Sort Algorithms
· Definition

· Internal vs External

· Sort Behavior

· Sort Data Structures

· Straight Sorts

· Exotic Sorts

Definition
The process of sorting, or creating a linear ordering of a list of objects, is one of the most fundamental of all operations.

· The objects to be sorted are assumed to be records, one field of which is the sort key.

· The sort problem is to arrange the objects so that the keys form a monotonic (non-decreasing or non-increasing) sequence.

Internal Sorts
An internal sort is one in which the list to be sorted resides in the "internal" memory of the system. In an external sort the data resides on a peripheral device, such as a disk.

We will only deal with internal sorts.

Sort Behavior
· A sorting technique is said to have natural behavior if it executes faster when the list of objects is already partially or fully ordered.

· It is said to exhibit stable behavior if objects with equal keys are not swapped during the sorting process.

Many sort algorithms exploit these behaviors in order to increase performance.

Sort Data Structures
Our default data structure will be an array of integers. However, the only absolute requirement for the data structure is that it be capable of ordering.

Some of the more exotic sorts require an array but the basic sorts will all work with a linked list.

Which Sorts?
The sorts of primary interest are:

· Shell sort (257)

· Heap sort (260)

· Quick sort (269)

We will first review the "generic" versions of these sorts first.

· The insertion sort (254)

· The selection sort

· The exchange sort

Straight Sorts
· Straight-forward (or generic) implementations of the basic sort algorithms.

· They typically require a time which is on the order of O(n2).

· They are well-suited for demonstrating the algorithms.

· They require little code and generally are often faster for small values of n.

Insertion Sort

[image: image1.wmf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array Index

On pass i = 6 this element will be

inserted into its "rightful place" among

A[0] .. A[i-1] which have previously

been sorted.

The insertion sort works by starting at one end of the list “inserting” each element, p, in its proper place of the first p+1 elements.

Insertion Sort Algorithm
for i := 2 to array_size do

begin

temp := a [i];

a [0] := temp;

j := i - 1;

while temp < a [j] do

begin

a [j + 1] := a [j];

j := j - 1;

end;

a [j + 1] := temp

end;

Insertion Sort Behavior

[image: image2.wmf]x

x

x

x

x

x

x

x

Computed Point:

Measured Point:

Items

Time (ms)

500

1000

1500

2000

2500

3000

5000

220

820

2,030

3,300

5,710

7,740

22,900

25,000

20,000

15,000

10,000

5,000

0

0 1,000 2,000 3,000 4,000 5,000

Time

Size

Selection Sort

[image: image3.wmf]Array Index

On pass p the element that is the largest (smallest) of

A[p + 1] .. A[n] will be swapped with element p. Since the

previous p - 1 elements haved been sorted, the largest

(smallest) p items now occupy locations A[0] .. A[p].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In the selection sort we “select” the largest (or smallest) ele​ment of the unsorted data on each pass.

Selection Sort Algorithm
for i := 1 to array_size - 1 do

begin

temp := a [i];

k := i;

for j := i + 1 to array_size do

if a [j] < temp then

begin

k := j;

temp := a [j]

end;

a [k] := a [i];

a [i] := temp

end;

Selection Sort Behavior

[image: image4.wmf]20,000

16,000

12,000

8,000

4,000

0

0 1000 2000 3000 4000 5000

x

x

x

x

x

x

x

selection algorithm

Items

Time (ms)

x

500

1000

1500

2000

2500

3000

5000

170

660

1700

2960

4720

6100

18950

Computed Point:

Measured Point:

Exchange Sort

[image: image5.wmf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array Index

Top

Bottom

Already Sorted

Yet to be Sorted

On each pass i, each pair of items A[0] .. A[n+i] is compared

and the largest (or smallest) placed in the lower location such

that at the end of the pass, the smallest (or largest) i items are

in locations A[n - i + 1] .. A[n]. (i = 6 is shown).

The exchange sort swaps overlapping pairs so that the larg​est (smallest) item is at the end of the list each pass.

Exchange Sort Algorithm
for i := 2 to array_size do

begin

for j := array_size downto i do

if a [j - 1] > a [j] then

begin

temp := a [j - 1];

a [j] := temp

end

end;

Exchange Sort Operation
This sort is sometimes called the "bubblesort" because the largest (smallest) items seem to "bubble" up from the bottom as the sort proceeds.

[image: image6.wmf]3

7

7

7

7

1

1

1

1

7

9

3

3

3

3

9

9

9

9

4

4

4

4

4

5

5

5

5

5

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

1

3

7

4

5

9

Initial

1

Items

BELOW

 this line have been sorted.

Exchange Sort Behavior

[image: image7.wmf]x

Computed Point:

Measured Point:

80,000

64,000

48,000

32,000

16,000

0

0 1,000 2,000 3,000 4,000 5,000

Time

Size

Items

Time (ms)

500

1000

1500

2000

2500

3000

5000

760

3,130

7,040

12,570

19,960

28,340

78,990

x

x

x

x

x

x

x

Modified Exchange Sort
The exchange sort seems to go blindly on, making comparisons even when the data is already ordered, suggesting the following modification:

i := 1;

while (i<= max_item_count) and (swap_flag) do

begin

swap_flag := False;

i := i + 1;

for j := max_item_count downto i do

if a [j-1 > a [j] then

begin

swap_flag := True;

temp := a [j-1];

a [j-1] := a [j];

a [j := temp

end

end;

The Exotic Sorts
The exotic sorts are refinements of the straight sorts. We shall discuss the following:

· insertion sort  shellsort

· selection sort  heapsort

· exchange sort  quicksort

These sorts all attempt to reduce either the number of com​parisons or moves or both by making assumptions about the ordering of the data.

Shellsort
The shellsort (named after D. L. Shell) is a refinement of the insertion sort. It is also known as sorting by "dimin​ishing increment". The basis of the shell sort is that it is quicker to make several passes over the array, sorting a subset each time.

2i-Sort Technique
· For the first pass all items which are n (n must be a power of 2) positions apart are grouped and sorted separately.

· For the next pass the items n/2 positions apart are sorted until the last pass sorts adjacent items.

Selection of the Increments
The Shellsort works for any selection of increments. What is not obvious is that it works better if the incre​ments are not chosen as powers of 2. A number of studies have proposed schemes for choosing the increments. Those given in the following example are by Knuth.

The shellsort is not readily analyzed (many claim it isn't that easy to understand either!) so we will have to depend upon measured performance.

Shellsort

h
: array [IncrementRange] of Integer;

begin

h[1] := 9; h[2] := 5; h[3] := 3; h[4] := 1;

for pass := 1 to NumPasses do

begin

k := h[pass]; s := - k;

for i := k + 1 to DictionarySize do

begin

temp := dictionary [i];
j := i - k;

if s = 0 then

s := - k;

s := s + 1;

dictionary [s] := temp;

while temp < dictionary [j] do

begin

dictionary [j+k] := dictionary [j]; j := j - k

end;

dictionary [j+k] := temp;

end

end

Heap Sort
· A refinement of the selection sort.

· Sorting by straight selection is based on the repeated selection of the least key among n items, then among the remaining n-1 items, etc.

· Finding the least key among n items requires n-1 comparisons,

· The selection sort can be improved by retaining from each scan more information than just the identifica​tion of the least item.

Use of the Heap
The heap sort works by first arranging the data into a heap.

A heap is a tree such that the root is greater than or equal to the largest of its children.

Since the largest element is the root, it is removed and placed in the sorted list. Then, the remaining tree is read​justed to be a heap. This process continues until all items have been processed.

Heap Operation
· Assuming the data stored in an array, the parent of node i is stored at i/2; the left child of node i is stored at 2i; and the right child is stored at index 2i + 1. The array is initially all heap area.

· After each pass, the heap area shrinks by one and the sorted area grows by one.

Heap Sort Performance
For large n, Heapsort is very efficient. The larger n becomes, the better Heapsort performs since it takes O(n logn) in both the worst and best case. Generally, Heapsort seems to "like" initial sequences in which the items are more less sorted in inverse order, and there​fore it displays unnatural behavior.

Quicksort
· A refinement of the exchange sort.

· Based upon the fact that exchanges are best per​formed over large distances.

· Consider the case where the data is reverse ordered. In this case we can sort n items in n/2 exchanges by first exchanging the left and rightmost items and then working in from both sides. While this is only possi​ble where the ordering of the data is known, it points out the possibilities.

Partitioning
· Pick an item at random (obviously using some scheme) and call it x.

· Scan the array from the left until an item ai > x is found then scan from the right until an item aj < x is found.

· Now exchange the two items and continue this process until the two scans meet somewhere in the middle of the array, resulting in an array which is partitioned into a left part with keys less than x and a right part with keys greater than x.

Partitioning
The partitioning process may be stated as follows:

begin

i := 1;
j := n;

< select an item x >

repeat

while a [i] < x do

i := i + 1;

while a [j] > x do

j := j - 1;

if i <= j then

begin

temp := a [i];
a [i] := a [j];
a [j] := temp;

i := i + 1;

j := j - 1;

end;

until i > j;

end;

Completion of the Sort

Now we complete the task of sorting the array by apply​ing the same process to both partitions until every parti​tion consists of only one item. This suggests the use of recursion although a stack can be used.

Quicksort Algorithm

begin

i := l;
j := r;
temp1 := a [(l+r) / 2];

repeat

while a [i] < temp1 do

i := i + 1;

while temp1 < a [j] do

j := j - 1;

if i <= j then

begin

temp2 := a [i];
a [i] := a [j];
a [j] := temp2;

i := i + 1; j := j - 1

end

until i > j;

if l < j then

QuickSort (l, j);

if i < r then

QuickSort (i, r)

end;

Collecting Sorts Metrics Data
Since most of the sort metrics are dependent on the data being sorted, it is useful to be able to collect this data real-time. An example (a straight insertion) of a sort program with measurement probes inserted is shown below. Since the statements used to collect the data consume processing time, this version of the sort does not return an accurate value of CPU time.

Data Collection Example
for i := 2 to array_size do

begin

temp := dictionary [i];

moves := moves + 1;
dictionary [0] := temp;

moves := moves + 1;
j := i - 1;

while temp < dictionary [j] do

begin

compares := compares + 1;

dictionary [j+1] := dictionary [j];

moves := moves + 1;

j := j - 1;

end;

dictionary [j + 1] := temp;

moves := moves + 1;

end;

Performance – Generic Sorts
Size
Insertion
Selection
Exchange
Bubble

5,000
60
170
410
410

5,000
160
200
360
381

5,000
0
191
190
0

10,000
370
791
1,750
1,780

10,000
0
801
781
0

10,000
871
891
1,520
1,640

20,000
1,750
3,260
7,040
6,990

20,000
0
3,270
3,150
0

20,000
4,030
3,730
6,340
68

40,000
7,550
13,400
28,810
28,150

40,000
0
1,402
12,930
0

40,000
16,620
15,020
25,300
26,600

100,000
47,280
82,820
181,790
175,630

100,000
0
82,610
87,770
0

100,000
94,120
90,230
162,930
187,570

s (sorted data, r (reverse sorted data

Performance – Heap and Quick Sorts

[image: image8.wmf]Sort Times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Size

Time

Heap

Quick

Sort Algorithms - 36

_984284992.unknown

_984289982.unknown

_984290345.unknown

_984458169.xls
Chart1

		100000		100000

		200000		200000

		500000		500000

		1000000		1000000

		2000000		2000000

Heap

Quick

Size

Time

Sort Times

90

60

241

131

761

381

1760

801

4040

1680

Heap and Quick Random

		100,000		90		60

		200,000		241		131

		500,000		761		381

		1,000,000		1760		801

		2,000,000		4040		1680

Heap and Quick Random

		

Heap

Quick

Size

Time

Sort Times

_984289573.unknown

_984246745.unknown

_984247235.unknown

_984246239.unknown

