EECE 352

Problem Set # 7

Due: October 20

Fall 1998

Problem:
K. Winslow Farrell Jr.'s 22-member Emergent Solutions Group at PricewaterhouseCoopers (New York) is building simulated stores for Macy's, with little simulated shoppers that mimic the behavior of real shoppers.  Because they interact with each other, the agents produce results beyond the statistical data from which they were created.  Macy's hopes to use simulations to optimize product placement, number of clerks, and placement of checkout desks.  "If we begin getting good predictions out of it, we're going to have a lot of new clients knocking on our doors."  The graphic little shoppers are an easy sell to management, compared with econometrics, operations research, and linear programming.  Another simulation, of 40K moviegoers, is predicting first-week box office receipts with 30% better accuracy than traditional forecasting from historical records.  Farrell was formerly a JPL scientist, and works in "cyber-bioengineering" with the techniques of alife and complexity theory (as developed at the Santa Fe Institute). A problem with such modeling is getting data on how demographics affect interactions.  The technique should be "an aid to thinking and not a replacement for thinking."  [John A. Byrne, BW, 21Sep98, p. 80.]

Task(100%) Implement a competing product (sort of). You will start by assuming that Macy is a 10x10 grid and that your agents (i.e. people) have one of six predefined behaviors. In my homepage you will find the files agent.h, agent.cpp, event.h, which will help you in the implementation. Your basic responsibility will be the implementation of the priority queue, whose header file looks like:

#include "agent.h"

#include "event.h"

#include <iostream.h>

// implements a priority queue ordered by "time".

//  "time" is an element of "event"

class pqueue  

{

public:



event * queue; //queue is an array of event




 // events contain a time and a pointer to agent.


int last;      //index of the last element in array


int size;      //size of the array


event deleteMin();  //returns the even with the min time.






// if there are no events, it returns






// an event with time = -1


void insert(int time, agent *ag);






//adds a new event to the priority queue.






// reorganizing as neccessary.


pqueue(int size);  //create a priority queue of size.


virtual ~pqueue();
};

The main.cc is:

#include "pqueue.h"

#include <iostream.h>

const int matrixX = 10;

const int matrixY = 10;

void main(){


int x,y;


pqueue q(100);//create a priority queue with space for 100.


agent agent0(0,0,0,forwx, 3, matrixX, matrixY);


q.insert(5,&agent0);//his first move is at time 5.


agent agent1(1,5,5,forwy, 5, matrixX, matrixX);


q.insert(6,&agent1);


agent agent2(2,3,3,diag1, 10, matrixX, matrixY);


q.insert(4,&agent2);


event nextEvent;


int time, counter=0;


agent * curAgent;


while (counter++ < 23){// run for 23 cycles



nextEvent = q.deleteMin(); //get next event



curAgent = nextEvent.ag;

//get the agent involved in the event



time = nextEvent.time;     //get the current time.



if (time == -1) break; //no more events. so we quit.



x = curAgent->getX(); y = curAgent->getY(); 

//agent's coordinates



curAgent->act();  //tell agent to move



x = curAgent->getX(); y = curAgent->getY(); 

//agent's new pos



q.insert(time + curAgent->getDelay(), curAgent); 

//put the agent's event in q



cout << time << "\t"; curAgent->print(); cout << endl;}


char c; cin>>c;

;}

The output from that main should look like:

Time
   Agent       x,y position of the agent (this line is not part of the output).

4       Agent-2 4,4

5       Agent-0 1,0

6       Agent-1 5,6

8       Agent-0 2,0

11      Agent-1 5,7

11      Agent-0 3,0

14      Agent-2 5,5

14      Agent-0 4,0

16      Agent-1 5,8

17      Agent-0 5,0

20      Agent-0 6,0

21      Agent-1 5,9

23      Agent-0 7,0

24      Agent-2 6,6

26      Agent-0 8,0

26      Agent-1 5,0

29      Agent-0 9,0

31      Agent-1 5,1

32      Agent-0 0,0

34      Agent-2 7,7

35      Agent-0 1,0

36      Agent-1 5,2

38 Agent-0 2,0

As you can see, the priority queue you will be implementing will store events, ordered by their time. The insert function will insert new events in the priority queue, making sure that the queue stays sorted. The deleteMin function will return the next event (i.e. the one with the smallest time) and will fill in the empty hole. If there are no events in the queue, deleteMin should return an event with a time of –1 (to signal that there are no more).

The main function I have given you simply creates three agents and places them in the priority queue. It then cycles for 23 time steps. In each time step we get the next event, which has a time and an agent associated with it. We tell the agent to act(). This makes the agent change its x and y positions. We then create a new event for the agent at the time equal to the current time plus the delay (which we get with getDelay()) that the agent has.

Department of Electrical and Computer Engineering

University of South Carolina


- 3 -

