C++ Review

· Introduction - Expectations

· C++ Class Fundamentals (11 – 19)

· Interface and Implementation (15 – 17)

· Language fundamentals (19 – 30)

· Templates (30 – 36)

· Classes and OOP (Notes)

Expectations

· It is expected that you will be familiar with the follow​ing C++ material:

· Types, operations, and assignment

· Control structures

· Arrays, pointers, and strings (including dynamic allocation)

· Classes

· Linked lists

· Software Engineering fundamentals

Introduction
· Goals

· Review 351 material

· Illustrate use of classes with linked lists

· Review new concepts

· Example program using classes and linked lists

C++ Class Fundamentals

· Class syntax

· Class scope

· Constructors and destructors

· Interface and implementation

· Scope operator

· Member functions

· Vector and string classes

Interface and Implementation

[image: image1.wmf]int

 main(

void

)

 {

 .

List l

;

 .

 .

 }

List

class

list.h

list.cpp

An "instance" of the List

class is created here.

List::InsertEntry(..)

The binary scope resolution

operator ("::") is used to tie each

member function to the class.

The header file contains class

definition, which provides the

information needed to use the class.

Language Fundamentals

· Pointers (and arrays)

· Dynamic allocation

· Pointers and classes

· Parameters

Pointers (and arrays)

int a[10], pa;

[image: image2.wmf]a[0]

a[1]

a[2]

a[9]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

Pointer pa

(after pa = &a[0];)

*

(pa + 6)

Array a

Pointers & Types

A pointer is constrained to point to one type of object, i.e., every pointer points to a specific data type. (A pointer to void is an exception)

A pointer can be used anywhere a variable of the same type may be used.

Pointer Arithmetic

Given the array definition

int

i, a[10];

then the following is true

a[i] = (a + i)

Using pointer arithmetic:

(a + i) = a + i (sizeof(int))

The C Array Selector

Referencing an array element using a selector is done by pointer arithmetic. This means that

a[i] = (a + i) = i[a]

since the differences in “a” and “i” are determine by type rather than position.

Array and Pointer Address

//--START PROGRAM--(index)---

[image: image4.png]Demonstrate Array Indexing ul.®
Input value for i: 14
a[14] = 14

14[a] = 14
Press any key to continueg

#include
<iostream>

using namespace std;

const int ArrayLength = 16;

void main(void)

{

int a[ArrayLength], i;

cout << "Demonstrate Array Indexing v1.0\n";

for(i = 0; i < ArrayLength; i++)

a[i] = i;

cout << "Input value for i: ";
cout << flush;
cin >> i;

cout << "a[" << i << "] = " << a[i] << endl;

cout << i << "[a] = " << i[a] << endl;

}

//--END PROGRAM--(index)---

Pointers & Arrays

· int
pa, a[10];

· A pointer is a variable so operations on it such as pa = a or pa++ are legal. An array name is not a variable so opera​tions on it such as a = pa or a++ are not legal
· When an array name is passed to a function, what is passed is the location of the initial element. Within the called function, this argument is a local variable and may be used a pointer to reference the array.

· Any operation which may be performed on an array using subscripting may also be performed with a pointer of the appropriate type.

Dynamic Allocation

[image: image3.wmf]Stack Pointer

Heap Pointer

Memory cell 0

Memory cell N

Program Code

The stack provides space

for variables defined by

the program.

The heap provides space

for variables defined

during execution.

Dynamic Allocation - 2

The new and delete operations are used to implement dynamic allocation of storage.

p = new ListNode;

if(!p)

{

cout << "PROGRAM HALTED: Memory allocation error" << endl;

exit(1);

}

int data;

data = new int [<number of items>];

Templates

Templates, as the name implies, allow a gener​alized form, typically type-independent, of a func​tion or class to be written. Specific instances of the function or class can be created from the template.

We may look at some examples later in the course.

Classes and OOP

There are three defining traits of an object-ori​ented programming language:

· Encapsulation

· Polymorphism

· Inheritance
Encapsulation
· Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse

· Typically, the public parts of an object are used to provide a controlled interface to the private parts of the object

Polymorphism
· Polymorphism is the quality that allows one name to be used for two or more related but technically different purposes

· C++ supports polymorphism through function overloading (same function name, different parameters)

Inheritance
· Inheritance is the process by which one object can acquire the properties of another

· Inheritance allows a hierarchy of classes to be built, moving from the general to the most specific

Notes Available

· Types (types.ppt)

· Pointers (pointers.ppt)

· Introduction to classes (ClassIntro.ppt)

· Class details (Classes_Closer.ppt)

· C++ and OOP (C++ and OPP.ppt)

· Streams I/O (IO System.ppt)

· Functions and scope (functions.doc)

The C++ String Class

The class string has a large number of member functions and a “fat” interface. Anywhere you can write a string you should be able to write any of:

· A pointer to a character string, followed by a sequence length argument.

· A pointer to a null-terminated string.

· A character to be repeated, followed by a repetition count.

· A single character.

Class private members

char *ptr;

// points to the initial character
// of the string
size_t len;
// len is the number of characters
size_t res;
// currently in the string. res is the
// recommended allocation for an
// unallocated string, the currently
// allocated size for an allocated string.
// len <= res.
Constructors

The default constructor is string::string(), which sets the string variables as follows:

ptr to an unspecified value

len to 0

res to an unspecified value

There are a 6 other versions of the constructor that supply values and various other options.

Example Member Functions

The string class overloads all applicable common opera​tors (such as ‘=’, ‘==’) so that they may be used with string variables. In addition there are a number of other mem​ber functions. Examples include:

length

Returns the length of the string

reserve
Returns the reserve size (does not currently

appear to work with Microsoft C++ v6.0).

_978149690.unknown

_978152633.unknown

_978149441.unknown

