· Introduction
· Formal Problem Statements

· Algorithms

· Math Review

· The Selection Program

· Recursion

· Formal Problem Statements
· Define the problem

· Express in terms of a formal model, if possible, using what is known about the model to look for solutions

· Using a formal model allows us to determine whether a known solution to the problem already exists. Even if no known solution exists, the properties of the model can be used to construct a good solution and to have some idea of the performance of the program.
Algorithms

· An algorithm is a finite set of instructions that, if followed, accom​plish a particular task. Algorithms must satisfy the following criteria:

· Input - There are zero or more quantities that are externally supplied.

· Output - At least one quantity is produced.

· Definiteness - Each instruction must be clear and unambiguous.

· Finiteness - If we trace out the instructions of an algorithm, then for all cases the algorithm will terminate after a finite number of steps.

· Feasibility - Every instruction must be feasible as well as definite.

· Algorithms and Programs
Programs do not have to satisfy all of the criteria required of an algorithm, finiteness in particular.
· However most programs should properly imple​ment some algorithm and thus satisfy the algo​rithm criteria.
· Math Review

· Exponents

· Logarithms

· Series

· Modular arithmetic

· Proof by induction
Recursion

Consider the problem of finding a particular value in an order list of numbers:

[image: image1.wmf]0

N-1

left

right

middle = (left + right)/2

One possible technique involves repeated looking at the middle and discarding one side until the item is found or the size of the data set is 0 (“halving the interval”).

Halving the Interval

int HalvingTheInterval(int ds[], int key, int left, int right)

{

int middle;

if(right > left)

{

middle = (left + right)/2;

cout << " ds[" << middle << "] = [" << ds[middle] << "]" << endl;

if(key == ds[middle])

return middle;

else if(key < ds[middle])

return HalvingTheInterval(ds, key, left, middle);

else

return HalvingTheInterval(ds, key, middle+1, right);

}

else

return -1;

}

· Recursion Comments

· There is usually a non-recursive way to implement an algorithm. It will usually be faster.

· Recursion is useful where the recursive implementa​tion of the algorithm is easier to understand.

· Recursive algorithms will frequently be used in 352.

The Selection Problem
· Given a group of N numbers, select the kth largest number. Two possible techniques are to:

· Read the numbers into an ordered list and return the kth location (v1).

· Read the numbers into an array, sort it, and return the kth location (v2).

Performance

“How long will it take” is a key issue. We can get some idea by testing our program on several data sets.

N
k
v1
v2

10,000
5,000
1.49 s/10 ms
310 ms/10 ms

20,000
10,000
5.99 s/10 ms
580 ms/10 ms

100,000
50,000
408.5 s/10 ms
2.87 s/70 ms

50,000
[0 .. 49,999]
247.4 s/185.1 s
1.45 s/40 ms

The times given are total and search time only. Version 2 (using the sort) appears to have a clear advantage.
What are out goals?
· Our overall goals in 352 are to:

· Learn how to use typical data structures, for​mal algorithms, and algorithm analysis.

· Predict program performance.

· Learn how to improve program performance.

· Increase our knowledge of software engineering.

_992666595.unknown

