Trees - 14

Trees
A tree is a collection of nodes, which may be empty ((). If the collection is not empty, then one of the nodes is distin​guished as a root (r), along with 0 or more subtrees T1, T2, … Tk, each of which is connected by a directed edge to r.

[image: image1.wmf]T

1

T

2

T

3

T

10

A

Observations
A single node by itself is a tree. This node is also the root of the tree.

Suppose n is a node and T1, T2,...Tk are trees with roots n1, n2, ...nk respectively. We can construct a new tree by making n be the parent of n1, n2, ...nk. In this tree n is the root and T1, T2,...Tk are the subtrees of the root. Nodes n1, n2, ...nk are called the children of node n.

Terminology
Term
Page
Ancestor
122

Child
121

Depth
122

Descendant
122

Edge
121

Height
122

Leaf
122

Length
122

Node
115

Parent
121

Path
122

Proper Ancestor
122

Root
121

Sibling
122

General Implementation

A general scheme, making use of a linked list for the nodes, is shown below:

struct TreeStruct

{

ElementType
element;

struct TreeNode

{

TreeStruct node;

TreeNode link;

} head;

};

Trees with a fixed number of subtrees are normally implemented directly.

Example: Book

[image: image2.wmf]Book

s2.1.1

s2.1.2

C1

C2

C3

s2.3

s2.2

s2.1

s1.2

s1.1

The chapters and sections of a book form a tree.

Order

[image: image3.wmf]A

B

C

A

B

C

The children at a node are usually ordered in some fashion, such as left to right. The two trees shown are different because the children are in different order.

Conventions

[image: image4.wmf]1

2

3

4

5

7

9

8

10

6

Node 8 is to the right of node 2, the left of nodes 9, 6, 10, 4, and 11, and neither left nor right of its ancestors 1, 3, and 5.

Ordering

[image: image5.wmf]A

B

C

A

B

C

A

B

C

Preorder

Inorder

Postorder

There are several useful ways to systematically number the nodes of a tree. The three most important ones are preorder, inorder, and postorder.

Tree Traversing

[image: image6.wmf]4

5

6

7

8

9

10

1

3

2

preorder - List nodes the first time we pass them

postorder - List nodes the last time we pass them

inorder - List a leaf the first time we pass it and list interior nodes the second time we pass it.

Traversal Example
The program reads a file of numbers and builds a balanced binary tree, then traverses the tree inorder, postorder, and preorder.

electress

programs

ammonia

suez

libertine

oat

tally

despot

tritium

donner

prologue

interruptible

lennox

coercion

dissociate

dissociate

lennox

coercion

tritium

interruptible

donner

prologue

electress

despot

oat

tally

programs

libertine

ammonia

suez

Inorder Traversal

void InOrder(TreeNode p)

{

if(p != NULL)

{

InOrder(pright);

Fout << p->id;

InOrder(pleft);

}

}

Traversal - Results

In-order Listing:

dissociate

lennox

coercion

tritium

interruptible

donner

prologue

electress

despot

oat

tally

programs

libertine

ammonia

suez

Pre-order Listing:

electress

tritium

lennox

dissociate

coercion

donner

interruptible

prologue

programs

oat

despot

tally

ammonia

libertine

suez

Post-order Listing:

dissociate

coercion

lennox

interruptible

prologue

donner

tritium

despot

tally

oat

libertine

suez

ammonia

programs

electress

Expression Trees
Trees may be used to represent arithmetic expressions.

· Every leaf is labeled by an operand and consists of that operand alone.

· Every interior leaf is labeled by an operator. Expres​sions are formed by applying the operator to the children of the node.

Example Expression Tree

[image: image7.wmf]a

b

c

+

*

+

a

1

n

n

2

n

4

n

5

n

6

n

3

n

7

Node n1 of the tree shown above represents the expression

(a + b)  (a + c)

Expression Tree Order
Traversing an expression tree inorder, postorder, or preorder represents infix, postfix, and prefix notation respectively.

Binary Trees
A binary tree is either an empty tree or a tree in which every node has either (i) no children, (ii) a left child, (iii) a right child, or (iv) both a left and right child.

Binary trees are widely used because of the relative ease with which they are constructed.

Interesting Binary Trees
· The binary search tree - Entries are put inorder as received. The tree is not balanced.

· Balanced binary tree - Entries are inserted in such a fashion as to keep the tree balanced. The tree is not ordered.

· Balanced binary search tree - Entries are inserted in such a fashion as to create the best balance for an ordered tree.

Binary Search Tree Output

INPUT DATA

41

18467

6334

26500

19169

15724

11478

29358

26962

24464

5705

28145

23281

16827

9961

491

2995

11942

4827

5436

32391

14604

3902

153

OUTPUT TREE

 41 (root}

 153

 491

 2995

 3902

 4827

 5436

 5705

 6334

 9961

 11478

 11942

 14604

 15724

 16827

 18467

 19169

 23281

 24464

 26500

 26962

 28145

 29358

 32391

Tree Depth vs Size

The depth of the tree is dependent on the number and distribution of the entries:

Size
Levels
Time
Space

10 (10)
5
-
160 bytes

100 (100)
12
-
1,600 bytes

1000 (978)
21
20 ms
15,648 bytes

10,000 (8,592)
28
170 ms
137,472 bytes

100,0000 (31,174)
39
1.782
498,784 bytes

Effect of Sorted Data
The first file consists of 50,000 random entries, the second is the first sorted and purged:

Binary Search Tree Program v1.0

 Building search tree ... 50000

 The tree had [32] levels

 [25688] total entries inserted into the tree

 [411008] bytes of space allocated for tree

 CPU time: [881] milliseconds

Binary Search Tree Program v1.0

 Building search tree ... 25688

 The tree had [25687] levels

 [25688] total entries inserted into the tree

 [411008] bytes of space allocated for tree

 CPU time: [134.514] seconds

Implementation

class TreeNode

{

public:

int count;

int value;

TreeNode left;

TreeNode right;

};

The insert Function

TreeNode insert(TreeNode p, int entry)

{

if(p == NULL) {

p = new TreeNode;

if(!p) {

cout << "EXIT: Memory allocation error" << endl;

exit(1);

}

space = space + sizeof(TreeNode);

TreeEntries++;
p->entry = entry;
p->count = 1;

p->left = p->right = NULL;

}

else if(entry == p->entry)

p->count++;

else if(entry < p->entry)

p->left = insert(p->left, entry);

else

p->right = insert(p->right, entry);

return p;

}

The Balanced Tree

TreeNode BuildBalancedTree(int nodes)

{

int
entry, LeftNodes, RightNodes;

TreeNode p;

if(nodes == 0)

return NULL;

LeftNodes = nodes/2;
RightNodes = nodes - LeftNodes - 1;

if(fin.eof()) {

cout << "File contained only [" << TreeEntries << "] entries" << endl;
exit(1);

}

else

fin >> entry;

p = new TreeNode;

if(!p) {

cout << "Memory allocation failure" << endl;
exit(1);

}

TreeEntries++; space = space + sizeof(TreeNode);
p->entry = entry;

p->left = BuildBalancedTree(LeftNodes); p->right = BuildBalancedTree(RightNodes);

return p;

}

Balanced Tree Output
Input Data

41

18467

6334

26500

19169

15724

11478

29358

26962

24464

5705

28145

23281

16827

9961

491

2995

11942

4827

5436

32391

14604

3902

153

Resulting Tree

 19169

 26500

 6334

 11478

 15724

 18467

 24464

 26962

 29358

 5705

 41 (root}

 9961

 16827

 23281

 491

 28145

 4827

 11942

 2995

 5436
Traversal

Input Data:

41

18467

6334

26500

19169

15724

11478

29358

26962

24464

5705

28145

23281

16827

9961

491

2995

11942

4827

5436

32391

14604

3902

153

In-Order Traversal:

3902

153

5436

32391

14604

16827

11942

4827

9961

491

2995

41 (root)

28145

23281

26962

24464

5705

18467

11478

29358

6334

15724

26500

19169

Pre-Order Traversal:

41 (root)

16827

5436

3902

153

32391

14604

9961

11942

4827

491

2995

18467

26962

28145

23281

24464

5705

6334

11478

29358

26500

15724

19169

Post-Order Traversal:

153

3902

14604

32391

5436

4827

11942

2995

491

9961

16827

23281

28145

5705

24464

26962

29358

11478

15724

19169

26500

6334

18467

41 (root)

A Tree Class

· Provides a standard set of tree operations

· Solves problems associated with the external vari​ables used in the example programs.

A Tree Class

#ifndef TREE_H

#define TREE_H

#include <iostream>

#include <fstream>

using namespace std;

class TreeNode

{

public:

int NameLength;

int ItemCount;

char name;

TreeNode left;

TreeNode right;

};

Public Members

class Tree

{

public:

Tree(void);

~Tree(void);

void InsertEntry(char );

bool FindEntry(char );

void WriteTree(fstream &);

int UniqueEntries(void);

int TotalEntries(void);

int SpaceUsedByTree(void);

Private Members

private:

TreeNode insert(TreeNode p, char entry);

TreeNode find(TreeNode p, char key);

void OutputTree(TreeNode , fstream &);

TreeNode root;

int NumEntries;

int NumUniqueEntries;

int SpaceAllocated;

};

#endif

Trees - 29

_979926011.unknown

_979931346.unknown

_979931513.unknown

_979931695.unknown

_979931447.unknown

_979926281.unknown

_979916663.unknown

