Languages and Machines

· Finite State Machines

· Types of Machines

· A Simple Sequence Recognizer

· A More Complex Machine

· Formal Languages

· Formal Design Techniques

Finite-State Machines

A finite-state machine (FSM) or finite automaton (FA) is a simple computer that recognizes strings that belong to regular sets. It consists of:

· A finite set Q of states

· A finite set (of input tokens (the alphabet of the machine)

· A state transition function (that maps a state and an input token to another state

· A designated start state q0 from Q.

· A subset F of Q containing at least one final state.

Moore and Mealy Machines

A machine that satisfies the conditions of the 5-tuple (I, Q, Z, (,w) given previously is known as a Mealy machine. This is the general case.

A restricted version having w restricted to a mapping of Q onto Z is frequently encountered. This is known as a Moore machine.

Languages and Machines

[image: image1.wmf]Machine

Input

· The sequences of input symbols that are recognized by the machine define a language.

· Languages may be grouped, by complexity, into several classes (L0 … L3). For each class of language, there is a corresponding class of machines.

· The FSM represents the L0 class of machines.

· The highest class can express any discrete problem.

Types of Machines

[image: image2.wmf]Output

(L1)

Machine

Input

(L1)

Machine

Machine

Output

(L2)

Input

(L1)

Acceptor

Generator

Transducer

Decimal Number Recognizer

Consider a FSM that will recognize signed decimal numbers. The input alphabet of this machine is given by {d, +, -, .}. S is the start state and B and H are the final states.

[image: image3.wmf]S

A

G

B

H

Start

d

+

-

d

.

d

.

.

d

d

Next State Table

The next state mapping function is given below:

CURRENT STATE

INPUT
S
A
G
B
H

d
B
B
H
B
H

+
A
NS
NS
NS
NS

-
A
NS
NS
NS
NS

.
G
G
NS
H
NS

This is an incompletely specified machine in that it will accept strings defined by the input language but will fail on other strings. By incom​pletely specified, we mean that while the machine will always know how to handle a correct input, it generally will not have an action specified for an incorrect input (Ns = Not Specified).

Completely Specified Machines

· A practical implementation will almost inevitably require either a completely speci​fied machine or some sort of “filter” to prevent erroneous input from reaching the machine.

· A machine not only must accept bad input “gracefully”, it should give the user as much information as possible concerning the nature of the errors. This requires that we not only completely specify the machine, but also that we utilize the various “Not Specified” states to obtain this information.

Modified State Table

CURRENT STATE

INPUT
S
A
G
B
H

d
B
B
H
B
H

+
A
Blocked
Blocked
Blocked
Blocked

-
A
Blocked
Blocked
Blocked
Blocked

.
G
G
Blocked
H
Blocked

(
Blocked
Blocked
Blocked
Done
Done

(
Blocked
Blocked
Blocked
Blocked
Blocked

The symbol (has been added to indicate the empty input and (was added to indicate a bad token.

Example Implementation

FSM (Decimal number acceptor)
v1.0 Program

Terminate input strings with CR, use CNTL/z to exit.

Input string > 123.456

token: [Digit], state: [B]

token: [Digit], state: [B]

token: [Digit], state: [B]

token: [.], state: [H]

token: [Digit], state: [H]

token: [Digit], state: [H]

token: [Digit], state: [H]

token: [Stop Token], state: [H]

(String is ACCEPTED)

Input string >

token: [EOF Token], state: [Not State]

(String is EMPTY)

Program Complete

Example 2 – Incorrect Input

FSM (Decimal number acceptor)
v1.0 Program

Terminate input strings with CR, use CNTL/z to exit.

Input string >
token: [+], state: [A]

token: [Digit], state: [B]

token: [Digit], state: [B]

token: [Digit], state: [B]

token: [.], state: [H]

token: [Bad Token], state: [BLOCKED]

(Machine is BLOCKED)

(String is NOT accepted)

Language Components

[image: image4.wmf]Language

semantics

alphabet

grammar

a, b, c, ...

Alphabet - Set of atomic elements (primitives) used to build sentences in the language.

Grammar - Used to determine if a sentence is legal in the language.

Semantics - Used to define the meaning of sentences in the language.

Grammars
A grammar consists of

· Terminal vocabulary - The words (including numbers, operators, etc. - the syntactic constants)

· Non-terminal vocabulary - The syntactic variables

· Start symbol - Member of non-terminal vocabulary rep​resenting the largest syntactic construct, such as <sentence>.

· Syntax - The rules which are used to define legal state​ments in the language.

Types of Grammars

· Regular Grammars - The least powerful grammar. Can be recognized by a state machine. Useful for scanners but not powerful enough for most computer languages.

· Context-Free Grammars (CFG) - The most common grammar for computer languages.

· Context-Sensitive Grammars - Used for early languages (COBOL, FORTRAN). Much more difficult to work with than CFG without much more power.

· Unrestricted Grammars - Most powerful grammar. Natu​ral languages fall into this category.

The “Jack and Jill” Grammar

The following grammar is a small subset of English that may be used to parse the sentence “Jack and Jill ran up the hill.”

1.
< sentence > (< subject > < predicate >

2.
< subject > (< noun phrase >

3.
< noun phrase > (< noun >

4.
< noun phrase > (< noun > < conjunction > < noun phrase >

5.
< conjunction > (‘and‘

6.
< noun > (‘Jack‘

7.
< noun > (‘Jill‘

8.
< predicate > (< verb > < prepositional phrase >

9.
< verb > (‘ran‘

10.
< prepositional phrase > (< preposition > < article > < noun >

11.
< preposition > (‘up‘

12.
< article > (‘the‘

13.
< noun > (‘hill‘

Derivation of the Subject

Phrase:
Rule Used:

<sentence> (<subject> <predicate> ;
1
<subject> (<noun phrase> ;
2
< noun phrase > (<noun> <conjunction> <noun phrase> ;
4
<noun> <conjunction> <noun phrase> (Jack <conjunction> <noun phrase>
6
Jack <conjunction> <noun phrase> (Jack and <noun phrase>
5
Jack and <noun phrase> (Jack and <noun>
3
Jack and <noun> (Jack and Jill
7
Derivation of the Predicate

Phrase:
Rule Used:

<sentence> (<subject> <predicate> ;
1
<predicate> (<verb> <prepositional phrase> ;
8
<verb> <prepositional phrase> (ran <prepositional phrase> ;
9
ran <prepositional phrase> (ran <prepositional> <article> <noun>
10
Jack <conjunction> <noun phrase> (Jack and <noun phrase>
5
Jack and <noun phrase> (Jack and <noun>
3
Jack and <noun> (Jack and Jill
7
Grammars & Parsing
An algorithm which, given as its input a string of tokens, can determine if input is syntactically valid, is termed a recognizer.
If the algorithm also produces the derivation tree, then it is termed a parser.
Derivation Procedures
A derivation step requires two choices:

· If there is more than one nonterminal, then we have to decide which nonterminal to replace.

· If there is more than one production for a given non​terminal, then we have to choose which produc​tion to use.

Top-Down & Bottom-Up
The two most common types of parsers are top-down (LL(k)) and bottom-up (LR(k)).

SYMBOL 183 \f "Symbol" \s 28 \h
Both types scan the input line from left to right.

SYMBOL 183 \f "Symbol" \s 28 \h
The top-down parser always replaces the left-most nonterminal.

SYMBOL 183 \f "Symbol" \s 28 \h
the bottom-up parser always replaces the right-most nonterminal.

Top-Down, Bottom-Up Parsers

Consider the grammar G0, a simple expression grammar:

Nonterminals = {E, T, F}, Terminals = {+, , (,), a}, S = E

Production Rules (Syntax):

Rule 1.

E
 SYMBOL 174 \f "Symbol"
E + T= E + T
Rule 2.

E
 SYMBOL 174 \f "Symbol"
T

Rule 3.

T
 SYMBOL 174 \f "Symbol"
T  F= T * F
Rule 4.

T
 SYMBOL 174 \f "Symbol"
F

Rule 5.

F
 SYMBOL 174 \f "Symbol"
(E)= (E)
Rule 6.

F
 SYMBOL 174 \f "Symbol"
a

Notation:

E  Expression, T  Term, F  Factor

A Leftmost Derivation
Derivation of a + (a  a)

E
SYMBOL 174 \f "Symbol"
E + T
(1)

E + T
SYMBOL 174 \f "Symbol"
T + T
(2)

T + T
SYMBOL 174 \f "Symbol"
F + T
(4)

F + T
SYMBOL 174 \f "Symbol"
a + T
(6)

a +T
SYMBOL 174 \f "Symbol"
a + T
(4)

a + F
SYMBOL 174 \f "Symbol"
a + (E)
(5)

a + (E)
SYMBOL 174 \f "Symbol"
a + (T)
(2)

a + (T)
SYMBOL 174 \f "Symbol"
a + (T  F)
(3)

a + (T  F)
SYMBOL 174 \f "Symbol"
a + (F  F)
(4)

a + (F  F)
SYMBOL 174 \f "Symbol"
a + (a  F)
(6)

a + (a  F)
SYMBOL 174 \f "Symbol"
a + (a  a)
(6)

A Rightmost Derivation
Derivation of a + (a  a)

a + (a  a)
SYMBOL 174 \f "Symbol"
F + (a  a)
(6)

F + (a  a)
SYMBOL 174 \f "Symbol"
T + (a  a)
(4)

T + (a  a)
SYMBOL 174 \f "Symbol"
E + (a  a)
(2)

E + (a  a)
SYMBOL 174 \f "Symbol"
E + (F  a)
(6)

E + (F  a)
SYMBOL 174 \f "Symbol"
E + (T  a)
(4)

E + (T  a)
SYMBOL 174 \f "Symbol"
E + (T  F)
(6)

E + (T  F)
SYMBOL 174 \f "Symbol"
E + (T)
(3)

E + (T)
SYMBOL 174 \f "Symbol"
E + (E)
(2)

E + (E)
SYMBOL 174 \f "Symbol"
E + F
(5)

E + F
SYMBOL 174 \f "Symbol"
E + T
(4)

E + T
SYMBOL 174 \f "Symbol"
E
(1)

Alternate Format

By showing a reversed, mirror-image version of the right-most derivation we can compare it directly with the left-most version:

E
SYMBOL 174 \f "Symbol"
E + T
(1)

= E + T_(1)E + T
SYMBOL 174 \f "Symbol"
E + F
(4)

= E + F_(4)E + F
SYMBOL 174 \f "Symbol"
E + (E)
(5)

= E + (E)_(5)E + (E)
SYMBOL 174 \f "Symbol"
E + (T)
(2)

= E + (T)_(2)E + (T)
SYMBOL 174 \f "Symbol"
E + (T  F)
(3)

= E + (T * F)_(3)E + (T  F)
SYMBOL 174 \f "Symbol"
E + (T  a)
(6)

= E + (T * a)_(6)E + (T  a)
SYMBOL 174 \f "Symbol"
E + (F  a)
(4)

= E + (F * a)_(4)E + (F  a)
SYMBOL 174 \f "Symbol"
E + (a  a)
(6)

= E + (a * a)_(6)E + (a  a)
SYMBOL 174 \f "Symbol"
T + (a  a)
(2)

= T + (a * a)_(2)T + (a  a)
SYMBOL 174 \f "Symbol"
F + (a  a)
(4)

= F + (a * a)_(4)F + (a  a)
SYMBOL 174 \f "Symbol"
a + (a  a)
(6)

Recursive Descent Rules

The follow design rules are taken from the text Algorithms + Data Structures = Languages by N. Wirth:

1)
An element denoting a terminal symbol (t) is translated into a state​ment of the form:

if(symbol == t)

GetNextSymbol();

else

return ERROR;

2)
A choice of elements is translated into a switch or if statement.

3)
A loop is translated into a while or for statement.

4)
A sequence of elements is translated into a compound statement.

5) A non-terminal BNF production denoting another production is translated by a function call.

Examples
In the following examples, the decimal number recognizer is implemented both “directly” (v1) and using the recursive descent rules given above (v2).

Decimal Number Recognizer v1

do {

state = S;

token = BAD_TOKEN;

while((token != STOP_TOKEN) && (token != EOF_TOKEN) && (state != BLOCKED)) {

token = GetToken();

state = NextState[state][token];

};

switch(state) {

case BLOCKED:

cout << "\t(Machine is BLOCKED)" << endl;

break;

case B:
case H:
cout << "\t(String is ACCEPTED)" << endl;

break;

case EMPTY:

cout << "\t(String is EMPTY)" << endl;

break;

default:

cout << "\t(String is NOT ACCEPTED)" << endl;

};

}

while(token != EOF_TOKEN);

Decimal Number Grammar

The grammar GDN = ({ V, S, R, N}, {d, +, -, .}, P, V), where P is given by

1. V (SR(
((is a stop symbol)

2. S (+

3. S (-

4. S ((

((is the empty symbol)

5. R (.dN
(d is a decimal digit)

6. R (dN.N

7. N (dN

8. N ((
Decimal Number Recognizer v2

while(token != STOP_TOKEN && token != EOF_TOKEN) {

if(token == PLUS)

match(PLUS);

else if(token == MINUS)

match(MINUS);

while(token == DIGIT)

match(DIGIT);

match(PERIOD);

while(token == DIGIT)

match(DIGIT);

if(token == STOP_TOKEN || token == EOF_TOKEN)

printf("\tString accepted\n");

else

printf("\tString not accepted\n");

}

The English Parser

Consider the following small subset of the English grammar, designated “English.”

<sentence> ::= <subject> <predicate> ;

<subject> ::= <noun> ;

<noun> ::= Amanda | Jeremy | chocolate | bicyles;

<predicate> ::= <verb> <noun> ;

<verb> ::= sees | likes | eats | rides;

Example Inputs

Case 1. Correct Sentence:

jeremy likes amanda

uEnglish Parser v1.0

The sentence is correct

Case 2. Incorrect Sentence:

Jeremy knows Amanda

uEnglish Parser v1.0

Can not match predicate (verb)

The sentence is not correct

ERROR: EOF expected

English Implementation

Main Program

word = NextWord();

if(ParseSentence())

printf("\tThe sentence is correct\n");

else

printf("\tThe sentence is not correct\n");

The function NextWord is the scanner of this program. It can classify each word (terminal) into the appropriate type.

ParseSentence

int
ParseSentence(void)

{

if(word == NOUN) {

word = NextWord();

if(ParsePredicate())

return TRUE;

else

return FALSE;

}

else {

printf("\tCan not match subject\n");

return FALSE;

}

}

ParsePredicate

int
ParsePredicate(void)

{

if(word == VERB) {

word = NextWord();

if(word == NOUN)

return TRUE;

else
{

printf("\tCan not match predicate (object)\n");

return FALSE;

}

}

else {

printf("\tCan not match predicate (verb)\n");

return FALSE;

}

}

The EE Language (Expression Evaluator)

#
Example EE Program. Note that comments begin with a “#” symbol.

#
The only variable type is the integer.

int cindy = 2, fred = 12, result = 1;

begin

blocks are delimited by begin - end

while(fred)
while (and if) conditions are true for non-zero values.

begin

result = result  cindy;

fred = fred – 1;

end

write(result);

end

EE Implementation Goals
· Define the EE language

· Construct a recognizer for the language

· Document the performance of the recognizer

Languages and Machines - 36

_985493829.unknown

_985495573.unknown

_985457780.unknown

_965071080.unknown

