EECE 352

Midterm

Name:_________________

Fall 1998

Problem 1: (5 points) Given the following class definitions:

class B {

public:

int data;

B(){data = 0;}

virtual void print(){ cout << “B ”};

};

class C : public B {

int num;

public:

C() { num = 3;}

virtual void print(){ cout << “C ”;};

}

class A : public B {

public:

}

class D : public C {

public:

virtual void print() {C::print(); cout << “D ”;};

a- Which class is the parent of class A?

class B.
b- Which are the children of class C?

class D.

c- In the following program, write next to each line the value that the line prints, or ERROR if it leads to an error. Do not write anything if the line does not print anything.

A var1;

B var2;

var1.print();
B
C var3;

var3.print();

C

D var4;

var4.print();

C D
cout << var3.num << endl;

ERROR accessing private.
cout << var2.data << endl;

0
Problem 2 (5 points) Given the following definitions, give the equivalent type for each expression.
class test{

//some stuff in here };

test a;

test * b = &a;

test ar[100];

a) a

=
answer: test

b) b

=
test *
c) ar[5]

=
test
d) ar

=
test * or test[]
e) *b

=
test
f) &b

=
test**
Problem 3 (5 points) Fill in the following table. Each box should have a “yes” or “no” indicating whether or not the condition at the top of the row is true. The first row has already been answered for you. Basically, for each box you should ask yourself “Is B and upper/lower/asymptotic bound on A?”

A
B
A=O(B)
A=((B)
A=((B)

n
1
No
Yes
No

n2
n lgn
No
Yes
No

n+n2
n3
Yes
No
No

n
200n + n/2
Yes
Yes
Yes

n.5
lg n
No
Yes
No

[image: image1.wmf]10

10

n

2n
Yes
No
No

Problem 4 (10 points) Give the running times (big-O notation) of the following code fragments, in terms of n.

a-for (i = 0; i < n; i++)

for (j=0; j< n*n; j++)

Sum++;

O(n3)

b- for (i= 1; i < n; i = i*2)

Sum++;

O(lg n)
c- for (i = 0; i < 2**n; i++)

for (j = 0; j < n*n; j++)

Sum++;

O(2nn2) or Ill accept O(2n) which is WRONG.

d- int fact (int n) {

if (n == 1) return 1;

else return n*fact(n-1); }

O(n)
e- int silly (int n) {

if (n == 0) return 0;

else return 1 + silly(n-1) + silly(n-1);}

O(2n)

Problem 5 (15 points) Given the following class definition:

class list {

list *next;

int num;

public:

list(int x) {next = 0; num = x;}

~list();

};
a- Write the function void list::insert(int x), which inserts the number x at the tail end of the list.

void list::insert(int x){

if (next == 0)

next = new list (x);

else

next->insert(x);

}

b- Write the function int list::find(int x), which returns 1 if x is on the list and 0 if it is not.

int list::find(int x){

if (num == x) return 1;

else if (next == 0) return 0;

else return next.find(x);}

c- Write the function int list::isMin(int x), which returns 1 if there is no number smaller than x on the list, 0 if there is (at least) one other number that is smaller.

int list::isMin(int x){

if (num < x) return 0;

else if (next == 0) return 1;

else return next->isMin(x);

d- What are the running times (big-O notation) of each function? assume that n is the length of the list.

O(n) for all.

Problem 6 (8 points) Name 2 advantages of using a list instead of an array for storing a series of data.

There is no need to know the number of things to store beforehand.

It is easy to insert things in the middle of a list. In an array we would need to shift.

There are others.

Name 2 disadvantages of using a list instead of an array.

Lists are harder to implement than array.

It takes longer to traverse (e.g. to print) a list.
There are others.

Problem 7 (7 points) What is a binary tree?

A tree where each node has, at most, two children.
Why is a binary tree easier to implement than a non-binary tree?

Because we know beforehand that each node will have at most two children, so we can create data members “left” and “right” which address each of the children separately. In a non-binary tree we would probably need to use a list in order to store the children of a node.

What is an AVL search tree?

It’s a binary search tree that where the difference in the height of the left and right subtrees of every node differs by at most 1.

Problem 8 (10 points) The following code is part of a header file for a binary search tree.

class bstree {

int num;

bstree * left;

bstree * right;

};

a- Write the function int bstree::find(int x), which returns 1 if x is found in the tree and 0 otherwise.

int bstree::find(int x){

if (num == x) return 1;

else if (num < x)

if (left == 0) return 0;

else return left->find(x);

else
if (right == 0) return 0;

else return right->find(x);}

b- Write the function void bstree::printLessThan(int x), which prints all the nodes (i.e. their num) that are smaller than x. Note that x might be a number that is not on the tree.

void bstree::print(){

cout << num << endl;

if (left != 0) left->print();

if (right != 0) right->print();

}

void bstree:printLessThan(int x){

if (num < x) {

cout << num << endl;

if (left != 0)

left->print();

if (right != 0) right->printLessThan(x);}

else

left->printLessThan(x);

}

Problem 9 (10 points) Show the resulting AVL tree after inserting 8, 5, 6.5, and 4.5 (in that order).

Problem 10 (5 points) You have to store a set of names in a data structure. You want to be able to very quickly determine if a particular name has been stored. All the names start with the letter A, but you do not know beforehand how many names there will be. Why kind of has table would you use (open or closed), explain why it is better.

An open hash table is better since we do not know how many names will be added.

What is clustering? on what kind of hash tables does it appear more often?

It happens on closed hashing tables when new data values cluster around the same index value. It happens more often in linear probing hash tables.
Problem 11 (10 points) The following are two identical closed hashing hash tables. They start out empty. The first one uses linear conflict resolution, the second one uses quadratic conflict resolution. Their hash function is int hash(int x){ return x%5;}.You will show the values they end up having after doing the following series of inserts:

insert(5);

insert(10);

insert(0);

insert(13);

insert(3);

Linear probing hash table

Index
Value

0
5

1
10

2
0

3
13

4
3

Quadratic probing hash table

Index
Value

0
5

1
10

2
3

3
13

4
0

Problem 12 (10 points) Given that you already have:

· A hashtable with an insert(String x, int num) function, and a int find(String x) function that returns the num that was inserted along with String x.

· A stack with both a push(String x) and a String pop().
· Functions int String::isNum() and int String::toNum() as used in PS#4, and String int::toString() which converts an int to a String.

Write a program that can read expressions in inverse polish notation and print what they evaluate to. NOTE: The expressions can include numbers, variables, assignments (=), and the plus operator (+). For example, if the inputStream contains

A 4 =

B 3 =

A B + 3 +

then the program should print 10 (after reading the last line). Here are the first few lines of the program. (This program will be longer than the other ones).

hashtable table;

stack s;

String word;

while (word << inputStream) {

if (word.isNum()) s.push(word); //push numbers

else if (word == “+”) { //if + then pop previous two

String v1 = s.pop();

String v2 = s.pop();

int vn1, vn2, sum;

if (v1.isNum()) vn1 = v1.toNum(); //if vars, find

else vn1 = table.find(v1);

//their value

if (v2.isNum()) vn2 = v2.toNum();

else vn2 = table.find(v2);

sum = vn1 + vn2;

//add them up

s.push(sum.toString());
//push result

}

else if (word == “=”) { //if = then pop previous two

String v1 = s.pop(); //v1 is the variable

String v2 = s.pop(); //v2 is the var or num

int vn2;

if (v2.isnum()) vn2 = v2.toNum();

else vn2 = table.find(v2); //if v2 is var get num

table.insert(v1, vn2);} //add the value to table

else

cerr << “Bad symbol” << endl;}

cout << s.pop();

4

3

7

9

6

6

9

7

3

4

8

6

9

7

8

3

4

5

4.5

6.5

Department of Electrical and Computer Engineering

University of South Carolina

- Page 8 of 10 -

_968672437.unknown

