases it is better to define anew
$ classthat encapsulates the behavior of thistype that to useat ypedef .

There ae two common uses of the t ypedef . One is to define system-
dependent information. Thus, the typei nt 32, representing a thirty-two bit inte-
ger, could be at ypedef defined in ahealer file. On some machinesit would be
ani nt,on ahersit could be ashort , and on othersit could be al ong. A sec
ond weisto provide asynonym for along type name. Long type names are com-
mon when templates (espeaaly in the STL) are instantiated. An example of this
isin Appendix A.

Parameter Passing: C-Style

In C, al parameters are passed using cdl-by-value. However, C programmers
often need to passusing cdl-by-reference. Since thisis not possiblein C, a amm-
monly used trick is used: a pointer to the object is passed instead of the objed.
Call-by-value means that the value of the pointer (where it points) cannot change,
but does nat disallow changing the pointee To illustrate the idiom, we show how
aninteger is passd byreference. The function zer o will change the objed being
pointed at to 0. zer o dedares:

void zero(i nt*v al){* val=0 ;}
The function cdl is made by passng the addressof x to function zero:

intx=5 ; /10 bjectxh asv al ueb
zero(& x) ; /10 bjectxw illha vev alueO

P &

b

C++.mkr Page 20 Wednesday, December 9, 1998 727 AM

Passng using C++ cdl by reference is preferable to this idiom. However,
many libraries are written to work with bah C and C++, and thus passvariables
using the C-style. Thus you may need to use thisidiom. We do nd use dsewhere
in the text.

C-Style Arrays and Strings

The C++ language provides a built-in C-style array type. To declare an array,
ar r, of ten integers, one writes:

intar r1[10];

arr 1 isactually a pointer to memory that is large enoughto store 10i nt s,
rather than afirst-classarray type. Applying = to arraysis thus an attempt to copy
two pdnter values, rather than the entire aray, and with the dedaration aboveis
illegal because arrl isa onstant pointer. When arrl is passed to a function,
only the value of the pointer is passed; information about the size of the aray is
lost. Thus the size must be passed as an additional parameter. There is no index
range dhedking, since the sizeis unknown.

In the dedaration above, the size of the array must be known at compil e time.
10 canna be replaced by a variable. If the size is unknown, we must explicitly
dedare apointer and all ocate memory vianew|] . For instance,

int*a rr2=n ewint[n]

Now ar r 2 behaveslikearr 1 exceptthat itisnot a mnstant pointer. Thusit can
be made to pant at alarger block of memory. However, because memory has
been dynamicdly allocated, at some paint it must be freed with del et e[] :

delete[]a rr2;

Otherwise, a memory leak would result, and the leak could be significant, if the
array islarge.

Built-in C-style strings are implemented as an array of charaders. To avoid
havingto pessthe length of the string, the spedal null-terminator ' \ 0' isused as
a dharader that signals the logicd end o the string. Strings are wpied by
strcpy, compared with strcnp, and their length can be determined by
strl en. Individua characters can be accesed by the aray indexing ogerator.
These strings have dl the problems associated with arrays, including dfficult
memory management, compounded by the fad that when strings are cpied, it is
asaumed that the target array islarge enough to hold the result. When it is not, dif-
ficult debugging ensues, especialy when room has nat be left for the null termi-
nator.

Appendix B describesavect or classand ast ri ng class that are imple-
mented by hiding the behavior of the built-in C-style aray and string. By study-
ing that class you can see how C-style arrays and strings are manipulated. It is

&

EB C++.mkr Page 21 Wednesday, December 9, 1998 727 AM

almost always better to usethevect or and st ri ng classin Appendix B (or the
ones defined in the C++ library, if your compiler is current), but you may be
forced to use the C-style when interacting with library routines that are designed
to work with both C and C++. It alsois occasionaly necessary (but thisisrare) to
use the C-style in asedion of code that must be optimized for speed.

3 Templates

Consider the problem of finding the largest item in an array of items. A simple
algorithm isthe sequential scan, in which we examine eah itemin order, keeping
tradk of the maximum. Asistypicd of many algorithms, the sequentia scan algo-
rithm is type-independent. By type-independent, we mean that the logic of this
algorithm does not depend on the type of items that are stored in the array. The
same logic works for an array of integers, floating-point numbers, or any type for
which comparison can be meaningfully defined.

Throughout this text, we will describe dgorithms and dita structures that are
type independent. When we write C++ code for a type-independent algorithm or
data structure, we would prefer to write the code once, rather than recode it for
each dfferent type.

$ In this sction we will describe how type-independent algorithms (also
known as generic dgorithms) are written in C++. C++ provides the template. We
begin by discussng function templates. Then we examine dasstemplates.

3.1 Function templates

Function templates are generally very easy to write. A function template is nat an
actual function, but instead is a pattern for what could become a function. Figure
13illustrates a function template f i ndMax that is virtually identical to the rou-
tinefor st ri ng shown in Figure 8. The line mntainingthet enpl at e dedara-
tionindicates that Conpar abl e isthe template agument: it can be replaced by
any type to generate afunction. For instance, if acdl tof i ndMax is madewith a
vect or <st ri ng> as parameter, then afunction will be generated by repladng
Compar abl e withst ri ng.

b

b

C++.mkr Page 22 Wednesday, December 9, 1998 727 AM

/**
*Returnt hemaximumiteminarraya .
*A ssunesa .size()>0
* C onpar abl e o bj ectsmustp rovide
* copyc onstructor,o perator<,o perator=
*/
tenpl at e < cl ass C onpar abl e>
constC onparabl e &f indMvax(c onstv ector <Conparabl e>&a)

{
[*1 */ i ntm axl ndex=0 ;
[*2 */ for(i nti=1 vi<a .size() ;i ++)
/*3 */ i f(a[maxlndex]<a [i])
[*4 *] max| ndex =i
/*5 */ returna[m axl ndex] ;
}

Figure 13 f i ndMax function template

i ntm ain()

{
v ect or <i nt > vi1(37);
vect or<doubl e> v 2(4 0) ;
vector<string> v 3(8 0) ;
vector<intCell>v 4(7 5) ;
/ A dditionalc odet of illi nt hev ectors
cout< <f indMax(v 1)< <endl; / /O K:C onparable=i nt
cout< <f indMax(v 2)< <endl; / /O K C onmparable=d ouble
cout< <f indMax(v 3)< <endl; / /O K C onmparable=s tring
cout< <f indMax(v 4)< <endl; / /I I|legal;o perator<undefi ned
returnO ;

b

Figure14 Using f i ndMBX function template

Figure 14 illustrates that function templates are expanded automaticdly as
needed. It should be noted that an expansion for ead new type generates addi-
tional code; this is known as code bloat, when it occurs in large projects. Note
also, that the call fi ndMax(v4) will result in a compile-time eror. This is
because when Conpar abl e is replaced by I ntCel |, line 3 in Figure 13
beommesillegal: thereis no < function defined for | nt Cel | . Thusit is custom-
ary to include, prior to any template, comments that explain what assumptions are
made aout the template agument(s). This includes assuumptions about what
kinds of constructors are required. Also nde that f i ndMax does not work with
C-style strings, because oper at or < for two char * compares pointer val ues.

&

<

<

EB C++.mkr Page 23 Wednesday, December 9, 1998 727 AM

Because template aguments can assume any classtype, when dedding on
parameter passng and return pasgng conventions, it shoud be assumed that tem-
plate aguments are not primitive types. That is why we have returned by constant
reference

Not surprisingly, there are many arcane rules that ded with function tem-
plates. Most of the problems occur when the template canot provide an exact
match for the parameters, but can come dose (through implicit type mnversions).
There must be ways to resolve ambiguities and the rules are quite complex. Note
that if there is a non-template and a template, and both match, then the non-tem-
plate gets priority. Also note that if there are two equally close gproximate
matches, then the mdeisillegal and the compiler will dedare an ambiguity.

It isimportant to nde that for most compilers, function templates cannat be
separately compiled. Generaly their entire definition will be placed in . h files
that are included by anyone that might need them.

3.2 Class Templates

In the simplest version, a classtemplate works much like afunction template.
Figure 15 shows the Menor yCell template. Menor yCel | is like the
IntC ell class but works for any type, Obje ct , provided that Object hasa
$ zero-parameter constructor, a @py constructor, and a copy assgnment operator.

Notice that Cbj ect is passed by constant reference Also, notice that the
default parameter for the constructor is not 0, becaise 0 might not be avalid
hj ect . Instea the default parameter is the result of constructing an Cbj ect
with its zero-parameter constructor.

/**
*Ac lassf ors inmulatingam enoryc ell.
*/
tenpl ate < cl ass Object>
cl assMenorycCel |
{
p ublic:
explicitM enmoryCell(c onstO bject&i nitialValue=0 bject())
:s toredValue(i nitialValue){}
constO bject&r ead()c onst
{r eturns toredVal ue;}
voidwrite(c onstO bject&x)
{s toredvalue=x ;}
private:
hj ects toredVal ue;

Figure 15 Menory Cel | template dasswithout separation

P &

C++.mkr Page 24 Wednesday, December 9, 1998 727 AM

i ntm ain()

{
MenoryCel | <i nt > mi;
MenoryCel | <string>m2(" hello") ;

ml.wite(37);
m2.wite(m2.read()+"w orld") ;
cout< <ml.read()< <endl< <m2.read()< <endl;

returnO ;

Figure 16 Program that uses Menmor yCel | template dass

/**

*Ac lassf ors inulatingam enoryc ell.
*/

tenpl ate < cl ass O bj ect >

cl ass MenorycCel |

{
p ublic:
explicitM enoryCell (c onstO bject&i nitialValue=0O bject()) ;
constO bject&r ead()c onst;
voidwrite(c onstO bject&x)
private:
Obj ects toredVal ue;

}

Figure17 Menory Cel | template dassinterface

Figure 16 shows how the Menor yCel | can be used to store objects of bath
primitive and classtypes. Notice that Menor yCel | isnot aclass it isonly a
class template. MenoryCel | <i nt > and MenoryCel | <stri ng> are the
actual classes.

If we implement classtemplates as a single unit, then there is very little syn-
tax baggage. Many classtemplates are, in fad, implemented this way because
currently, separate compilation of templates does not work well on many plat-
forms. Therefore, in many cases, the entire dass with itsimplementation must be
placed in a. h file. Popuar implementations of the STL foll ow this drategy.

However, eventually, separate compilation will work, and it will be better to
separate the classtemplates interface ad implementation in the same way that is
done for classes. Unfortunately, this does add some syntax baggage.

Figure 17 shows the interface for the template dass That part is, of course,
simple enough, sinceit is just a subset of the etire dassthat we have dready
seen.

EB C++.mkr Page 25 Wednesday, December 9, 1998 727 AM

#include" MenoryCell.h"

/**

*C onstructt heMenoryCellw ithi nitial Val ue

*/

tenpl ate < cl ass O bj ect >

MenoryCel | <Obj ect>:: MenoryCel |l (c onstO bject&i nitialValue)
:s toredValue(i nitial Val ue)

{

}

/**

*Returnt hes toredv al ue.

*/

tenpl ate < cl ass O bj ect >

constO bject& M enoryCel | <Object>::read()c onst

{
r eturns toredVal ue;
}
/**
*Storex.

*/
tenpl ate < cl ass O bj ect >
voi d MenoryCel | <Cbject>::write(c onstO bject&x)

{
3} storedValue=x ;

}

Figure 18 Menory Cel | template dassimplementation

For the implementation, we have a @lledion d function templates. This
means that ead function must include the template line, and when uwsing the
scope operator, the name of the dassmust be instantiated with the template agu-
ment. Thus in Figure 18, the name of the dassis Menor yCel | <Obj ect >.
Although the syntax seem innocuous enough, it can get fairly substantial. For
instance, to define oper at or = in the interface requires no extra baggage. In the
implementation, we would have:

template<class bject>
const MenoryCel I< Obj ect>&
Menory Cel | <Obj ect >: : operator =(c onstMe noryCel | <Obje ct>&r hs)

{
if (t his! = &hs)
storedVal ue=r hs. st oredVal ue;
return* this;
}

P &

EB C++.mkr Page 26 Wednesday, December 9, 1998 727 AM

Typicdly, the dedaration part of the more complex functions will no longer
fit ononeline, and will need splitting as done above.

Even if the interface ad implementation of the dasstemplate ae separated,
few compilers will automatically hande separate compilation corredly. The sim-
plest, most portable solution, is to add an #i ncl ude diredive at the end d the
interface file, to import the implementation. This is done in the online cde.
Alternative solutions involve adding explicit instantiations for ead type as a sep-
arate . cpp filein the projed. Sincethese details will change rapidly, it’'s best to
consult locd documentation to find the proper alternative.

3.3 (bj ect, Conpar abl e, and an Example

In this text, we repeaedly use Cbj ect and Conpar abl e as generic types.
hj ect isasaumed to have a zeo parameter constructor, an oper at or =, and a
copy constructor. Comparable , as suggested in the findMax example, has
additional functionality in the form of oper at or < that can be used to provide a
total order.>

Figure 19 shows an example of a dasstype that implements the functionality
required of Conpar abl e. The Em{d oyee classcontains a nane andasal -
ary, and defines oper at or < on the basis of sal ary. A more complicaed

$ oper at or < is posshle; for instance, we could bre& atiein sal ary by using
the nanme data member. The Enpl oyee class aso provides a zeo-parameter
constructor, oper at or =, and copy constructor (all by default). Thus it has
enough to be used asa Conpar abl e inf i ndMax.

To have pradicd utility, either its data members must be public, or we must
provide alditional acessors and mutators. Figure 19 shows aset Val ue mem-
ber function, and also illustrates the widely-used idiom for providing an ouput
function for a new classtype. The idiom is to provide apubl i ¢ member func-
tion, named pr i nt that takes an ost r eamas a parameter. That publ i ¢ mem-
ber function can then be caled by a global, non-class function oper at or <<,
that accepts an ost r eamand an objed to output.®

5 Some of the datastructuresin Chapter 12 use oper at or == in addition to oper at or <. Note that for the pur-
pose of providing atotal order, a==b if both a<b and b<a aref al se; thusthe use of oper at or == is sm-
ply for convenience.

6. An aternative to thisidiom isto have oper at or << diredly implement the logicin pr i nt . Becaise
oper at or << isnot aclass member, it would need to be made af r i end function of the Enpl oyee class
requiring the introduction d even more C++ syntax. This aternative has the alditiona disadvantage of not
working on dder compil ers that do not correctly mix f r i end dedarations with global template functions. It
also has the disadvantage of not working correctly in more cmplex contexts involving inheritance, that are
beyond the scope of thistext.

P &

b

b

C++.mkr Page 27 Wednesday, December 9, 1998 727 AM

c |l ass E npl oyee

{
p ublic:
voids etValue(c onsts tring&n ,d oubles)
{n ame=n ;s alary=s ;}
voidprint(o stream&out)c onst
{0 ut< <name<<"("< <salary<<")";}
b oolo perator<(c onstE nployee&r hs)c onst
{r eturnsalary<r hs.salary;}
/ /1O therg enerala ccessorsa ndmutators,n ots hown
private:
stringn ang;
doubles al ary;
b

/ ID efineanoutputo peratorf orE npl oyee
ostream&o perator<<(o stream&o ut,c onstE npl oyee&r hs)

{
r hs.print(o ut) ;
r eturno ut;

}

i ntm ain()

{
v ect or <Enpl oyee>v (3) ;
v[O0].setValue(" BillC linton",2 00000.00) ;
v[1].setValue(" BillG ates",2 000000000.00) ;
v[2].setValue(" Billyt heMarlin",6 0000.00) ;
cout< <f indMax(v)< <endl;
returnoO;

}

Figure 19 Conparable can be a ¢asstype, such as Emp oyee

4 Using Matrices

Several algorithms in Chapter 10 use two-dimensional arrays, which are popu
larly known as matrices. The C++ library does not provide amat ri x class.
However, areasonable mat r i x classcan be quickly written. The basic ideaisto
use avedor of vedors. Doing this requires knowledge of operator overloading.
Operator overloading allows usto define the meaning o abuilt-in operator. Actu-
aly, we've dready dore this when we define oper at or =. For themat ri x, we
define oper at or [], namely the array-indexing operator. The mat ri x classis
in Figure 20.

&

EB C++.mkr Page 28 Wednesday, December 9, 1998 727 AM

4.1 Thedata members, constructor, and basic accessors

The matrix is represented by an ar r ay data member that is dedared to be a
vect or of vect or <Obj ect >. The oonstructor first constructs ar r ay, as
having r ows entries ead of type vecto r <Obje ct> that is constructed with
the zero-parameter constructor. Thus we have r ows zero-length vectors of

hj ect.
t enpl ate < cl ass O bj ect >
classmatrix
{
p ublic:
matrix(i ntr ows,i ntc ols):a rray(r ows)
{
for(i nti=0 ;i<r ows;i ++)
array[i] .resize(c ols) ;
}
constv ector<Object>&o perator[](i ntr ow)c onst
{r eturnarray[r ow];}
v ector<Qbject>&o0 perator[](i ntr ow)
{r eturnarray[r ow];}
i ntn unrows()c onst
$ {r eturnarray.size() ;}
i ntn untols()c onst
{r eturnnunrows()?a rray[0] .size():0 i}
private:

v ector<v ector<Object>>a rray;

Figure 20 A complete matr i X class

The body of the constructor is then entered and each row is resized to have
col s columns. Thus the mnstructor terminates with what appeas to be atwo-
dimensiona array. The nunt ows and nuntol s accesors arethen easily imple-
mented as shown.

42 operator]|]

The ideaof operator][] isthat if we have amatrix ~m then m[i] shoud
return a vedor correspondng to row i of matrix m If thisis done, then
nfi]j] will givethe entry in pasitionj for vedor ni i] , using the normal
vect or indexing qperator. Thusthemat ri x oper at or[] isto return not an
hj ect, but instead avect or <Qbj ect >.

We now know that operator[] should return an entity of type
vect or <Obj ect >. Should we usereturn by value, by reference, or by constant

P &

EB C++.mkr Page 29 Wednesday, December 9, 1998 727 AM

reference?lmmediately we diminate return by value, because the returned entity
islarge, but guaranteed to exist after the al. Thus we are down to return by ref-
erenceor by constant reference. Consider the following method (ignore the poss-
bility of aliasing or incompatible sizes, neither of which aff ects the dgorithm).

void copy(c onst matrix<int>&f rommatrix<int>& to)

for(i nti= 0ji<t o.nunmrows() ; i++)

tofi] =fronfil;

In the copy function, we attempt to copy ead row in mat ri x f r ominto
the correspondngrow inmatri x t o. Clealy, if operat or[] returnsa wn
stant reference, then t o[i] cannot appea on the left side of the assgnment
statement. Thusit appeasthat oper at or [] should return areference. But then
anexpresgonsuchasfronfi]=to[i] woudcompile sincef ronii] would
not be aconstant vector, even though f r omwas a constant matrix. Oops!

So what we redlly need is for oper at or [] to return a mnstant reference
for f r om but a plain referencefor t 0. In ather words, we need two versions of
oper ator[], that differ only in their return types. That is not alowed. How-
ever, there is a loophole: since member function constness (that is, whether a
function is an accesr or a mutator) is part of the signature, we can have the

$ accesr version o operator[] return a constant reference, and have the
mutator version return the simple reference. Then all is well. This is sown in
Figure 20.

4.3 Destructor, copy assignment, copy constructor

These ae all taken care of automaticdly because the vec t or has taken care of
it. Thusthisisall the code needed for afully functioning mat r i x class

