EECE 352

Problem Set # 10

Due: November 17

Fall 1998

Task 1 (50%): You will implement your own versions of both Shell sort and Quick Sort. Their signatures are:

template <class Etype>

void

ShellSort(Etype A[], int N)//A is array

template <class Etype>

void

QuickSort(Etype A[], int N)//N is the number of els.

They should be able to sort, int, double, char, and long types. You do this by simply implementing your functions to sort int A[] and, once they work, replace the function call with the above definitions and replace the appropriate ints to Etype. (Read the manual). If you still do not want to do it, then just implement 4 versions of your functions. Your sort should work on:

#include <stdio.h>

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

#include "timers.h"

template <class Etype>

void randomize(Etype A[], int N)

{

int i;

srand((unsigned)time(NULL));

for (i=0; i < size; i++)

{

A[i] = rand();

}

}

template <class Etype>

void compare (Etype A[], int N)

{

randomize(A, size);

int i;

CCpuTimer cTimer;

cTimer.Start();

QuickSort(A, size); //you must implement this..

cTimer.Stop();

cout << "Quick=" << cTimer.Report() << "\t";

for (i=0; i<(size-1); i++)

{

if (A[i] > A[i+1])

cout << "ERROR: array not properly sorted" << endl;

};

randomize(A, size);

cTimer.Start();

ShellSort(A, size); //you must implement this...

cTimer.Stop();

cout << "Shell=" << cTimer.Report() << endl;

for (i=0; i<(size-1); i++)

{

if (A[i] > A[i+1])

cout << "ERROR: array not properly sorted" << endl;

};

}

const int size = 100000;

void main()

{

int *A = new int[size];

cout << "Integer times:\t";

compare(A, size);

delete [] A;

double *B= new double[size];

cout << "Double times:\t";

compare(B, size);

delete [] B;

char *C= new char[size];

cout << "Char times:\t";

compare(C, size);

delete [] C;

long *D= new long[size];

cout << "Long times:\t";

compare(D, size);

delete [] D;

}

Task 2 (50%) Now that you have some basic times for your sort routines, try to improve on them. On class we have talked about several ways to improve the performance of these algorithms. Pick one algorithm, either Shell or QuickSort, and try to improve its performance on sorting INTegers. Creativity counts---you will not get full credit if your answer is the same as everyone else. You will include a file called COMPARE.TXT, in your directory, which includes:

· a description of the strategies you tried and their results,

· the times from your different experiments.

Department of Electrical and Computer Engineering

University of South Carolina

- 2 -

